00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 24-year-old female arrives at the emergency department in a state of panic...

    Correct

    • A 24-year-old female arrives at the emergency department in a state of panic following a recent breakup with her partner. She complains of chest tightness and dizziness, fearing that she may be experiencing a heart attack. Upon examination, her vital signs are stable except for a respiratory rate of 34 breaths per minute. What compensatory mechanism is expected in response to the change in her oxyhaemoglobin dissociation curve, and what is the underlying cause?

      Your Answer: Left shift, respiratory alkalosis

      Explanation:

      The patient’s oxygen dissociation curve has shifted to the left, indicating respiratory alkalosis. This is likely due to the patient experiencing a panic attack and hyperventilating, leading to a decrease in carbon dioxide levels and an increase in the affinity of haemoglobin for oxygen. Respiratory acidosis, hypercapnia, and a right shift of the curve are not appropriate explanations for this patient’s condition.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      23.2
      Seconds
  • Question 2 - As the pregnancy progresses, at what stage does the foetus typically begin producing...

    Incorrect

    • As the pregnancy progresses, at what stage does the foetus typically begin producing surfactant?

      A mother has been informed that she will have to deliver her baby prematurely due to complications in the pregnancy. To decrease the chances of neonatal distress syndrome, doctors have administered steroids to stimulate surfactant production in the foetus. They clarify that the foetus is already generating its own surfactant, and these steroids will enhance the process.

      Your Answer: Week 30

      Correct Answer: Week 22

      Explanation:

      Lung development in humans begins at week 4 with the formation of the respiratory diverticulum. By week 10, the lungs start to grow as tertiary bronchial buds form. Terminal bronchioles begin to form around week 18. The saccular stage of lung development, which marks the earliest viability for a human fetus, occurs at around 22-24 weeks when type 2 alveolar cells start producing surfactant. By week 30, the primary alveoli form as the mesenchyme surrounding the lungs becomes highly vascular.

      The Importance of Pulmonary Surfactant in Breathing

      Pulmonary surfactant is a substance composed of phospholipids, carbohydrates, and proteins that is released by type 2 pneumocytes. Its main component, dipalmitoyl phosphatidylcholine (DPPC), plays a crucial role in reducing alveolar surface tension. This substance is first detectable around 28 weeks and increases in concentration as the alveoli decrease in size. This helps prevent the alveoli from collapsing and reduces the muscular force needed to expand the lungs, ultimately decreasing the work of breathing. Additionally, pulmonary surfactant lowers the elastic recoil at low lung volumes, preventing the alveoli from collapsing at the end of each expiration. Overall, pulmonary surfactant is essential in maintaining proper lung function and preventing respiratory distress.

    • This question is part of the following fields:

      • Respiratory System
      14.5
      Seconds
  • Question 3 - A 78-year-old man comes to your clinic with a complaint of hoarseness in...

    Correct

    • A 78-year-old man comes to your clinic with a complaint of hoarseness in his voice for the past 2 months. He is unsure if he had a viral infection prior to this and has attempted using over-the-counter remedies with no improvement. How would you approach managing this patient?

      Your Answer: Red flag referral to ENT

      Explanation:

      An urgent referral to an ENT specialist is necessary when a person over the age of 45 experiences persistent hoarseness without any apparent cause. In this case, the patient has been suffering from a hoarse voice for 8 weeks, which warrants an urgent referral. A routine referral would not be sufficient as it may not be quick enough to address the issue. Although it could be a viral or bacterial infection, the duration of the hoarseness suggests that there may be an underlying serious condition. Merely informing the patient that their voice may not return is not helpful and may overlook the possibility of a more severe problem.

      Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.

      If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.

    • This question is part of the following fields:

      • Respiratory System
      28.7
      Seconds
  • Question 4 - A 57-year-old man comes to his GP complaining of worsening shortness of breath...

    Incorrect

    • A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.

      Can you provide the definition of this particular lung volume?

      Your Answer: Maximum volume of air that can be expired after a maximal inspiration

      Correct Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration

      Explanation:

      The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      18
      Seconds
  • Question 5 - A 14-year-old boy comes to the clinic complaining of ear pain. He mentions...

    Incorrect

    • A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?

      Your Answer: Stapes

      Correct Answer: Incus

      Explanation:

      The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.

      The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
      Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
      Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      17.2
      Seconds
  • Question 6 - What is the accurate embryonic source of the stapes? ...

    Incorrect

    • What is the accurate embryonic source of the stapes?

      Your Answer: Third pharyngeal arch

      Correct Answer: Second pharyngeal arch

      Explanation:

      The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.

      The Development and Contributions of Pharyngeal Arches

      During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.

      Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.

      Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.

    • This question is part of the following fields:

      • Respiratory System
      5.1
      Seconds
  • Question 7 - During a consultant-led ward round in the early morning, a patient recovering from...

    Incorrect

    • During a consultant-led ward round in the early morning, a patient recovering from endovascular thrombectomy for acute mesenteric ischemia is examined. The reports indicate an embolus in the superior mesenteric artery.

