00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which of the following nerve roots provide nerve fibers to the ansa cervicalis?...

    Correct

    • Which of the following nerve roots provide nerve fibers to the ansa cervicalis?

      Your Answer: C1, C2 and C3

      Explanation:

      The ansa cervicalis muscles can be remembered using the acronym GHost THought SOmeone Stupid Shot Irene. These muscles include the GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The ansa cervicalis is made up of a superior and inferior root, which originate from C1, C2, and C3. The superior root begins where the nerve crosses the internal carotid artery and descends in the anterior triangle of the neck. The inferior root joins the superior root in the mid neck region and can pass either superficially or deep to the internal jugular vein.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      12.8
      Seconds
  • Question 2 - A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor...

    Incorrect

    • A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor measures 4 centimeters in its largest dimension and is not invading any surrounding structures. However, there are metastases in the ipsilateral hilar lymph nodes, and no distant metastases have been found. What is the TNM score for this patient, considering the primary tumor (T), regional lymph nodes (N), and distant metastases (M)?

      Your Answer: T3 N2 M0

      Correct Answer: T2 N1 M0

      Explanation:

      It is crucial to have knowledge about the TNM system for staging lung cancer. The absence of distant metastases eliminates one of the options immediately (as M must be 0).

      The size and invasion of the tumor are significant factors:
      – T1 is less than 3 cm
      – T2 is between 3 cm and 7 cm
      – T3 is more than 7 cm and/or involves invasion of the chest wall, parietal pleura, diaphragm, phrenic nerve, mediastinal pleura, or parietal pericardium
      – T4 can be any size but involves invasion of other structures

      To differentiate between N1 and N2, remember that N1 involves ipsilateral hilar or peribronchial lymph nodes, while N2 involves ipsilateral mediastinal and/or subcarinal lymph nodes.

      Small Cell Lung Cancer: Characteristics and Management

      Small cell lung cancer is a type of lung cancer that usually develops in the central part of the lungs and arises from APUD cells. This type of cancer is often associated with the secretion of hormones such as ADH and ACTH, which can cause hyponatremia and Cushing’s syndrome, respectively. In addition, ACTH secretion can lead to bilateral adrenal hyperplasia and hypokalemic alkalosis due to high levels of cortisol. Patients with small cell lung cancer may also experience Lambert-Eaton syndrome, which is characterized by antibodies to voltage-gated calcium channels causing a myasthenic-like syndrome.

      Management of small cell lung cancer depends on the stage of the disease. Patients with very early stage disease may be considered for surgery, while those with limited disease typically receive a combination of chemotherapy and radiotherapy. Patients with more extensive disease are offered palliative chemotherapy. Unfortunately, most patients with small cell lung cancer are diagnosed with metastatic disease, making treatment more challenging.

      Overall, small cell lung cancer is a complex disease that requires careful management and monitoring. Early detection and treatment can improve outcomes, but more research is needed to better understand the underlying mechanisms of this type of cancer.

    • This question is part of the following fields:

      • Respiratory System
      25.3
      Seconds
  • Question 3 - A 15-year-old girl presents with difficulty breathing and is unable to speak in...

    Incorrect

    • A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?

      Your Answer:

      Correct Answer: Silent chest

      Explanation:

      Identify the life-threatening features of an asthma attack.

      Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.

      A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.

      It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 4 - Which one of the following would cause a rise in the carbon monoxide...

    Incorrect

    • Which one of the following would cause a rise in the carbon monoxide transfer factor (TLCO)?

      Your Answer:

      Correct Answer: Pulmonary haemorrhage

      Explanation:

      When alveolar haemorrhage takes place, the TLCO typically rises as a result of the increased absorption of carbon monoxide by haemoglobin within the alveoli.

      Understanding Transfer Factor in Lung Function Testing

      The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.

      KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 5 - A father brings his 9-year-old daughter to your general practice, as he is...

    Incorrect

    • A father brings his 9-year-old daughter to your general practice, as he is worried about her hearing. He notices that he has to repeat himself when talking to her, and thinks she is often 'in her own little world'. During the examination, the Rinne test is positive on the left and negative on the right. What conclusions can be drawn from this?

