00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 57-year-old man is diagnosed with angina and prescribed medications for symptom control...

    Correct

    • A 57-year-old man is diagnosed with angina and prescribed medications for symptom control and secondary prevention. The doctor advises him to make dietary changes to address excess fat in the blood that can lead to angina. During the explanation, the doctor asks which apolipoprotein macrophages recognize to uptake lipids under normal circumstances?

      Your Answer: ApoB100

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      109.4
      Seconds
  • Question 2 - A 56-year-old male comes to your clinic complaining of occasional chest pain that...

    Correct

    • A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.

      During his visit, an ECG reveals a QT interval greater than 520 ms.

      What is the most likely cause of the observed ECG changes?

      - Lithium overdose
      - Paracetamol use
      - Hypercalcemia
      - Erythromycin use
      - Amoxicillin use

      Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.

      Your Answer: Erythromycin use

      Explanation:

      The prolonged QT interval can be caused by erythromycin.

      It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      12.8
      Seconds
  • Question 3 - You are working with a consultant paediatrician in an outpatient clinic and have...

    Incorrect

    • You are working with a consultant paediatrician in an outpatient clinic and have a 14-month-old patient who is failing to thrive. The GP suspects the presence of an audible murmur. The consultant informs you that this child has an atrial septal defect (ASD). What is the most prevalent form of ASD?

      Your Answer:

      Correct Answer: Ostium secundum

      Explanation:

      Atrial Septal Defects

      Atrial septal defects (ASDs) are a type of congenital heart defect that occur when there is a hole in the wall separating the two upper chambers of the heart. The most common type of ASD is the ostium secundum defect, accounting for 75% of all cases. It is important to note that patent ductus arteriosus is not an ASD, but rather a connection between the aorta and pulmonary trunk that remains open after birth.

      Most patients with ASDs are asymptomatic, but symptoms may occur depending on the size of the defect and the resistance in the pulmonary and systemic circulation. Typically, there is shunting of blood from the left to the right atrium, causing an increase in pulmonary blood flow and diastolic overload of the right ventricle. This can lead to enlargement of the right atrium, right ventricle, and pulmonary arteries, as well as incompetence of the pulmonary and tricuspid valves. In severe cases, pulmonary arterial hypertension may develop, which can lead to cyanosis if the shunt reverses from right to left.

      It is important to note that right to left shunts cause cyanosis, while left to right shunts are generally not associated with cyanosis in the absence of other pathology. the pathophysiology of ASDs is crucial for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 4 - A 25-year-old man comes to the clinic complaining of shortness of breath during...

    Incorrect

    • A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.

      What findings may be observed on the echocardiogram of this patient?

      Your Answer:

      Correct Answer: Systolic anterior motion (SAM)

      Explanation:

      The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A 67-year-old man is admitted for a below knee amputation. He is taking...

    Incorrect

    • A 67-year-old man is admitted for a below knee amputation. He is taking digoxin. The patient presents with an irregularly irregular pulse. What would be your expectation when examining the jugular venous pressure?

      Your Answer:

      Correct Answer: Absent a waves

      Explanation:

      The pressure in the jugular vein.

      Understanding Jugular Venous Pressure

      Jugular venous pressure (JVP) is a useful tool for assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information about the heart’s function. A non-pulsatile JVP may indicate superior vena caval obstruction, while Kussmaul’s sign describes a paradoxical rise in JVP during inspiration seen in constrictive pericarditis.

      The ‘a’ wave of the jugular vein waveform represents atrial contraction. A large ‘a’ wave may indicate conditions such as tricuspid stenosis, pulmonary stenosis, or pulmonary hypertension. However, an absent ‘a’ wave is common in atrial fibrillation.

      Cannon ‘a’ waves are caused by atrial contractions against a closed tricuspid valve. They are seen in conditions such as complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve. Giant ‘v’ waves may indicate tricuspid regurgitation.

      Finally, the ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve. Understanding the jugular venous pressure waveform can provide valuable insights into the heart’s function and help diagnose underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - A 22-year-old male student is brought to the Emergency Department via ambulance. He...

    Incorrect

    • A 22-year-old male student is brought to the Emergency Department via ambulance. He is unconscious, hypotensive, and tachycardic. According to his friend, he started feeling unwell after being stung by a bee in the park. The medical team suspects anaphylactic shock and begins resuscitation. While anaphylactic shock causes widespread vasodilation, which mediator is responsible for arteriole constriction?

      Your Answer:

      Correct Answer: Endothelin

      Explanation:

      Arteriolar constriction is facilitated by various mediators such as noradrenaline from the sympathetic nervous system, circulating catecholamines, angiotensin-2, and locally released endothelin peptide by endothelial cells. Endothelin primarily acts on ET(A) receptors to cause constriction, but it can also cause dilation by acting on ET(B) receptors.

      On the other hand, the parasympathetic nervous system, nitric oxide, and prostacyclin are all responsible for facilitating arteriolar dilation, rather than constriction.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A woman with longstanding angina visits her doctor and reports persistent symptoms. The...

    Incorrect

    • A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?

      Your Answer:

      Correct Answer: Sinoatrial node

      Explanation:

      The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.

      Ivabradine: An Anti-Anginal Drug

      Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.

      However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.

      Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long...

    Incorrect

    • A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long saphenous vein stripping to the ankle, and isolated hook phlebectomies. After the surgery, she experiences numbness above her ankle. What is the probable reason for this?

      Your Answer:

      Correct Answer: Saphenous nerve injury

      Explanation:

      Full length stripping of the long saphenous vein below the knee is no longer recommended due to its relation to the saphenous nerve, while the short saphenous vein is related to the sural nerve.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A 78-year-old male patient with AF, who is on appropriate medication for rate...

    Incorrect

    • A 78-year-old male patient with AF, who is on appropriate medication for rate control, is admitted with dig toxicity after receiving antibiotics for a UTI. What ECG finding is most probable?

      Your Answer:

      Correct Answer: Reverse tick abnormality

      Explanation:

      Dig Toxicity and its Treatment

      Dig Toxicity can occur as a result of taking antibiotics that inhibit enzymes, especially if the prescribing physician does not take this into account. One of the most common signs of dig toxicity is the reverse tick abnormality, which can be detected through an electrocardiogram (ECG).

      To treat dig toxicity, it is important to first address any electrolyte imbalances that may be present. In more severe cases, a monoclonal antibody called digibind may be administered to help alleviate symptoms. Overall, it is important for healthcare providers to be aware of the potential for dig toxicity and to take appropriate measures to prevent and treat it.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - An 85-year-old woman arrives at the emergency department with complaints of palpitations and...