      What is the correct description of the plane at which the superior mesenteric artery branches off the abdominal aorta and its corresponding vertebral body?

      Your Answer: Transpyloric plane - L3

      Correct Answer: Transpyloric plane - L1

      Explanation:

      The superior mesenteric artery originates from the abdominal aorta at the transpyloric plane, which is an imaginary axial plane located at the level of the L1 vertebral body and midway between the jugular notch and superior border of the pubic symphysis. Another transverse plane commonly used in anatomy is the subcostal plane, which passes through the 10th costal margin and the vertebral body L3. Additionally, the trans-tubercular plane, which is a horizontal plane passing through the iliac tubercles and in line with the 5th lumbar vertebrae, is often used to delineate abdominal regions in surface anatomy.

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      23
      Seconds
  • Question 8 - Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed...

    Incorrect

    • Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed with squamous cell lung carcinoma?

      Your Answer: Hyperthyroidism

      Correct Answer: Lambert-Eaton syndrome

      Explanation:

      Small cell lung cancer is strongly associated with Lambert-Eaton syndrome, while squamous cell lung cancer is more commonly associated with paraneoplastic features such as PTHrp, clubbing, and HPOA.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      10.1
      Seconds
  • Question 9 - A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During...

    Incorrect

    • A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?

      Your Answer: Axillary nerve

      Correct Answer: Suprascapular nerve

      Explanation:

      The Suprascapular Nerve and its Function

      The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.

      If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.

    • This question is part of the following fields:

      • Respiratory System
      5.8
      Seconds
  • Question 10 - A 5-year-old boy comes to the clinic with his mother, complaining of ear...

    Correct

    • A 5-year-old boy comes to the clinic with his mother, complaining of ear pain that started last night. He has been unable to sleep due to the pain and has not been eating well. His mother reports that he seems different than his usual self. The affected side has muffled sounds, and he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid-level. What is the structure that connects the middle ear to the nasopharynx?

      Your Answer: Eustachian tube

      Explanation:

      The pharyngotympanic tube, also known as the Eustachian tube, is responsible for connecting the middle ear and the nasopharynx, allowing for pressure equalization in the middle ear. It opens on the anterior wall of the middle ear and extends anteriorly, medially, and inferiorly to open into the nasopharynx. The palatovaginal canal connects the pterygopalatine fossa with the nasopharynx, while the pterygoid canal runs from the anterior boundary of the foramen lacerum to the pterygopalatine fossa. The semicircular canals are responsible for sensing balance, while the greater palatine canal transmits the greater and lesser palatine nerves, as well as the descending palatine artery and vein. In the case of ear pain, otitis media is a likely cause, which can be confirmed through otoscopy. The pharyngotympanic tube is particularly important in otitis media as it is the only outlet for pus or fluid in the middle ear, provided the tympanic membrane is intact.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      12.2
      Seconds
  • Question 11 - A 65-year-old male with a diagnosis of lung cancer presents with fatigue and...

    Incorrect

    • A 65-year-old male with a diagnosis of lung cancer presents with fatigue and lightheadedness. Upon examination, the following results are obtained:

      Plasma sodium concentration 115 mmol/L (137-144)
      Potassium 3.5 mmol/L (3.5-4.9)
      Urea 3.2 mmol/L (2.5-7.5)
      Creatinine 67 µmol/L (60-110)

      What is the probable reason for his symptoms based on these findings?

      Your Answer: Hypoadrenalism due to adrenal metastases

      Correct Answer: Syndrome of inappropriate ADH secretion

      Explanation:

      Syndrome of Inappropriate ADH Secretion

      Syndrome of inappropriate ADH secretion (SIADH) is a condition characterized by low levels of sodium in the blood. This is caused by the overproduction of antidiuretic hormone (ADH) by the posterior pituitary gland. Tumors such as bronchial carcinoma can cause the ectopic elaboration of ADH, leading to dilutional hyponatremia. The diagnosis of SIADH is one of exclusion, but it can be supported by a high urine sodium concentration with high urine osmolality.

      Hypoadrenalism is less likely to cause hyponatremia, as it is usually associated with hyperkalemia and mild hyperuricemia. On the other hand, diabetes insipidus is a condition where the kidneys are unable to reabsorb water, leading to excessive thirst and urination.

      It is important to diagnose and treat SIADH promptly to prevent complications such as seizures, coma, and even death. Treatment options include fluid restriction, medications to block the effects of ADH, and addressing the underlying cause of the condition.

      In conclusion, SIADH is a condition that can cause low levels of sodium in the blood due to the overproduction of ADH. It is important to differentiate it from other conditions that can cause hyponatremia and to treat it promptly to prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      49.6
      Seconds
  • Question 12 - A 65-year-old man visits his doctor complaining of a productive cough and difficulty...

    Incorrect

    • A 65-year-old man visits his doctor complaining of a productive cough and difficulty breathing for the past 10 days. The doctor prescribes antibiotics, but after a week, the patient's symptoms persist and he develops a fever and pain when breathing in. The doctor orders a chest x-ray, which indicates the presence of an empyema. What is the probable causative agent responsible for this condition?