      Your Answer:

      Correct Answer: Can not tell if both sides are affected.

      Explanation:

      The Rinne and Weber tests are used to diagnose hearing loss. The Rinne test involves comparing air and bone conduction, with a positive result indicating a healthy or sensorineural loss and a negative result indicating a conductive loss. The Weber test involves placing a tuning fork on the forehead and determining if the sound is symmetrical or louder on one side, with a conductive loss resulting in louder sound on the affected side and a sensorineural loss resulting in louder sound on the non-affected side. When used together, these tests can provide more information about the type and affected side of hearing loss.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 6 - A 14-year-old boy comes to the clinic complaining of ear pain. He mentions...

    Incorrect

    • A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?

      Your Answer:

      Correct Answer: Incus

      Explanation:

      The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.

      The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
      Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
      Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 7 - A 26-year-old woman comes to your clinic complaining of feeling dizzy for the...

    Incorrect

    • A 26-year-old woman comes to your clinic complaining of feeling dizzy for the past two days. She describes a sensation of the room spinning and has been experiencing nausea. The dizziness is relieved when she lies down and has no apparent triggers. She denies any hearing loss or aural fullness and is otherwise healthy. Upon examination, she has no fever and otoscopy reveals no abnormalities. You suspect she may have viral labyrinthitis and prescribe prochlorperazine to alleviate her vertigo symptoms. What class of antiemetic does prochlorperazine belong to?

      Your Answer:

      Correct Answer: Dopamine receptor antagonist

      Explanation:

      Prochlorperazine belongs to a class of drugs known as dopamine receptor antagonists, which work by inhibiting stimulation of the chemoreceptor trigger zone (CTZ) through D2 receptors. Other drugs in this class include domperidone, metoclopramide, and olanzapine.

      Antihistamine antiemetics, such as cyclizine and promethazine, are H1 histamine receptor antagonists.

      5-HT3 receptor antagonists, such as ondansetron and granisetron, are effective both centrally and peripherally. They work by blocking serotonin receptors in the central nervous system and gastrointestinal tract.

      Antimuscarinic antiemetics are anticholinergic drugs, with hyoscine (scopolamine) being a common example.

      Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 8 - A 50-year-old woman presents to your GP clinic with a complaint of a...

    Incorrect

    • A 50-year-old woman presents to your GP clinic with a complaint of a malodorous discharge from her left ear for the last 2 weeks. She also reports experiencing some hearing loss in her left ear and suspects it may be due to earwax. However, upon examination, there is no earwax present but instead a crust on the lower portion of the tympanic membrane. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Cholesteatoma

      Explanation:

      When a patient presents with unilateral foul smelling discharge and deafness, it is important to consider the possibility of a cholesteatoma. If this is suspected during examination, it is necessary to refer the patient to an ENT specialist.

      Pain is a common symptom of otitis media, while otitis externa typically causes inflammation and swelling of the ear canal. Impacted wax can lead to deafness, but it is unlikely to cause a discharge with a foul odor. It is also improbable for a woman of 45 years to have a foreign object in her ear for three weeks.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 9 - A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness...

    Incorrect

    • A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness of breath. Upon examination, he is found to be cyanotic and hypoxic, and is admitted to the respiratory ward for oxygen therapy.

      Following some initial tests, the consultant informs the patient that his hemoglobin has a high affinity for oxygen, resulting in reduced oxygen delivery to the tissues.

      What is the probable reason for this alteration in the oxygen dissociation curve?

      Your Answer:

      Correct Answer: Low 2,3-DPG

      Explanation:

      The correct answer is low 2,3-DPG. The professor’s description refers to a left shift in the oxygen dissociation curve, which indicates that haemoglobin has a high affinity for oxygen and is less likely to release it to the tissues. Factors that cause a left shift include low temperature, high pH, low PCO2, and low 2,3-DPG. 2,3-DPG is a substance that helps release oxygen from haemoglobin, so low levels of it result in less oxygen being released, causing a left shift in the oxygen dissociation curve.