    Incorrect

    • An 85-year-old woman arrives at the emergency department with complaints of palpitations and difficulty breathing. During the examination, you observe an irregularly irregular pulse. After conducting an ECG, you discover the absence of P waves and a ventricular rate of 94 beats per minute. What specific part of the heart prevents a rapid atrial rate from transmitting to the ventricles?

      Your Answer:

      Correct Answer: Atrioventricular node

      Explanation:

      The correct answer is the atrioventricular (AV) node, which is located within the atrioventricular septum near the septal cusp of the tricuspid valve. It regulates the spread of excitation from the atria to the ventricles.

      The sinoatrial (SA) node is situated in the right atrium, at the top of the crista terminalis where the right atrium meets the superior vena cava. It is where cardiac impulses originate in a healthy heart.

      The bundle of His is a group of specialized cardiac myocytes that transmit the electrical impulse from the AV node to the ventricles.

      The Purkinje fibers are a collection of fibers that distribute the cardiac impulse throughout the muscular ventricular walls.

      The bundle of Kent is not present in a healthy heart. It refers to the accessory pathway between the atria and ventricles that exists in Wolff-Parkinson-White (WPW) syndrome. This additional conduction pathway allows for fast conduction of impulses between the atria and ventricles, without the additional control of the AV node. This results in a type of supraventricular tachycardia known as an atrioventricular re-entrant tachycardia.

      The patient in the above question has presented with palpitations and shortness of breath. An irregularly irregular pulse is highly indicative of atrial fibrillation (AF). ECG signs of atrial fibrillation include an irregularly irregular rhythm and absent P waves. In AF, the impulses from the fibrillating heart are typically prevented from reaching the ventricles by the AV node.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - With respect to the basilic vein, which statement is not true? ...

    Incorrect

    • With respect to the basilic vein, which statement is not true?

      Your Answer:

      Correct Answer: Its deep anatomical location makes it unsuitable for use as an arteriovenous access site in fistula surgery

      Explanation:

      A basilic vein transposition is a surgical procedure that utilizes it during arteriovenous fistula surgery.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A 48-year-old man visits his local doctor complaining of chest pain that occurs...

    Incorrect

    • A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.

      His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.

      What is the mechanism by which nitrates work?

      Your Answer:

      Correct Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation

      Explanation:

      The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon...

    Incorrect

    • A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon examination, there are no notable symptoms except for a low serum potassium level found in her blood test. After informing her of the results, she reveals that she has been experiencing palpitations and dizziness for a few hours. You advise her to go to the emergency department for an ECG and treatment. What ECG indication is associated with hypokalaemia?

      Your Answer:

      Correct Answer: ST segment depression

      Explanation:

      ECG changes indicating hypokalaemia include ST-segment depression, along with other signs such as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified through ECG signs such as a long PR interval and a sine wave pattern, as well as tall tented T waves and broad bizarre QRS complexes. Prolongation of the PR interval may be seen in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Patients with hypokalaemia may present with symptoms such as fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis. It is worth noting that abnormalities in serum potassium levels are often discovered incidentally.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - An 80-year-old man arrives at the emergency department with complaints of lightheadedness, fatigue,...

    Incorrect

    • An 80-year-old man arrives at the emergency department with complaints of lightheadedness, fatigue, and shortness of breath during exertion. Upon examination, you observe a pulse rate of 42 beats per minute, mild bibasal crepitations, and bilateral peripheral pitting edema. The patient's ECG reveals a dissociation between the P waves and QRS complexes. Which aspect of the JVP waveform is most likely to be impacted in this individual?

      Your Answer:

      Correct Answer: a wave

      Explanation:

      A complete heart block is indicated by a pulse rate of approximately 40 beats per minute and ECG results. This means that the atria and ventricles are contracting in an unsynchronized manner. When the tricuspid valve is closed and the right atrium contracts, the JVP will experience a significant increase, which is referred to as cannon a waves.

      Understanding the Jugular Venous Pulse

      The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.

      The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.

      Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 25-year-old man is scheduled for a mitral valve repair to address mitral...

    Incorrect

    • A 25-year-old man is scheduled for a mitral valve repair to address mitral regurgitation. What characteristic is associated with the mitral valve?

      Your Answer:

      Correct Answer: Its closure is marked by the first heart sound

      Explanation:

      To hear the mitral valve clearly, it is recommended to listen over the cardiac apex, as its closure produces the initial heart sound. The valve comprises two cusps that are connected to the ventricle wall by papillary muscles through chordae tendinae.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - An ENT surgeon is performing a radical neck dissection. She wishes to fully...

    Incorrect

    • An ENT surgeon is performing a radical neck dissection. She wishes to fully expose the external carotid artery. To do so she inserts a self retaining retractor close to its origin. Which one of the following structures lies posterolaterally to the external carotid at this point?

      Your Answer:

      Correct Answer: Internal carotid artery

      Explanation:

      At its origin from the common carotid, the internal carotid artery is located at the posterolateral position in relation to the external carotid artery. Its anterior surface gives rise to the superior thyroid, lingual, and facial arteries.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Incorrect

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer:

      Correct Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 60-year-old male is referred to the medical assessment unit by his physician...

    Incorrect

    • A 60-year-old male is referred to the medical assessment unit by his physician suspecting a UTI. He has a permanent catheter in place due to urinary retention caused by benign prostatic hypertrophy. His blood test results reveal hypercalcemia. An ultrasound Doppler scan of his neck displays a distinct sonolucent signal indicating hyperactive parathyroid tissue and noticeable vasculature, which is likely the parathyroid veins. What is the structure that the parathyroid veins empty into?

      Your Answer:

      Correct Answer: Thyroid plexus of veins

      Explanation:

      The veins of the parathyroid gland drain into the thyroid plexus of veins, as opposed to other possible drainage routes.

      The cavernous sinus is a dural venous sinus that creates a cavity called the lateral sellar compartment, which is bordered by the temporal and sphenoid bones.

      The brachiocephalic vein is formed by the merging of the subclavian and internal jugular veins, and also receives drainage from the left and right internal thoracic vein.

      The external vertebral venous plexuses, which are most prominent in the cervical region, consist of anterior and posterior plexuses that freely anastomose with each other. The anterior plexuses are located in front of the vertebrae bodies, communicate with the basivertebral and intervertebral veins, and receive tributaries from the vertebral bodies. The posterior plexuses are situated partly on the posterior surfaces of the vertebral arches and their processes, and partly between the deep dorsal muscles.