      Your Answer: Mycobacterium tuberculosis

      Correct Answer: Streptococcus pneumoniae

      Explanation:

      An accumulation of pus in the pleural space, known as empyema, is a possible complication of pneumonia and is responsible for the patient’s pleurisy. Streptococcus pneumoniae, the most frequent cause of pneumonia, is also the leading cause of empyema.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      15.7
      Seconds
  • Question 13 - A 35-year-old female presents with recurrent episodes of severe vertigo that have been...

    Incorrect

    • A 35-year-old female presents with recurrent episodes of severe vertigo that have been disabling. She experiences these episodes multiple times a day, with each one lasting for about 10-20 minutes. Along with the vertigo, she also experiences ringing in both ears, nausea, and vomiting. She has noticed a change in her hearing in both ears, with difficulty hearing at times and normal hearing at other times. Additionally, she reports increased pressure in her ears. During the examination, you notice a painless rash behind her ear that has been present for many years.

      What is the most likely diagnosis?

      Your Answer: Herpes Zoster Oticus

      Correct Answer: Meniere’s disease

      Explanation:

      Suspect Meniere’s disease in a patient presenting with vertigo, tinnitus, and fluctuating sensorineural hearing loss. Acoustic neuroma would present with additional symptoms such as facial numbness and loss of corneal reflex. Herpes Zoster Oticus (Ramsey Hunt syndrome) would present with facial palsy and a painless rash. Vestibular neuronitis would have longer episodes of vertigo, nausea, and vomiting, but no hearing loss. Benign paroxysmal positional vertigo would have brief episodes of vertigo after sudden head movements.

      Meniere’s disease is a condition that affects the inner ear and its cause is unknown. It is more commonly seen in middle-aged adults but can occur at any age and affects both men and women equally. The condition is characterized by the excessive pressure and progressive dilation of the endolymphatic system. The main symptoms of Meniere’s disease are recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Vertigo is usually the most prominent symptom, but patients may also experience a sensation of aural fullness or pressure, nystagmus, and a positive Romberg test. These episodes can last from minutes to hours and are typically unilateral, but bilateral symptoms may develop over time.

      The natural history of Meniere’s disease is that symptoms usually resolve in the majority of patients after 5-10 years. However, most patients will be left with some degree of hearing loss, and psychological distress is common. ENT assessment is required to confirm the diagnosis, and patients should inform the DVLA as the current advice is to cease driving until satisfactory control of symptoms is achieved. Acute attacks can be managed with buccal or intramuscular prochlorperazine, and admission to the hospital may be required. Prevention strategies include the use of betahistine and vestibular rehabilitation exercises, which may be beneficial.

    • This question is part of the following fields:

      • Respiratory System
      30.2
      Seconds
  • Question 14 - During a neck dissection, a nerve is observed to pass behind the medial...

    Correct

    • During a neck dissection, a nerve is observed to pass behind the medial aspect of the second rib. Which nerve from the list below is the most probable?

      Your Answer: Phrenic nerve

      Explanation:

      The crucial aspect to note is that the phrenic nerve travels behind the inner side of the first rib. Towards the top, it is situated on the exterior of scalenus anterior.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      7.5
      Seconds
  • Question 15 - A 27-year-old woman is expecting her first baby. During routine midwife appointments, it...

    Correct

    • A 27-year-old woman is expecting her first baby. During routine midwife appointments, it was discovered that she has hypertension and proteinuria, which are signs of pre-eclampsia. To prevent respiratory distress syndrome, a complication of prematurity caused by inadequate pulmonary surfactant production, she will require steroid doses before induction of preterm labor. Which cell type is being targeted by corticosteroids in this patient?

      Your Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      8.5
      Seconds
  • Question 16 - A 9-month-old girl is brought to the emergency department by her mother due...

    Correct

    • A 9-month-old girl is brought to the emergency department by her mother due to difficulty in breathing. The mother reports that her daughter has been restless, with a runny nose, feeling warm and a dry cough for the past 4 days. However, the mother is now quite worried because her daughter has not eaten since last night and her breathing seems to have worsened throughout the morning.

      During the examination, the infant has a respiratory rate of 70/min, heart rate of 155/min, oxygen saturation of 92% and a temperature of 37.9ºC. The infant shows signs of nasal flaring and subcostal recession while breathing. On auscultation, widespread wheezing is heard. The infant is admitted, treated with humidified oxygen via nasal cannula and discharged home after 2 days.

      What is the probable causative agent of this infant's illness?

      Your Answer: Respiratory syncytial virus

      Explanation:

      Bronchiolitis typically presents with symptoms such as coryza and increased breathing effort, leading to feeding difficulties in children under one year of age. The majority of cases of bronchiolitis are caused by respiratory syncytial virus, while adenovirus is a less frequent culprit. On the other hand, croup is most commonly caused by parainfluenza virus.

      Understanding Bronchiolitis

      Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.

      The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.

      Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.

      The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.