      The answer high temperature is incorrect because it causes a right shift in the oxygen dissociation curve, promoting oxygen delivery to the tissues. Hypercapnoea also causes a right shift in the curve, promoting oxygen delivery. Hyperglycaemia has no effect on haemoglobin’s ability to release oxygen, so it is also incorrect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 10 - A 65-year-old woman comes to the clinic complaining of fever and productive cough...

    Incorrect

    • A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'

      What is the probable causative organism in this case?

      Your Answer:

      Correct Answer: Klebsiella pneumoniae

      Explanation:

      The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.

      Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.

      Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.

      Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.

      Understanding Klebsiella Pneumoniae

      Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.

      The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 11 - How many fissures can be found in the right lung?

    At what age...

    Incorrect

    • How many fissures can be found in the right lung?

      At what age do these fissures typically develop?

      Your Answer:

      Correct Answer: Two

      Explanation:

      The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 12 - A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder...

    Incorrect

    • A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder & hip joint pain. He has raised erythematous lesions on both legs. His blood tests reveal elevated calcium levels and serum ACE levels. A chest x-ray shows bilateral hilar lymphadenopathy.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Sarcoidosis

      Explanation:

      If a patient presents with raised serum ACE levels, sarcoidosis should be considered as a possible diagnosis. The combination of erythema nodosum and bilateral hilar lymphadenopathy on a chest x-ray is pathognomonic of sarcoidosis. Lung cancer is unlikely in a young patient without a significant smoking history, and tuberculosis would require recent foreign travel to a TB endemic country. Multiple myeloma would not cause the same symptoms as sarcoidosis. Exposure to organic material would not be a likely cause of raised serum ACE levels.

      Understanding Sarcoidosis: A Multisystem Disorder

      Sarcoidosis is a condition that affects multiple systems in the body and is characterized by the presence of non-caseating granulomas. The exact cause of this disorder is unknown, but it is more commonly seen in young adults and individuals of African descent.

      The symptoms of sarcoidosis can vary depending on the severity of the condition. Acute symptoms may include erythema nodosum, bilateral hilar lymphadenopathy, swinging fever, and polyarthralgia. On the other hand, insidious symptoms may include dyspnea, non-productive cough, malaise, and weight loss. Additionally, some individuals may develop skin symptoms such as lupus pernio, while others may experience hypercalcemia due to increased conversion of vitamin D to its active form.

      Sarcoidosis is also associated with several syndromes, including Lofgren’s syndrome, Mikulicz syndrome, and Heerfordt’s syndrome. Lofgren’s syndrome is an acute form of the disease that typically presents with bilateral hilar lymphadenopathy, erythema nodosum, fever, and polyarthralgia. Mikulicz syndrome is characterized by enlargement of the parotid and lacrimal glands due to sarcoidosis, tuberculosis, or lymphoma. Finally, Heerfordt’s syndrome, also known as uveoparotid fever, presents with parotid enlargement, fever, and uveitis secondary to sarcoidosis.

      In conclusion, sarcoidosis is a complex disorder that can affect multiple systems in the body. While the exact cause is unknown, early diagnosis and treatment can help manage symptoms and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 13 - A 44-year-old male singer visits his GP complaining of a hoarse voice that...

    Incorrect

    • A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?

      Your Answer:

      Correct Answer: Cricothyroid

      Explanation:

      The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 14 - A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He...

    Incorrect

    • A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He has been smoking 10 cigarettes per day for the past 30 years. What is the number of pack years equivalent to his smoking history?

      Your Answer:

      Correct Answer: 15

      Explanation:

      Pack Year Calculation

      Pack year calculation is a tool used to estimate the risk of tobacco exposure. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking. One pack of cigarettes contains 20 cigarettes. For instance, if a person smoked half a pack of cigarettes per day for 30 years, their pack year history would be 15 (1/2 x 30 = 15).