      The suboccipital venous plexus is responsible for draining deoxygenated blood from the back of the head, and is connected to the external vertebral venous plexuses.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin...

    Incorrect

    • You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?

      Your Answer:

      Correct Answer: Transposition of the great arteries

      Explanation:

      The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 26-year-old man presents to the emergency department after experiencing a syncopal episode....

    Incorrect

    • A 26-year-old man presents to the emergency department after experiencing a syncopal episode. He is currently stable and reports no warning signs prior to the episode. He has had a few similar episodes in the past but did not seek medical attention. Upon further investigation, it is discovered that his father and uncle both died suddenly from heart attacks at ages 45 and 42, respectively. An ECG reveals coved ST segment elevation in V1 and V2 leads, followed by a negative T wave. What is the definitive treatment for this patient's condition?

      Your Answer:

      Correct Answer: Implantable cardioverter-defibrillator

      Explanation:

      The most effective management for Brugada syndrome is the implantation of a cardioverter-defibrillator, as per the NICE guidelines. This is the recommended treatment for patients with the condition, as evidenced by this man’s ECG findings, syncopal episodes, and family history of sudden cardiac deaths.

      While class I antiarrhythmic drugs like flecainide and procainamide may be used in clinical settings to diagnose Brugada syndrome, they should be avoided in patients with the condition as they can transiently induce the ECG features of the syndrome.

      Quinidine, another class I antiarrhythmic drug, has shown some benefits in preventing and treating tachyarrhythmias in small studies of patients with Brugada syndrome. However, it is not a definitive treatment and has not been shown to reduce the rate of sudden cardiac deaths in those with the condition.

      Amiodarone is typically used in life-threatening situations to stop ventricular tachyarrhythmias. However, due to its unfavorable side effect profile, it is not recommended for long-term use, especially in younger patients who may require it for decades.

      Understanding Brugada Syndrome

      Brugada syndrome is a type of inherited cardiovascular disease that can lead to sudden cardiac death. It is passed down in an autosomal dominant manner and is more prevalent in Asians, with an estimated occurrence of 1 in 5,000-10,000 individuals. The condition has a variety of genetic variants, but around 20-40% of cases are caused by a mutation in the SCN5A gene, which encodes the myocardial sodium ion channel protein.

      One of the key diagnostic features of Brugada syndrome is the presence of convex ST segment elevation greater than 2mm in more than one of the V1-V3 leads, followed by a negative T wave and partial right bundle branch block. These ECG changes may become more apparent after the administration of flecainide or ajmaline, which are the preferred diagnostic tests for suspected cases of Brugada syndrome.

      The management of Brugada syndrome typically involves the implantation of a cardioverter-defibrillator to prevent sudden cardiac death. It is important for individuals with Brugada syndrome to receive regular medical monitoring and genetic counseling to manage their condition effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 45-year-old woman has varicose veins originating from the short saphenous vein. During...

    Incorrect

    • A 45-year-old woman has varicose veins originating from the short saphenous vein. During mobilization of the vein near its origin, which structure is at the highest risk of injury?

      Your Answer:

      Correct Answer: Sural nerve

      Explanation:

      Litigation often arises from damage to the sural nerve, which is closely associated with this structure. While the other structures may also sustain injuries, the likelihood of such occurrences is comparatively lower.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - A senior gentleman visits the GP for his routine INR check. He was...

    Incorrect

    • A senior gentleman visits the GP for his routine INR check. He was prescribed warfarin five years ago upon being diagnosed with atrial fibrillation.

      Which enzyme does warfarin inhibit?

      Your Answer:

      Correct Answer: Epoxide reductase

      Explanation:

      Warfarin prevents the activation of Vitamin K by inhibiting epoxide reductase. This enzyme is responsible for converting Vitamin K epoxide to Vitamin K quinone, a necessary step in the Vitamin K metabolic pathway. Without this conversion, the production of clotting factors (10, 9, 7 and 2) is decreased.

      Gamma-glutamyl carboxylase is the enzyme responsible for carboxylating glutamic acid to produce clotting factors. Warfarin does not directly inhibit this enzyme.

      CYP2C9 is an enzyme involved in the metabolism of many drugs, including warfarin.

      Protein C is a plasma protein that functions as an anticoagulant. It is dependent on Vitamin K for activation and works by inhibiting factor 5 and 8. Protein C is produced as an inactive precursor enzyme, which is then activated to exert its anticoagulant effects.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - A 25-year-old man is scheduled for cardiac catheterisation to repair a possible atrial...

    Incorrect

    • A 25-year-old man is scheduled for cardiac catheterisation to repair a possible atrial septal defect. What is the typical oxygen saturation level in the right atrium for a person in good health?

      Your Answer:

      Correct Answer: 70%

      Explanation:

      Understanding Oxygen Saturation Levels in Cardiac Catheterisation

      Cardiac catheterisation and oxygen saturation levels can be confusing, but with a few basic rules and logical deduction, it can be easily understood. Deoxygenated blood returns to the right side of the heart through the superior and inferior vena cava with an oxygen saturation level of around 70%. The right atrium, right ventricle, and pulmonary artery also have oxygen saturation levels of around 70%. The lungs oxygenate the blood to a level of around 98-100%, resulting in the left atrium, left ventricle, and aorta having oxygen saturation levels of 98-100%.

      Different scenarios can affect oxygen saturation levels. For instance, in an atrial septal defect (ASD), the oxygenated blood in the left atrium mixes with the deoxygenated blood in the right atrium, resulting in intermediate levels of oxygenation from the right atrium onwards. In a ventricular septal defect (VSD), the oxygenated blood in the left ventricle mixes with the deoxygenated blood in the right ventricle, resulting in intermediate levels of oxygenation from the right ventricle onwards. In a patent ductus arteriosus (PDA), the higher pressure aorta connects with the lower pressure pulmonary artery, resulting in only the pulmonary artery having intermediate oxygenation levels.

      Understanding the expected oxygen saturation levels in different scenarios can help in diagnosing and treating cardiac conditions. The table above shows the oxygen saturation levels that would be expected in different diagnoses, including VSD with Eisenmenger’s and ASD with Eisenmenger’s. By understanding these levels, healthcare professionals can provide better care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - Which one of the following is typically not provided by the right coronary...

    Incorrect

    • Which one of the following is typically not provided by the right coronary artery?

      Your Answer:

      Correct Answer: The circumflex artery

      Explanation:

      The left coronary artery typically gives rise to the circumflex artery.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - Which of the following clotting factors is unaffected by warfarin? ...

    Incorrect

    • Which of the following clotting factors is unaffected by warfarin?