    • This question is part of the following fields:

      • Respiratory System
      25.6
      Seconds
  • Question 17 - A 19-year-old male presents to the emergency department with complaints of breathing difficulty....

    Correct

    • A 19-year-old male presents to the emergency department with complaints of breathing difficulty. Upon examination, his chest appears normal, but his respiratory rate is 32 breaths per minute. The medical team suspects he may be experiencing a panic attack and subsequent hyperventilation. What impact will this have on his blood gas levels?

      Your Answer: Respiratory alkalosis

      Explanation:

      The patient is experiencing a respiratory alkalosis due to their hyperventilation, which is causing a decrease in carbon dioxide levels and resulting in an alkaline state.

      Respiratory Alkalosis: Causes and Examples

      Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.

    • This question is part of the following fields:

      • Respiratory System
      8.5
      Seconds
  • Question 18 - A 24-year-old man is admitted to the emergency department after a car accident....

    Incorrect

    • A 24-year-old man is admitted to the emergency department after a car accident. During the initial evaluation, he complains of difficulty breathing. A portable chest X-ray shows a 3 cm gap between the right lung margin and the chest wall, indicating a significant traumatic pneumothorax. The medical team administers high-flow oxygen and performs a right-sided chest drain insertion to drain the pneumothorax.

      What is a potential negative outcome that could arise from the insertion of a chest drain?

      Your Answer: Hospital-acquired pneumonia

      Correct Answer: Winging of the scapula

      Explanation:

      Insertion of a chest drain poses a risk of damaging the long thoracic nerve, which runs from the neck to the serratus anterior muscle. This can result in weakness or paralysis of the muscle, causing a winged scapula that is noticeable along the medial border of the scapula. It is important to use aseptic technique during the procedure to prevent hospital-acquired pleural infection. Chylothorax, pneumothorax, and pyothorax are all conditions that may require chest drain insertion, but they are not known complications of the procedure. Therefore, these options are not applicable.

      Anatomy of Chest Drain Insertion

      Chest drain insertion is necessary for various medical conditions such as trauma, haemothorax, pneumothorax, and pleural effusion. The size of the chest drain used depends on the specific condition being treated. While ultrasound guidance is an option, the anatomical method is typically tested in exams.

      It is recommended that chest drains are placed in the safe triangle, which is located in the mid axillary line of the 5th intercostal space. This triangle is bordered by the anterior edge of the latissimus dorsi, the lateral border of pectoralis major, a line superior to the horizontal level of the nipple, and the apex below the axilla. Another triangle, known as the triangle of auscultation, is situated behind the scapula and is bounded by the trapezius, latissimus dorsi, and vertebral border of the scapula. By folding the arms across the chest and bending forward, parts of the sixth and seventh ribs and the interspace between them become subcutaneous and available for auscultation.

      References:
      – Prof Harold Ellis. The applied anatomy of chest drains insertions. British Journal of hospital medicine 2007; (68): 44-45.
      – Laws D, Neville E, Duffy J. BTS guidelines for insertion of chest drains. Thorax, 2003; (58): 53-59.

    • This question is part of the following fields:

      • Respiratory System
      22.8
      Seconds
  • Question 19 - A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of...

    Correct

    • A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?

      Your Answer: Left phrenic nerve

      Explanation:

      It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      27.1
      Seconds
  • Question 20 - A 50-year-old woman with a recent diagnosis of COPD is admitted to the...

    Correct

    • A 50-year-old woman with a recent diagnosis of COPD is admitted to the hospital for treatment of an exacerbation caused by infection. She reports smoking 10 cigarettes per day and has a family history of lung cancer. Her chest x-ray shows signs of emphysema, and she mentions that her parents and siblings also have the disease. She asks for advice on the best course of action to improve her prognosis.

      Your Answer: Stop smoking

      Explanation:

      The most crucial step to enhance the patient’s prognosis is to assist them in quitting smoking. While lung reduction surgery and long-term oxygen therapy may benefit certain patient groups, smoking cessation remains the top priority. Proper inhaler technique and adherence, as well as the use of home nebulizers, can provide symptomatic relief for the patient.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      11.9
      Seconds
  • Question 21 - A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis....

    Correct

    • A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis. He has a history of recurrent chest infections since childhood and has difficulty maintaining a healthy weight. Despite using inhalers, he has not experienced any significant improvement. Genetic testing has been ordered to investigate the possibility of cystic fibrosis.

      What is the typical role of the cystic fibrosis transmembrane conductance regulator?

      Your Answer: Chloride channel

      Explanation:

      The chloride channel, specifically a cyclic-AMP regulated chloride channel, is the correct answer. Cystic fibrosis can be caused by various mutations, but they all affect the same gene, the cystic fibrosis transmembrane conductance regulator gene. This gene encodes a chloride channel that, when dysfunctional, results in increased viscosity of secretions and the development of cystic fibrosis.

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      9.7
      Seconds
  • Question 22 - An 80-year-old man has been referred to the respiratory clinic due to a...