      The pack year calculation is a standardized method of measuring tobacco exposure. It helps healthcare professionals to estimate the risk of developing smoking-related diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and heart disease. The higher the pack year history, the greater the risk of developing these diseases. Therefore, it is important for individuals who smoke or have a history of smoking to discuss their pack year history with their healthcare provider to determine appropriate screening and prevention measures.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 15 - A 25-year-old woman presents to the Emergency department with sudden onset of difficulty...

    Incorrect

    • A 25-year-old woman presents to the Emergency department with sudden onset of difficulty breathing. She has a history of asthma but is otherwise healthy. Upon admission, she is observed to be breathing rapidly, using her accessory muscles, and is experiencing cold and clammy skin. Upon chest auscultation, widespread wheezing is detected.

      An arterial blood gas analysis reveals:

      pH 7.46
      pO2 13 kPa
      pCO2 2.7 kPa
      HCO3- 23 mmol/l

      Which aspect of the underlying disease is affected in this patient?

      Your Answer:

      Correct Answer: Forced Expiratory Volume

      Explanation:

      It is probable that this individual is experiencing an acute episode of asthma. Asthma is a condition that results in the constriction of the airways, known as an obstructive airway disease. Its distinguishing feature is its ability to be reversed. The forced expiratory volume is the most impacted parameter in asthma and other obstructive airway diseases.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 16 - Which one of the following is not a cause of increased anion gap...

    Incorrect

    • Which one of the following is not a cause of increased anion gap acidosis?

      Your Answer:

      Correct Answer: Acetazolamide

      Explanation:

      Causes of anion gap acidosis can be remembered using the acronym MUDPILES, which stands for Methanol, Uraemia, DKA/AKA, Paraldehyde/phenformin, Iron/INH, Lactic acidosis, Ethylene glycol, and Salicylates.

      Disorders of Acid-Base Balance

      The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 17 - A patient in their 60s presents to surgical outpatients with diffuse abdominal pain....

    Incorrect

    • A patient in their 60s presents to surgical outpatients with diffuse abdominal pain. As a second-line imaging investigation, a CT scan is requested. The radiologist looks through the images to write the report. Which of the following would they expect to find at the level of the transpyloric plane (L1)?

      Your Answer:

      Correct Answer: Hila of the kidneys

      Explanation:

      The hila of the kidneys are at the level of the transpyloric plane, with the left kidney slightly higher than the right. The adrenal glands sit just above the kidneys at the level of T12. The neck of the pancreas, not the body, is at the level of the transpyloric plane. The coeliac trunk originates at the level of T12 and the inferior mesenteric artery originates at L3.

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 18 - A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical...

    Incorrect

    • A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical treatment for Grave's disease. Radioiodine was not an option as she is the sole caregiver for her three young children. During the consent process, she is informed of the potential complications of thyroidectomy, including the risk of injury to the sensory branch of the superior laryngeal nerve. Can you identify which nerve branches off from the superior laryngeal nerve and is responsible for sensory function?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The superior laryngeal nerve, a branch of the vagus nerve, has two branches: the external laryngeal nerve, which is a motor nerve, and the internal laryngeal nerve, which is a sensory nerve. The recurrent laryngeal nerve, also a branch of the vagus nerve, supplies all intrinsic muscles of the larynx except for the cricothyroid muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 19 - A 6-month-old infant is brought to the paediatrician due to increased work of...

    Incorrect

    • A 6-month-old infant is brought to the paediatrician due to increased work of breathing. The infant was born at term and via spontaneous vaginal delivery 6 months ago.

      During the examination, the paediatrician observes moderate subcostal and intercostal recession and notes that the infant appears tachypnoeic. The infant's temperature is 38.9ÂșC, and a chest x-ray is ordered, which reveals some consolidation in the right lower zone. Broad-spectrum antibiotics are initiated.

      Upon reviewing the infant's oxygen dissociation curve, the paediatrician notes a leftward shift relative to the standard adult curve. What is the cause of this appearance in the infant's oxygen dissociation curve?