      Your Answer:

      Correct Answer: Factor XII

      Explanation:

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A 59-year-old man presents to the emergency department with pleuritic thoracic pain and...

    Incorrect

    • A 59-year-old man presents to the emergency department with pleuritic thoracic pain and fever. His medical history includes an inferior STEMI that occurred 3 weeks ago. During auscultation, a pericardial rub is detected, and his ECG shows diffuse ST segment elevation and PR segment depression. What is the complication of myocardial infarction that the patient is experiencing?

      Your Answer:

      Correct Answer: Dressler syndrome

      Explanation:

      The patient’s symptoms strongly suggest Dressler syndrome, which is an autoimmune-related inflammation of the pericardium that typically occurs 2-6 weeks after a heart attack. This condition is characterized by fever, pleuritic pain, and diffuse ST elevation and PR depression on an electrocardiogram. A pleural friction rub can also be heard during a physical exam.

      While another heart attack is a possibility, the absence of diffuse ST elevation and the presence of a pleural friction rub make this diagnosis less likely.

      A left ventricular aneurysm would present with persistent ST elevation but no chest pain.

      Ventricular free wall rupture typically occurs 1-2 weeks after a heart attack and would present with acute heart failure due to cardiac tamponade, which is characterized by raised jugular venous pressure, pulsus paradoxus, and diminished heart sounds.

      A ventricular septal defect usually occurs within the first week and would present with acute heart failure and a pansystolic murmur.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - How many valves are present between the right atrium and the superior vena...

    Incorrect

    • How many valves are present between the right atrium and the superior vena cava (SVC)?

      Your Answer:

      Correct Answer: None

      Explanation:

      Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.

      The Superior Vena Cava: Anatomy, Relations, and Developmental Variations

      The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.

      Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.

      Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis...

    Incorrect

    • A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis of a left sided partial anterior circulating stroke. He is treated with high dose aspirin for 14 days. He is then started on clopidogrel which he was unfortunately intolerant of. You therefore start him on dual aspirin and dipyridamole.

      What is the mechanism of action of dipyridamole?

      Your Answer:

      Correct Answer: Increases the effects of adenosine

      Explanation:

      Dipyridamole is a medication that inhibits phosphodiesterase enzymes and reduces the uptake of adenosine by cells. This leads to an increase in adenosine levels and a decrease in the breakdown of cAMP. Patients taking dipyridamole should not receive exogenous adenosine treatment, such as for supraventricular tachycardia, due to this interaction.

      Clopidogrel is a medication that blocks ADP receptors.

      Aspirin is a medication that inhibits cyclo-oxygenase.

      Dabigatran and bivalirudin are medications that directly inhibit thrombin.

      Tirofiban and abciximab are medications that inhibit glycoprotein IIb/IIIa.

      Warfarin inhibits the production of factors II, VII, IX, and X.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 32-year-old male engineer presents to the emergency department after falling at work...

    Incorrect

    • A 32-year-old male engineer presents to the emergency department after falling at work while climbing a flight of stairs. He reports experiencing shortness of breath during exertion for the past week, but denies chest pain, vomiting, or coughing up blood. The symptoms are not affected by changes in position or respiration.

      The patient has no significant medical history except for a recent bout of self-resolving diarrhea. He is not taking any regular medications and has no known drug allergies. There is no relevant family history. He was recently informed that asbestos has been found in his apartment complex, where he has lived for eight years.

      During the examination, the patient appears comfortable at rest. His heart rate is 87 beats per minute, blood pressure is 124/94 mmHg, oxygen saturation is 99% on room air, respiratory rate is 16 breaths per minute, and temperature is 39.1ºC.

      A systolic and diastolic murmur is audible throughout the praecordium, with radiations to the axilla. There is tenderness over both nipples where he recently had them pierced, but no pain over the ribs.

      The patient has visible needle marks over his antecubital fossa and reports being in recovery from intravenous drug use for the past four years. He admits to recreational marijuana smoking and consuming 24 units of alcohol per week.

      An ECG taken on admission shows regular sinus rhythm. An echocardiogram reveals vegetations over the aortic and mitral valve, and blood cultures are positive for Staphylococcus aureus.

      Based on the likely diagnosis, which feature in the patient's history is a potential risk factor?

      Your Answer:

      Correct Answer: New piercing

      Explanation:

      Infective endocarditis is the likely diagnosis, which can be suspected if there is a fever and a murmur. The presence of vegetations on echo and positive blood cultures that meet Duke criteria can confirm the diagnosis. Of the given options, the only known risk factor for infective endocarditis is getting a new piercing. Alcohol binging can increase the risk of alcoholic liver disease and dilated cardiomyopathy, while asbestos exposure can lead to asbestosis and mesothelioma. Marijuana smoking may be associated with psychosis and paranoia.

      Aetiology of Infective Endocarditis

      Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.

      The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.

      Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 50-year-old man is brought to the hospital after a head-on collision. Upon...

    Incorrect

    • A 50-year-old man is brought to the hospital after a head-on collision. Upon initial resuscitation, a chest X-ray reveals a widened mediastinum. An urgent CT aortogram confirms a traumatic aortic rupture.

      Where is the most probable location for a traumatic aortic rupture to occur?

      Your Answer:

      Correct Answer: Proximal descending aorta distal to origin of left subclavian artery (aortic isthmus)

      Explanation:

      Although the aorta can be ruptured by trauma at any location, the aortic isthmus (the section of the proximal descending aorta located below the left subclavian artery) is the most frequent site of rupture resulting from deceleration injuries.

      Thoracic Aorta Rupture: Causes, Symptoms, Diagnosis, and Treatment

      Thoracic aorta rupture is a life-threatening condition that occurs due to decelerating force, such as a road traffic accident or a fall from a great height. Most people die at the scene, while survivors may have an incomplete laceration at the ligamentum arteriosum of the aorta. The clinical features of thoracic aorta rupture include a contained hematoma and persistent hypotension, which can be detected mainly by history and changes in chest X-rays. The X-ray changes include a widened mediastinum, trachea/esophagus to the right, depression of the left main stem bronchus, widened paratracheal stripe/paraspinal interfaces, obliteration of the space between the aorta and pulmonary artery, and rib fracture/left hemothorax.

      The diagnosis of thoracic aorta rupture is usually made through angiography, with CT aortogram being the preferred method. Treatment involves repair or replacement of the ruptured aorta, with endovascular repair being the ideal option. In summary, thoracic aorta rupture is a serious condition that requires prompt diagnosis and treatment to prevent fatal outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 31 - Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother...