    Correct

    • An 80-year-old man has been referred to the respiratory clinic due to a persistent dry cough and hoarse voice for the last 5 months. He reports feeling like he has lost some weight as his clothes feel loose. Although he has no significant past medical history, he has a 30-pack-year smoking history. During the examination, left-sided miosis and ptosis are noted. What is the probable location of the lung lesion?

      Your Answer: Lung apex

      Explanation:

      The patient’s persistent cough, significant smoking history, and weight loss are red flag symptoms of lung cancer. Additionally, the hoarseness of voice suggests that the recurrent laryngeal nerve is being suppressed, likely due to a Pancoast tumor located in the apex of the lung. The presence of Horner’s syndrome further supports this diagnosis. Mesothelioma, which is more common in patients with a history of asbestos exposure, typically presents with shortness of breath, chest wall pain, and finger clubbing. A hamartoma, a benign tumor made up of tissue such as cartilage, connective tissue, and fat, is unlikely given the patient’s red flags for malignant disease. Small cell carcinomas, typically found in the center of the lungs, may present with a perihilar mass and paraneoplastic syndromes due to ectopic hormone secretion. Lung cancers within the bronchi can obstruct airways and cause respiratory symptoms such as cough and shortness of breath, but not hoarseness.

      Lung Cancer Symptoms and Complications

      Lung cancer is a serious condition that can cause a range of symptoms and complications. Some of the most common symptoms include a persistent cough, haemoptysis (coughing up blood), dyspnoea (shortness of breath), chest pain, weight loss and anorexia, and hoarseness. In some cases, patients may also experience supraclavicular lymphadenopathy or persistent cervical lymphadenopathy, as well as clubbing and a fixed, monophonic wheeze.

      In addition to these symptoms, lung cancer can also cause a range of paraneoplastic features. These may include the secretion of ADH, ACTH, or parathyroid hormone-related protein (PTH-rp), which can cause hypercalcaemia, hypertension, hyperglycaemia, hypokalaemia, alkalosis, muscle weakness, and other complications. Other paraneoplastic features may include Lambert-Eaton syndrome, hypertrophic pulmonary osteoarthropathy (HPOA), hyperthyroidism due to ectopic TSH, and gynaecomastia.

      Complications of lung cancer may include hoarseness, stridor, and superior vena cava syndrome. Patients may also experience a thrombocytosis, which can be detected through blood tests. Overall, it is important to be aware of the symptoms and complications of lung cancer in order to seek prompt medical attention and receive appropriate treatment.

    • This question is part of the following fields:

      • Respiratory System
      10.5
      Seconds
  • Question 23 - A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical...

    Correct

    • A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical treatment for Grave's disease. Radioiodine was not an option as she is the sole caregiver for her three young children. During the consent process, she is informed of the potential complications of thyroidectomy, including the risk of injury to the sensory branch of the superior laryngeal nerve. Can you identify which nerve branches off from the superior laryngeal nerve and is responsible for sensory function?

      Your Answer: Internal laryngeal nerve

      Explanation:

      The superior laryngeal nerve, a branch of the vagus nerve, has two branches: the external laryngeal nerve, which is a motor nerve, and the internal laryngeal nerve, which is a sensory nerve. The recurrent laryngeal nerve, also a branch of the vagus nerve, supplies all intrinsic muscles of the larynx except for the cricothyroid muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      18
      Seconds
  • Question 24 - A 33-year-old male presents to the ED with coughing and wheezing following an...

    Correct

    • A 33-year-old male presents to the ED with coughing and wheezing following an episode of alcohol intoxication. Upon examination, decreased breath sounds are noted on one side. Imaging reveals a foreign body obstructing an airway structure. What is the most probable location for this foreign body to be lodged?

      Your Answer: Right mainstem bronchus

      Explanation:

      It is rare for a foreign object to become lodged in the left mainstem bronchus due to its greater angle compared to the right mainstem bronchus. A tracheal obstruction would cause reduced breath sounds bilaterally, not just on one side. The right superior lobar bronchus is also unlikely to be affected due to its angle and direction. Therefore, foreign bodies typically get stuck in the right mainstem bronchus in adults because of its wider diameter and lesser angle.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      10.6
      Seconds
  • Question 25 - A patient is being anaesthetised for a minor bowel surgery. Sarah, a second...

    Correct

    • A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.

      Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?

      Your Answer: C3-C6

      Explanation:

      The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      17.3
      Seconds
  • Question 26 - A 30-year-old woman comes to see her GP with persistent tinnitus and hearing...

    Incorrect

    • A 30-year-old woman comes to see her GP with persistent tinnitus and hearing loss in both ears. This is her first time experiencing these symptoms, but she mentions that her older sister has had similar issues. During the examination, the doctor notices a pinkish hue to her eardrums. Audiometry tests confirm that she has conductive deafness. What is the most probable diagnosis?

      Your Answer: Acoustic neuroma

      Correct Answer: Otosclerosis

      Explanation:

      Nausea and vomiting often accompany migraines, which are characterized by severe headaches that can last for hours or even days. Other symptoms may include sensitivity to light and sound, as well as visual disturbances such as flashing lights or blind spots. Migraines can be triggered by a variety of factors, including stress, certain foods, hormonal changes, and changes in sleep patterns. Treatment options may include medication, lifestyle changes, and alternative therapies.