      Your Answer:

      Correct Answer: Foetal haemoglobin (HbF)

      Explanation:

      The factor that shifts the oxygen dissociation curve to the left is foetal haemoglobin (HbF). This is because HbF has a higher affinity for oxygen than adult haemoglobin, haemoglobin A, which allows maternal haemoglobin to preferentially offload oxygen to the foetus across the placenta.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 20 - A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is...

    Incorrect

    • A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is noted to be widened. Where does the trachea bifurcate?

      Your Answer:

      Correct Answer: T5

      Explanation:

      The trachea divides into two branches at the fifth thoracic vertebrae, or sometimes the sixth in individuals who are tall.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 21 - A 28-year-old man is found on his bathroom floor next to needles and...

    Incorrect

    • A 28-year-old man is found on his bathroom floor next to needles and syringes and is brought into the hospital. He has a Glasgow coma score of 10 and a bedside oxygen saturation of 88%. On physical examination, he has pinpoint pupils and needle track marks on his left arm. His arterial blood gases are as follows: PaO2 7.4 kPa (11.3-12.6), PaCO2 9.6 kPa (4.7-6.0), pH 7.32 (7.36-7.44), and HCO3 25 mmol/L (20-28). What do these results indicate?

      Your Answer:

      Correct Answer: Acute type II respiratory failure

      Explanation:

      Opiate Overdose

      Opiate overdose is a common occurrence that can lead to slowed breathing, inadequate oxygen saturation, and CO2 retention. This classic picture of opiate overdose can be reversed with the use of naloxone. The condition is often caused by the use of illicit drugs and can have serious consequences if left untreated.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 22 - A 56-year-old woman comes to the clinic complaining of a persistent cough and...

    Incorrect

    • A 56-year-old woman comes to the clinic complaining of a persistent cough and increased production of sputum over the past year. She also reports feeling fatigued and experiencing shortness of breath. The patient mentions having had four chest infections in the last 12 months, all of which were treated with antibiotics. She has no personal or family history of lung issues and has never smoked.

      The healthcare provider suspects that bronchiectasis may be the underlying cause of her symptoms and orders appropriate tests.

      Which test is most likely to provide a definitive diagnosis?

      Your Answer:

      Correct Answer: High-resolution computerised tomography

      Explanation:

      Bronchiectasis can be diagnosed through various methods, including chest radiography, histopathology, and pulmonary function tests.

      Chest radiography can reveal thickened bronchial walls, cystic lesions with fluid levels, collapsed areas with crowded pulmonary vasculature, and scarring, which are characteristic features of bronchiectasis.

      Histopathology, which is a more invasive investigation often done through autopsy or surgery, can show irreversible dilation of bronchial airways and bronchial wall thickening.

      However, high-resolution computerised tomography is a more favorable imaging technique as it is less invasive than histopathology.

      Pulmonary function tests are commonly used to diagnose bronchiectasis, but they should be used in conjunction with other investigations as they are not sensitive or specific enough to provide sufficient diagnostic evidence on their own. An obstructive pattern is the most common pattern encountered, but a restrictive pattern is also possible.

      Understanding the Causes of Bronchiectasis

      Bronchiectasis is a condition characterized by the permanent dilation of the airways due to chronic inflammation or infection. There are various factors that can lead to this condition, including post-infective causes such as tuberculosis, measles, pertussis, and pneumonia. Cystic fibrosis, bronchial obstruction caused by lung cancer or foreign bodies, and immune deficiencies like selective IgA and hypogammaglobulinaemia can also contribute to bronchiectasis. Additionally, allergic bronchopulmonary aspergillosis (ABPA), ciliary dyskinetic syndromes like Kartagener’s syndrome and Young’s syndrome, and yellow nail syndrome are other potential causes. Understanding the underlying causes of bronchiectasis is crucial in developing effective treatment plans for patients.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 23 - A 29-year-old male is injured by a gunshot to his right chest resulting...

    Incorrect

    • A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      At the base of the right lung, the phrenic nerve is located in the anterior position.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 24 - A 16-year-old male presents to the emergency department with a 48-hour history of...