    Incorrect

    • Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother has observed that Sophie has been experiencing shortness of breath for the past 3 weeks, particularly during feeding. Sophie was born at 36 weeks and her mother reports no other issues since birth.

      During the examination, a continuous machinery murmur with a left-sided sub-clavicular thrill is detected, and a diagnosis of patent ductus arteriosus is made. Surgery is not deemed necessary, but a medication that inhibits prostaglandin synthesis is recommended.

      What is the most probable pharmacological treatment that will be offered?

      Your Answer:

      Correct Answer: Indomethacin

      Explanation:

      The inhibition of prostaglandin synthesis in infants with patent ductus arteriosus is achieved through the use of indomethacin. This medication (or ibuprofen) is effective in promoting closure of the ductus arteriosus by inhibiting prostaglandin synthesis.

      Beta-blockers such as bisoprolol are not used in the management of PDA, making this answer incorrect.

      Steroids like dexamethasone and prednisolone are not typically used in the treatment of PDA, although they may be given to the mother if premature delivery is expected. Therefore, these answers are also incorrect.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 32 - A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been...

    Incorrect

    • A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?

      Your Answer:

      Correct Answer: P2Y12 receptor antagonist

      Explanation:

      Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 33 - A 45-year-old male with no past medical history is recently diagnosed with hypertension....

    Incorrect

    • A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:

      Na 137 mmol/l
      K 4.7 mmol/l
      Cl 98 mmol/l
      Urea 12.2 mmol/l
      Creatinine 250 mg/l

      What is the most likely cause for the abnormal blood test results?

      Your Answer:

      Correct Answer: Bilateral stenosis of renal arteries

      Explanation:

      Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 34 - You are a doctor working in the intensive care unit. A 35-year-old man...

    Incorrect

    • You are a doctor working in the intensive care unit. A 35-year-old man has been admitted to the ward due to suddenly vomiting large volumes of fresh blood. His blood pressure is 90/60 mmHg and his heart rate is 150bpm. He needs urgent intravenous fluids. Several attempts at intravenous cannulation have been made but to no avail. The on-call anaesthetist suggests performing a great saphenous vein cutdown.

      Where should the anaesthetist make the incision?

      Your Answer:

      Correct Answer: Anterior to the medial malleolus

      Explanation:

      The long saphenous vein is often used for venous cutdown and passes in front of the medial malleolus. Venous cutdown involves surgically exposing a vein for cannulation.

      On the other hand, the short saphenous vein is situated in front of the lateral malleolus and runs up the back of the thigh to drain into the popliteal vein at the popliteal fossa.

      The long saphenous vein originates from the point where the first dorsal digital vein, which drains the big toe, joins the dorsal venous arch of the foot. It then passes in front of the medial malleolus, ascends the medial aspect of the thigh, and drains into the femoral vein by passing through the saphenous opening.

      The femoral vein becomes the external iliac vein at the inferior margin of the inguinal ligament. It receives blood from the great saphenous and popliteal veins, and a deep vein thrombosis that blocks this vein can be life-threatening.

      During a vascular examination of the lower limb, the dorsalis pedis artery is often palpated. It runs alongside the extensor digitorum longus.

      Lastly, the posterior tibial vein is located at the back of the medial malleolus, together with other structures, within the tarsal tunnel.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 35 - A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a...

    Incorrect

    • A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a blood test reveals an abnormality and an ECG shows new U waves, which were not present on a previous ECG. What electrolyte imbalance could be responsible for these symptoms and ECG changes?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      The correct answer is hypokalaemia, which can be a side effect of furosemide. This condition is characterized by U waves on ECG, as well as small or absent T waves, prolonged PR interval, ST depression, and/or long QT. Hypercalcaemia, on the other hand, can cause shortening of the QT interval and J waves in severe cases. Hyperkalaemia is associated with tall-tented T waves, loss of P waves, broad QRS complexes, sinusoidal wave pattern, and/or ventricular fibrillation, and can be caused by various factors such as acute or chronic kidney disease, medications, diabetic ketoacidosis, and Addison’s disease. Hypernatraemia, which can be caused by dehydration or diabetes insipidus, does not typically result in ECG changes.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 36 - A 65-year-old woman presents to the emergency department with central chest pain and...

    Incorrect

    • A 65-year-old woman presents to the emergency department with central chest pain and is diagnosed with a new left bundle branch block on ECG. If a histological analysis of her heart is conducted within the first 24 hours following the MI, what are the probable findings?

      Your Answer:

      Correct Answer: Coagulative necrosis

      Explanation:

      In the first 24 hours following a myocardial infarction (MI), histological findings typically show early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils. This is a critical time period as there is a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock. The necrosis occurs due to the lack of blood flow to the myocardium, and within the next few days, macrophages will begin to clear away dead tissue and granulation tissue will form to aid in the healing process. It is important to recognize the early signs of MI in order to provide prompt treatment and prevent further damage to the heart.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 37 - A patient suffering from primary pulmonary hypertension at the age of 50 is...

    Incorrect

    • A patient suffering from primary pulmonary hypertension at the age of 50 is prescribed bosentan, an endothelin receptor antagonist. What is the role of endothelin in the body?

      Your Answer:

      Correct Answer: Vasoconstriction and bronchoconstriction

      Explanation:

      Endothelin, which is produced by the vascular endothelium, is a potent vasoconstrictor and bronchoconstrictor with long-lasting effects. It is believed to play a role in the development of primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 38 - Which of the following structures separates the subclavian artery from the subclavian vein?...

    Incorrect

    • Which of the following structures separates the subclavian artery from the subclavian vein?

      And for the age change:

      Which of the following structures separates the subclavian artery from the subclavian vein in a 30-year-old patient?

      Your Answer:

      Correct Answer: Scalenus anterior

      Explanation:

      The scalenus anterior muscle separates the artery and vein. It originates from the transverse processes of C3, C4, C5, and C6 and inserts onto the scalene tubercle of the first rib.

      The Subclavian Artery: Origin, Path, and Branches

      The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.

      From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.

      The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.

      In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 39 - A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine...

    Incorrect

    • A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.

      Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.

      However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 40 - A 67-year-old man is admitted to the hospital with central crushing chest pain...

    Incorrect

    • A 67-year-old man is admitted to the hospital with central crushing chest pain and undergoes a coronary angiogram. Arterial blockage can result from atherosclerosis, which can cause changes in the endothelium. What is an anticipated change in the endothelium?

      Your Answer:

      Correct Answer: Reduced nitric oxide bioavailability

      Explanation:

      Fatty infiltration in the subendothelial space is associated with LDL particles, but the endothelium undergoes changes that include reduced nitric oxide bioavailability, proliferation, and pro-inflammatory and pro-oxidant effects.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages that phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 41 - A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed...