      Understanding Otosclerosis: A Progressive Conductive Deafness

      Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.

      The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.

      Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.

      Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.

    • This question is part of the following fields:

      • Respiratory System
      21
      Seconds
  • Question 27 - Which one of the following statements relating to the root of the spine...

    Incorrect

    • Which one of the following statements relating to the root of the spine is false?

      Your Answer: The roots and trunks of the Brachial plexus lie between scalenus anterior and scalenus medius muscles

      Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior

      Explanation:

      The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.

      Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax

      The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.

      Thoracic outlet obstruction can cause neurovascular compromise.

    • This question is part of the following fields:

      • Respiratory System
      18
      Seconds
  • Question 28 - A 7-year-old boy is brought to the clinic by his father, who is...

    Correct

    • A 7-year-old boy is brought to the clinic by his father, who is worried about his son's hearing. The father has noticed that his son frequently asks him to repeat himself and tends to turn up the volume on the TV. During Weber's test, the patient indicates that the sound is louder on the right side. What conclusion can be drawn from this finding?

      Your Answer: Can not tell which side is affected.

      Explanation:

      The Weber test alone cannot determine which side of the patient’s hearing is affected. The test involves placing a tuning fork on the forehead and asking the patient to report if the sound is symmetrical or louder on one side. If the sound is louder on the left side, it could indicate a conductive hearing loss on the left or a sensorineural hearing loss on the right. To obtain more information, the Weber test should be performed in conjunction with the Rinne test, which involves comparing air conduction and bone conduction.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      11.1
      Seconds
  • Question 29 - Which one of the following does not decrease the functional residual capacity? ...

    Correct

    • Which one of the following does not decrease the functional residual capacity?

      Your Answer: Upright position

      Explanation:

      When a patient is in an upright position, the functional residual capacity (FRC) can increase due to less pressure from the diaphragm and abdominal organs on the lung bases. This increase in FRC can also be caused by emphysema and asthma. On the other hand, factors such as abdominal swelling, pulmonary edema, reduced muscle tone of the diaphragm, and aging can lead to a decrease in FRC. Additionally, laparoscopic surgery, obesity, and muscle relaxants can also contribute to a reduction in FRC.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      24.4
      Seconds
  • Question 30 - A 35-year-old female smoker presents with acute severe asthma.

    The patient's SaO2 levels...

    Correct

    • A 35-year-old female smoker presents with acute severe asthma.

      The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.

      The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.

      What should be the next step in the patient's management?

      Your Answer: IV Magnesium

      Explanation:

      Acute Treatment of Asthma

      When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.

    • This question is part of the following fields:

      • Respiratory System
      20.6
      Seconds
  • Question 31 - A 10-year-old boy comes to your clinic with a complaint of ear pain...

    Incorrect

    • A 10-year-old boy comes to your clinic with a complaint of ear pain that started last night and kept him awake. He missed school today because of the pain and reports muffled sounds on the affected side. During otoscopy, you observe a bulging tympanic membrane with visible fluid behind it, indicating a middle ear infection. Can you identify which nerves pass through the middle ear?

      Your Answer: Vestibulocochlear nerve

      Correct Answer: Chorda tympani

      Explanation:

      The chorda tympani is the correct answer. It is a branch of the seventh cranial nerve, the facial nerve, and carries parasympathetic and taste fibers. It passes through the middle ear before exiting and joining with the lingual nerve to reach the tongue and salivary glands.

      The vestibulocochlear nerve is the eighth cranial nerve and carries balance and hearing information.

      The maxillary nerve is the second division of the fifth cranial nerve and carries sensation from the upper teeth, nasal cavity, and skin.

      The mandibular nerve is the third division of the fifth cranial nerve and carries sensation from the lower teeth, tongue, mandible, and skin. It also carries motor fibers to certain muscles.

      The glossopharyngeal nerve is the ninth cranial nerve and carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas. It also carries motor and parasympathetic fibers.

      The patient in the question has ear pain, likely due to otitis media, as evidenced by a bulging tympanic membrane and fluid level on otoscopy.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      13
      Seconds
  • Question 32 - A 50-year-old man visits the GP clinic for a routine hearing examination. He...

    Correct

    • A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.

      What are the test findings for this patient?

      Your Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears

      Explanation:

      The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      16.6
      Seconds
  • Question 33 - Which of the following muscles is not innervated by the ansa cervicalis? ...

    Incorrect

    • Which of the following muscles is not innervated by the ansa cervicalis?

      Your Answer: Sternothyroid

      Correct Answer: Mylohyoid

      Explanation:

      The muscles of the ansa cervicalis are: GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The mylohyoid muscle is innervated by the mylohyoid branch of the inferior alveolar nerve. A mnemonic to remember these muscles is GHost THought SOmeone Stupid Shot Irene.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      7.3
      Seconds
  • Question 34 - A 70-year-old man is admitted to the respiratory ward with an exacerbation of...