    Incorrect

    • A 16-year-old male presents to the emergency department with a 48-hour history of tachypnea and tachycardia. His blood glucose level is 18mmol/l. While breathing 40% oxygen, an arterial blood sample is taken. The results show a PaO2 of 22kPa, pH of 7.35, PaCO2 of 3.5kPa, and HCO3- of 18.6 mmol/l. How should these blood gas results be interpreted?

      Your Answer:

      Correct Answer: Metabolic acidosis with full respiratory compensation

      Explanation:

      The patient’s blood gas analysis shows a lower oxygen pressure by about 10kPa than the percentage of oxygen. The PaCo2 level is 3.5, indicating respiratory alkalosis or compensation for metabolic acidosis. The HCO3- level is 18.6, which suggests metabolic acidosis or metabolic compensation for respiratory alkalosis. These results indicate that the patient has metabolic acidosis with complete respiratory compensation. Additionally, the patient’s high blood glucose level suggests that the metabolic acidosis is due to diabetic ketoacidosis.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 25 - Which one of the following is not a typical feature of central chemoreceptors...

    Incorrect

    • Which one of the following is not a typical feature of central chemoreceptors in the regulation of respiration?

      Your Answer:

      Correct Answer: They are stimulated primarily by venous hypercapnia

      Explanation:

      Arterial carbon dioxide stimulates them, but it takes longer to reach equilibrium compared to the carotid peripheral chemoreceptors. They are not as responsive to acidity because of the blood-brain barrier.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 26 - A 16-year-old girl presents to the Emergency department with her mother. The mother...

    Incorrect

    • A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?

      Your Answer:

      Correct Answer: Angio-oedema

      Explanation:

      Noisy Breathing and Atopy in Adolescents

      The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.

      While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 27 - A 63-year-old man visits his GP complaining of worsening shortness of breath. He...

    Incorrect

    • A 63-year-old man visits his GP complaining of worsening shortness of breath. He was diagnosed with COPD six years ago and has been frequently admitted to the emergency department due to lower respiratory tract infections, especially in the past year. He has a smoking history of 50 pack-years and currently smokes 20 cigarettes per day.

      During the examination, the patient appears to be struggling to breathe even at rest and is in the tripod position. His heart rate is 78/min, blood pressure is 140/88 mmHg, oxygen saturation is 88% on air, respiratory rate is 26 breaths per minute, and temperature is 36.4ÂșC. His chest expansion is symmetrical, and breath sounds are equal throughout the lung fields.

      Recent spirometry results show that his FEV1 was 47% a week ago, 53% a month ago, and 67% six months ago. What intervention would be most effective in slowing the decline of his FEV1?

      Your Answer:

      Correct Answer: Smoking cessation

      Explanation:

      Slowing the decrease in FEV1 in COPD can be most effectively achieved by quitting smoking.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 28 - A 59-year-old man has been found to have cancer. He is experiencing a...

    Incorrect

    • A 59-year-old man has been found to have cancer. He is experiencing a range of symptoms, some of which appear to be unrelated to the location or size of the tumor. This is due to the fact that cancerous tissue can acquire the ability to produce endocrine effects on other cells in the body. Can you provide an instance of this phenomenon?

      Your Answer:

      Correct Answer: Production of PTH

      Explanation:

      Paraneoplastic syndrome is a set of symptoms that arise from the secretion of hormones and cytokines by cancer cells or the immune system’s response to the tumor.

      Squamous cell lung cancer often produces PTHrP (parathyroid hormone-related protein), which leads to hypercalcemia in affected patients.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 29 - A 29-year-old pregnant woman is admitted to the hospital and delivers a baby...

    Incorrect

    • A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.

      What is the cell type responsible for producing the substance that the baby is lacking?

      Your Answer:

      Correct Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 30 - Control of ventilation. Which statement is false? ...

    Incorrect

    • Control of ventilation. Which statement is false?

      Your Answer:

      Correct Answer: Central chemoreceptors respond to changes in O2

      Explanation:

      The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (1/2) 50%
Passmed