    Incorrect

    • A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed with heart failure. Afterload-induced increases can lead to systolic dysfunction in heart failure.

      What factors worsen his condition by increasing afterload?

      Your Answer:

      Correct Answer: Ventricular dilatation

      Explanation:

      Ventricular dilation can increase afterload, which is the resistance the heart must overcome during contraction. Afterload is often measured as ventricular wall stress, which is influenced by ventricular pressure, radius, and wall thickness. As the ventricle dilates, the radius increases, leading to an increase in wall stress and afterload. This can eventually lead to heart failure if the heart is unable to compensate. Conversely, decreased systemic vascular resistance and hypotension can decrease afterload, while increased venous return can increase preload. Mitral valve stenosis, on the other hand, can decrease preload.

      The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 42 - A 75-year-old male presents to the GP clinic complaining of increased shortness of...

    Incorrect

    • A 75-year-old male presents to the GP clinic complaining of increased shortness of breath during physical activity and swelling in both ankles. The GP schedules an echocardiogram for him as an outpatient. During the echocardiogram, the patient's heart rate was 72 bpm and blood pressure was 136/88 mmHg. The results of the echocardiogram show an end-diastolic volume of 105ml and an end-systolic volume of 65ml. What is the left ventricular ejection fraction (LVEF) of this patient?

      Your Answer:

      Correct Answer: 40%

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 43 - A 50-year-old man presents to the emergency department with acute chest pain. His...

    Incorrect

    • A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.

      What is the mechanism of action of ticagrelor?

      Your Answer:

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 44 - Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome,...

    Incorrect

    • Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome, who has experienced recurrent episodes of sudden palpitations. The procedure involves catheterization within the heart to evaluate the electrical activity and determine the conduction velocity of various parts of the conduction pathway.

      Which segment of this pathway exhibits the highest conduction velocity?

      Your Answer:

      Correct Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the fastest conduction velocities in the heart, at approximately 4m/sec, due to different connexins in their gap junctions. They allow depolarisation throughout the ventricular muscle. Atrial muscle conducts at around 0.5m/sec, the atrioventricular node conducts at a slow rate, and the Bundle of His conducts at 2m/sec, but not as rapidly as the Purkinje fibres.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 45 - A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races...

    Incorrect

    • A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races or intense training. She has never had shortness of breath or chest pain, but one persistent episode led her to the emergency department where an ECG was taken. Based on the shortening of one of the ECG intervals, a provisional diagnosis of Wolff-Parkinson-White syndrome was made. What does this abnormal section of the ECG represent in terms of electrical activity?

      Your Answer:

      Correct Answer: The time between atrial depolarisation and ventricular depolarisation

      Explanation:

      The PR interval on an ECG represents the duration between atrial depolarisation and ventricular depolarisation. In Wolff-Parkinson-White syndrome, an accessory pathway called the Bundle of Kent exists between the atrium and ventricle, allowing electrical signals to bypass the atrioventricular node and potentially leading to tachyarrhythmias. This results in a shorter PR interval on the ECG. Atrial repolarisation is not visible on the ECG, while the depolarisation of the sinoatrial node is represented by the p wave. The QT interval on the ECG represents the time between ventricular depolarisation and repolarisation, while the QRS complex represents ventricular depolarisation, not the PR interval.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 46 - A 75-year-old male presents with an ejection systolic murmur that is most audible...

    Incorrect

    • A 75-year-old male presents with an ejection systolic murmur that is most audible over the aortic region. The patient also reports experiencing dyspnoea and angina. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Aortic stenosis

      Explanation:

      Differentiating Aortic Stenosis from Other Cardiac Conditions

      Aortic stenosis is a common cardiac condition that can be identified through auscultation. However, it is important to differentiate it from other conditions such as aortic sclerosis, HOCM, pulmonary stenosis, and aortic regurgitation. While aortic sclerosis may also present with an ejection systolic murmur, it is typically asymptomatic. The presence of dyspnoea, angina, or syncope would suggest a diagnosis of aortic stenosis instead. HOCM would not typically cause these symptoms, and pulmonary stenosis would not be associated with a murmur at the location of the aortic valve. Aortic regurgitation, on the other hand, would present with a wide pulse pressure and an early diastolic murmur. Therefore, careful consideration of symptoms and additional diagnostic tests may be necessary to accurately diagnose and differentiate between these cardiac conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 47 - A 75-year-old man with a medical history of heart failure, ischaemic heart disease,...

    Incorrect

    • A 75-year-old man with a medical history of heart failure, ischaemic heart disease, and type 2 diabetes mellitus presents to the cardiology clinic with complaints of dyspnoea and leg swelling. Upon examination, the physician notes bibasal crackles in the lungs and bilateral pitting oedema up to the mid-shin level. The heart sounds are normal. To alleviate the symptoms, the cardiologist prescribes furosemide. Which part of the kidney does furosemide target?

      Your Answer:

      Correct Answer: Na-K-2Cl symporter in the thick ascending loop of Henle

      Explanation:

      Furosemide is a medication that is often prescribed to patients with heart failure who have excess fluid in their bodies. It works by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which prevents the reabsorption of sodium. This results in a less hypertonic renal medulla and reduces the osmotic force that causes water to be reabsorbed from the collecting ducts. As a result, more water is excreted through the kidneys.

      It is important to be aware of the common side effects of loop diuretics, which are listed in the notes below.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 48 - A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of...

    Incorrect

    • A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The L1 level is where the left renal artery is located.

      Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.

      At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.

      The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 49 - A 32-year-old woman who is 34 weeks pregnant with her first baby is...

    Incorrect

    • A 32-year-old woman who is 34 weeks pregnant with her first baby is worried about the possibility of her child having a congenital heart defect. She was born with patent ductus arteriosus (PDA) herself and wants to know what treatment options are available for this condition.

      What treatment will you recommend if her baby is diagnosed with PDA?

      Your Answer:

      Correct Answer: The baby receives indomethacin as a neonate

      Explanation:

      The preferred treatment for patent ductus arteriosus (PDA) in neonates is indomethacin or ibuprofen, administered after birth. While PDA is more common in premature infants, a family history of heart defects can increase the risk. Diagnosis typically occurs during postnatal baby checks, often due to the presence of a murmur or symptoms of heart failure. Doing nothing is not a recommended approach, as spontaneous closure is rare. Surgery may be necessary if medical management is unsuccessful. Prostaglandin E1 is not the best answer, as it is typically used in cases where PDA is associated with another congenital heart defect. Indomethacin or ibuprofen are not given to the mother during the antenatal period.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 50 - A 75-year-old diabetic man comes in with a heart attack and undergoes a...