    Correct

    • A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?

      Your Answer: 88%-92%

      Explanation:

      As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.

      Guidelines for Oxygen Therapy in Emergency Situations

      In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.

      The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.

      For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.

      The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.

      Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.

    • This question is part of the following fields:

      • Respiratory System
      14.9
      Seconds
  • Question 35 - A seven-year-old boy who was born in Germany presents to paediatrics with a...

    Correct

    • A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?

      Your Answer: Absent vas deferens

      Explanation:

      Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      12.2
      Seconds
  • Question 36 - A 20-year-old woman comes to your general practice complaining of hearing difficulties for...

    Correct

    • A 20-year-old woman comes to your general practice complaining of hearing difficulties for the past month. She was previously diagnosed with tinnitus by one of your colleagues at the practice 11 months ago. The patient reports that she can hear better when outside but struggles in quiet environments. Upon otoscopy, no abnormalities are found. Otosclerosis is one of the differential diagnoses for this patient, which primarily affects the ossicle that connects to the cochlea. What is the name of the ossicle that attaches to the cochlea at the oval window?

      Your Answer: Stapes

      Explanation:

      The stapes bone is the correct answer.

      The ossicles are three bones located in the middle ear. They are arranged from lateral to medial and include the malleus, incus, and stapes. The malleus is the most lateral bone and its handle and lateral process attach to the tympanic membrane, making it visible on otoscopy. The head of the malleus articulates with the incus. The stapes bone is the most medial of the ossicles and is also known as the stirrup.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      16.1
      Seconds
  • Question 37 - During a schoolyard brawl a boy is hit in the chest. The stick...

    Incorrect

    • During a schoolyard brawl a boy is hit in the chest. The stick passes through the posterior mediastinum (from left to right). Which one of the following structures is least likely to be injured?

      Your Answer: Thoracic duct

      Correct Answer: Arch of the azygos vein

      Explanation:

      The azygos vein’s arch is located within the middle mediastinum.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      10.6
      Seconds
  • Question 38 - A 44-year-old male singer visits his GP complaining of a hoarse voice that...

    Incorrect

    • A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?

      Your Answer: Thyroarytenoid

      Correct Answer: Cricothyroid

      Explanation:

      The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      10.1
      Seconds
  • Question 39 - A 26-year-old man is brought to the emergency department after being rescued at...

    Correct

    • A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).

      His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ºC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.

      What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?

      Your Answer: Hypothermia

      Explanation:

      The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.

      Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.

      Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.

      Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      17
      Seconds
  • Question 40 - A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the...

    Correct

    • A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the surgeons reach the root of the lung, which structure will be situated furthest back in the anatomical plane?

      Your Answer: Vagus nerve

      Explanation:

      At the lung root, the phrenic nerve is situated in the most anterior position while the vagus nerve is located at the posterior end.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      11.5
      Seconds
  • Question 41 - A 26-year-old male is brought to the emergency department by his mother. He...

    Correct

    • A 26-year-old male is brought to the emergency department by his mother. He is agitated, restless, and anxious.

      Upon examination, dilated pupils are observed, and an ECG reveals sinus tachycardia.

      The patient has a medical history of chronic asthma and is currently taking modified-release theophylline tablets.

      According to his mother, he returned from a trip to Pakistan last night and has been taking antibiotics for bacterial gastroenteritis for the past four days. He has three days left on his antibiotic course.

      What could be the cause of his current presentation?

      Your Answer: Ciprofloxacin

      Explanation:

      Terbinafine is frequently prescribed for the treatment of fungal nail infections as an antifungal medication.

      Theophylline and its Poisoning

      Theophylline is a naturally occurring methylxanthine that is commonly used as a bronchodilator in the management of asthma and COPD. Its exact mechanism of action is still unknown, but it is believed to be a non-specific inhibitor of phosphodiesterase, resulting in an increase in cAMP. Other proposed mechanisms include antagonism of adenosine and prostaglandin inhibition.

      However, theophylline poisoning can occur and is characterized by symptoms such as acidosis, hypokalemia, vomiting, tachycardia, arrhythmias, and seizures. In such cases, gastric lavage may be considered if the ingestion occurred less than an hour prior. Activated charcoal is also recommended, while whole-bowel irrigation can be performed if theophylline is in sustained-release form. Charcoal hemoperfusion is preferable to hemodialysis in managing theophylline poisoning.

    • This question is part of the following fields:

      • Respiratory System
      16.3
      Seconds
  • Question 42 - A 50-year-old female presents to her GP with complaints of shortness of breath...

    Incorrect

    • A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?

      Your Answer: Alpha-1 antitrypsin deficiency

      Correct Answer: Myasthenia gravis

      Explanation:

      Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      23.7
      Seconds
  • Question 43 - A 25-year-old man is shot in the chest during a robbery. The right...

    Correct

    • A 25-year-old man is shot in the chest during a robbery. The right lung is lacerated and is bleeding. An emergency thoracotomy is performed. The surgeons place a clamp over the hilum of the right lung. Which one of the following structures lies most anteriorly at this level?