    Incorrect

    • A 75-year-old diabetic man comes in with a heart attack and undergoes a coronary angiogram. What coronary artery/arteries provide blood supply to the anterior septum of the heart?

      Your Answer:

      Correct Answer: Left Anterior Descending

      Explanation:

      The heart receives blood supply from the coronary arteries, which originate from the left side of the heart at the root of the aorta as it exits the left ventricle.

      The left coronary artery (LCA) provides blood to the left atrium and ventricle, as well as the interventricular septum. The circumflex artery, a branch of the LCA, supplies the lateral aspect of the left heart by following the coronary sulcus to the left. The left anterior descending artery (LAD), another major branch of the LCA, supplies the anteroseptal part of the heart by following the anterior interventricular sulcus around the pulmonary trunk.

      The right coronary artery (RCA) follows the coronary sulcus and supplies blood to the right atrium, portions of both ventricles, and the inferior aspect of the heart. The marginal arteries, which arise from the RCA, provide blood to the superficial portions of the right ventricle. The posterior descending artery, which branches off the RCA on the posterior surface of the heart, runs along the posterior portion of the interventricular sulcus toward the apex of the heart and supplies the interventricular septum and portions of both ventricles.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 51 - A 57-year-old male with a history of hypertension for six years presents to...

    Incorrect

    • A 57-year-old male with a history of hypertension for six years presents to the Emergency department with complaints of severe chest pain that radiates to his back, which he describes as tearing in nature. He is currently experiencing tachycardia and hypertension, with a blood pressure reading of 185/95 mmHg. A soft early diastolic murmur is also noted. The ECG shows ST elevation of 2 mm in the inferior leads, and a small left-sided pleural effusion is visible on chest x-ray. Based on the patient's clinical history, what is the initial diagnosis that needs to be ruled out?

      Your Answer:

      Correct Answer: Aortic dissection

      Explanation:

      Aortic Dissection in a Hypertensive Patient

      This patient is experiencing an aortic dissection, which is a serious medical condition. The patient’s hypertension is a contributing factor, and the pain they are experiencing is typical for this condition. One of the key features of aortic dissection is radiation of pain to the back. Upon examination, the patient also exhibits hypertension, aortic regurgitation, and pleural effusion, which are all consistent with this diagnosis. The ECG changes in the inferior lead are likely due to the aortic dissection compromising the right coronary artery. To properly diagnose and treat this patient, it is crucial to thoroughly evaluate their peripheral pulses and urgently perform imaging of the aorta. Proper and timely medical intervention is necessary to prevent further complications and ensure the best possible outcome for the patient.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 52 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Incorrect

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer:

      Correct Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 53 - A 28-year-old pregnant female arrives at the Emergency Department complaining of pleuritic chest...

    Incorrect

    • A 28-year-old pregnant female arrives at the Emergency Department complaining of pleuritic chest pain and dyspnea that came on suddenly. She recently returned from a trip to New Zealand. Based on the choices, what is the most probable finding on her ECG, if any?

      Your Answer:

      Correct Answer: T wave inversion in the anterior leads

      Explanation:

      Patients with pulmonary embolism may exhibit sinus tachycardia as the most common ECG sign, as well as signs of right heart strain rather than left.

      Pulmonary embolism can be difficult to diagnose as it can present with a variety of cardiorespiratory symptoms and signs depending on its location and size. The PIOPED study in 2007 found that tachypnea, crackles, tachycardia, and fever were common clinical signs in patients diagnosed with pulmonary embolism. The Well’s criteria for diagnosing a PE use tachycardia rather than tachypnea. All patients with symptoms or signs suggestive of a PE should have a history taken, examination performed, and a chest x-ray to exclude other pathology.

      To rule out a PE, the pulmonary embolism rule-out criteria (PERC) can be used. All criteria must be absent to have a negative PERC result, which reduces the probability of PE to less than 2%. If the suspicion of PE is greater than this, a 2-level PE Wells score should be performed. A score of more than 4 points indicates a likely PE, and an immediate computed tomography pulmonary angiogram (CTPA) should be arranged. If the CTPA is negative, patients do not need further investigations or treatment for PE.

      CTPA is now the recommended initial lung-imaging modality for non-massive PE. V/Q scanning may be used initially if appropriate facilities exist, the chest x-ray is normal, and there is no significant symptomatic concurrent cardiopulmonary disease. D-dimer levels should be considered for patients over 50 years old. A chest x-ray is recommended for all patients to exclude other pathology, but it is typically normal in PE. The sensitivity of V/Q scanning is around 75%, while the specificity is 97%. Peripheral emboli affecting subsegmental arteries may be missed on CTPA.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 54 - One of the elderly patients at your general practice was recently hospitalized and...

    Incorrect

    • One of the elderly patients at your general practice was recently hospitalized and diagnosed with myeloma. It was discovered that they have severe chronic kidney disease. The patient comes in for an update on their condition. After reviewing their medications, you realize they are taking ramipril for hypertension, which is contraindicated in renal failure. What is the most accurate description of the effect of ACE inhibitors on glomerular filtration pressure?

      Your Answer:

      Correct Answer: Vasodilation of the efferent arteriole

      Explanation:

      The efferent arteriole experiences vasodilation as a result of ACE inhibitors and ARBs, which inhibit the production of angiotensin II and block its receptors. This leads to a decrease in glomerular filtration pressure and rate, particularly in individuals with renal artery stenosis. On the other hand, the afferent arteriole remains dilated due to the presence of prostaglandins. NSAIDs, which inhibit COX-1 and COX-2, can cause vasoconstriction of the afferent arteriole and a subsequent decrease in glomerular filtration pressure. In healthy individuals, the afferent arteriole remains dilated while the efferent arteriole remains constricted to maintain a balanced glomerular pressure. The patient in the scenario has been diagnosed with myeloma, a disease that arises from the malignant transformation of B-cells and is characterized by bone infiltration, hypercalcaemia, anaemia, and renal impairment.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 55 - A 50-year-old white male is diagnosed with hypertension during a routine checkup at...

    Incorrect

    • A 50-year-old white male is diagnosed with hypertension during a routine checkup at his GP clinic. What is the initial choice of antihypertensive medication for white males who are under 55 years of age?

      Your Answer:

      Correct Answer: ACE inhibitor

      Explanation:

      For patients under 55 years of age who are white, ACE inhibitors are the preferred initial medication for hypertension. These drugs have also been shown to improve survival rates after a heart attack and in cases of congestive heart failure.