      Your Answer: Phrenic nerve

      Explanation:

      At this location, the phrenic nerve is situated in front. The vagus nerve runs in front and then curves backwards just above the base of the left bronchus, releasing the recurrent laryngeal nerve as it curves.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      9.5
      Seconds
  • Question 44 - A 55-year-old man presents to his doctor with complaints of vertigo, which worsens...

    Incorrect

    • A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.

      What treatment options are available to alleviate the symptoms of this condition?

      Your Answer: Romberg's test

      Correct Answer: Epley manoeuvre

      Explanation:

      The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.

      Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.

      Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.

    • This question is part of the following fields:

      • Respiratory System
      7.5
      Seconds
  • Question 45 - Which one of the following nerves conveys sensory information from the nasal mucosa?...

    Incorrect

    • Which one of the following nerves conveys sensory information from the nasal mucosa?

      Your Answer: Laryngeal branches of the trigeminal

      Correct Answer: Laryngeal branches of the vagus

      Explanation:

      The larynx receives sensory information from the laryngeal branches of the vagus.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      11.6
      Seconds
  • Question 46 - A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking....

    Correct

    • A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking. Surgery is planned to remove the cancer through a laryngectomy. What vertebral level/levels will the organ be located during the procedure?

      Your Answer: C3 to C6

      Explanation:

      The larynx is situated in the front of the neck at the level of the C3-C6 vertebrae. This is the correct location for accessing the larynx during a laryngectomy. The larynx is not located at the C1-C2 level, as these are the atlas bones. It is also not located at the C2-C3 level, which is where the hyoid bone can be found. The C7 level is where the isthmus of the thyroid gland is located, not the larynx.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      4.4
      Seconds
  • Question 47 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Correct

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      6.9
      Seconds
  • Question 48 - A 25-year-old male patient complains of sore throat, malaise, and fatigue for the...

    Correct

    • A 25-year-old male patient complains of sore throat, malaise, and fatigue for the past 5 days. During the examination, a significant peritonsillar abscess is observed. What is the probable causative organism responsible for this infection?

      Your Answer: Streptococcus pyogenes

      Explanation:

      Streptococcal organisms are the most frequent cause of bacterial tonsillitis, which can lead to quinsy.

      Understanding Acute Tonsillitis

      Acute tonsillitis is a condition that is characterized by pharyngitis, fever, malaise, and lymphadenopathy. It is caused by bacterial infections in over half of all cases, with Streptococcus pyogenes being the most common organism. The tonsils become swollen and may have yellow or white pustules. It is important to note that infectious mononucleosis may mimic the symptoms of acute tonsillitis.

      Treatment for bacterial tonsillitis involves the use of penicillin-type antibiotics. Failure to treat bacterial tonsillitis may result in the formation of a local abscess known as quinsy.

    • This question is part of the following fields:

      • Respiratory System
      7
      Seconds
  • Question 49 - A 45-year-old man presents to the emergency department with fever, productive cough, and...

    Incorrect

    • A 45-year-old man presents to the emergency department with fever, productive cough, and shortness of breath. He has no medical history and takes no regular medications.

      Upon examination, coarse crackles and bronchial breathing are heard at the right lung base.

      Chest radiography reveals consolidation in the lower right zone.

      Arterial blood gas results are as follows:

      pH 7.36 (7.35-7.45)
      pO2 7.2 kPa (11-13)
      pCO2 4.1 kPa (4-6)
      SaO2 87% (94-98)

      Based on the likely diagnosis, what is the expected initial physiological response?

      Your Answer: Reduced tidal volume

      Correct Answer: Vasoconstriction of the pulmonary arteries

      Explanation:

      When hypoxia is present, the pulmonary arteries undergo vasoconstriction, which is the appropriate response. The patient is exhibiting symptoms of pneumonia and type 1 respiratory failure, as evidenced by clinical and radiographic findings. Vasoconstriction of the small pulmonary arteries helps to redirect blood flow from poorly ventilated regions of the lung to those with better ventilation, resulting in improved gas exchange efficiency between the alveoli and blood.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      35.1
      Seconds
  • Question 50 - A 26-year-old man presents to the emergency department with a feeling of food...

    Correct

    • A 26-year-old man presents to the emergency department with a feeling of food stuck in his throat. He experienced this sensation 2 hours ago after consuming fish at a nearby seafood restaurant. The patient reports no breathing difficulties. Upon laryngoscopy, a fish bone is found lodged in the left piriform recess. While removing the fish bone, a nerve located deep to the mucosa covering the recess is damaged.

      Which function is most likely to be affected in this individual?

      Your Answer: Cough reflex

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is located just beneath a thin layer of mucosa covering the recess. This nerve plays a crucial role in the cough reflex, as it carries sensory information from the area above the vocal cords. Attempts to remove foreign objects from the piriform recess can also lead to nerve damage.

      Other functions, such as mastication, the pharyngeal reflex, salivation, and taste sensation, are mediated by different nerves and are not directly related to the piriform recess or the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      18.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (29/50) 58%
Passmed