      However, for black patients or those over 55 years of age, a calcium channel blocker is the recommended first-line treatment. Beta blockers and diuretics are no longer considered the primary medication for hypertension.

      Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.

      Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.

      Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 56 - A 36-year-old woman presents to her GP with a history of long-standing fatigue,...

    Incorrect

    • A 36-year-old woman presents to her GP with a history of long-standing fatigue, dyspnea, and chest discomfort that has recently worsened. Despite being physically active, she has been experiencing these symptoms. She is a social drinker and does not smoke. Her family history is unremarkable except for her mother who died of 'chest disease' at the age of 50. During examination, her observations are as follows:

      Blood pressure: 135/85mmHg
      Pulse: 95 beats/min
      Respiration: 25 breaths/min

      An ECG shows no abnormalities, and cardiac enzymes are within normal ranges. She is referred for echocardiography, which reveals a right pulmonary artery pressure of 35 mmhg.

      What substance is elevated in this patient, underlying the disease process?

      Your Answer:

      Correct Answer: Endothelin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 57 - A 57-year-old patient is being evaluated on the ward 3 days after experiencing...

    Incorrect

    • A 57-year-old patient is being evaluated on the ward 3 days after experiencing a transmural myocardial infarction (MI). The patient reports experiencing sharp, severe retrosternal chest pain that worsens with inspiration.

      During the assessment, the patient's vital signs are heart rate 82 beats/min, BP 132/90 mmHg, temperature 37.8ºC, and oxygen saturation 97% on room air. Upon auscultation, a pericardial friction rub is audible.

      What is the histological change in the myocardial tissue that is consistent with this presentation?

      Your Answer:

      Correct Answer: Coagulative necrosis with neutrophil infiltration

      Explanation:

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 58 - You are attending a cardiology clinic one morning. A 54-year-old man presents for...

    Incorrect

    • You are attending a cardiology clinic one morning. A 54-year-old man presents for a medication review. He is currently taking a beta-blocker but is still frequently symptomatic. From his medication history, it is evident that he does not tolerate calcium channel blockers.

      The consultant considers the option of starting him on a new drug called nicorandil. The patient is hesitant to try it out as he believes it is a calcium channel blocker. You have been asked to explain the mechanism of action of nicorandil to this patient.

      What is the way in which the new drug exerts its effect?

      Your Answer:

      Correct Answer: Causes vasodilation by activating guanylyl cyclase which causes an increase in cGMP

      Explanation:

      Nicorandil induces vasodilation by activating guanylyl cyclase, leading to an increase in cyclic GMP. This results in the relaxation of vascular smooth muscles through the prevention of calcium ion influx and dephosphorylation of myosin light chains. Additionally, nicorandil activates ATP-sensitive potassium channels, causing hyperpolarization and preventing intracellular calcium overload, which plays a cardioprotective role.

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 59 - A 67-year-old man comes to the emergency department with concerns of pain in...

    Incorrect

    • A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?

      Your Answer:

      Correct Answer: Anterior tibial

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 60 - A 72-year-old man arrives at the emergency department with severe chest pain that...

    Incorrect

    • A 72-year-old man arrives at the emergency department with severe chest pain that spreads to his left arm and jaw. After conducting an ECG, you observe ST-segment elevation in leads I, aVL, and V4-V6, leading to a diagnosis of anterolateral ST-elevation MI. What is the primary artery that provides blood to the lateral region of the left ventricle?

      Your Answer:

      Correct Answer: Left circumflex artery

      Explanation:

      When the right coronary artery is blocked, it can lead to inferior myocardial infarction (MI) and changes in leads II, III, and aVF on an electrocardiogram (ECG). This is because the right coronary artery typically supplies blood to the sinoatrial (SA) and atrioventricular (AV) nodes, which can result in arrhythmias. The right marginal artery, which branches off from the right coronary artery near the bottom of the heart, runs along the heart’s lower edge towards the apex.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 61 - A 30-year-old male arrives at the emergency department complaining of sudden dizziness and...

    Incorrect

    • A 30-year-old male arrives at the emergency department complaining of sudden dizziness and palpitations. His medical history reveals that he had infectious diarrhea a week ago and was prescribed a 10-day course of erythromycin. Upon examination, an ECG confirms fast atrial fibrillation. The physician decides to use amiodarone to convert the patient into sinus rhythm. What is one potential risk associated with the use of amiodarone in this patient?

      Your Answer:

      Correct Answer: Ventricular arrhythmias

      Explanation:

      The risk of ventricular arrhythmias is increased when amiodarone and erythromycin are used together due to their ability to prolong the QT interval. Manufacturers advise against using multiple drugs that prolong QT interval to avoid this risk. WPW syndrome is a congenital condition that involves abnormal conductive cardiac tissue and can lead to reentrant tachycardia circuit in association with SVT. Amiodarone can cause a slate-grey appearance of the skin, while drugs like rifampicin can cause orange discoloration of body fluids. COPD is associated with multifocal atrial tachycardia.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 62 - A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently...

    Incorrect

    • A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently undergoing treatment for heart failure and gastro-oesophageal reflux. Which medication that he is taking is the most probable cause of his gynaecomastia?

      Your Answer:

      Correct Answer: Spironolactone

      Explanation:

      Medications Associated with Gynaecomastia

      Gynaecomastia, the enlargement of male breast tissue, can be caused by various medications. Spironolactone, ciclosporin, cimetidine, and omeprazole are some of the drugs that have been associated with this condition. Ramipril has also been linked to gynaecomastia, but it is a rare occurrence.

      Aside from these medications, other drugs that can cause gynaecomastia include digoxin, LHRH analogues, cimetidine, and finasteride. It is important to note that not all individuals who take these medications will develop gynaecomastia, and the risk may vary depending on the dosage and duration of treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 63 - Which of the following is accountable for the swift depolarization phase of the...

    Incorrect

    • Which of the following is accountable for the swift depolarization phase of the cardiac action potential?

      Your Answer:

      Correct Answer: Rapid sodium influx

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 64 - An 80-year-old man is admitted to the acute medical ward after experiencing a...

    Incorrect

    • An 80-year-old man is admitted to the acute medical ward after experiencing a myocardial infarction. During examination, it is discovered that his heart rate is 40 beats per minute. The consultant explains that this is due to damage to the conduction pathways between the sinoatrial and atrioventricular (AV) node, resulting in the AV node pacing his ventricles exclusively.

      In most patients, what is the blood supply to the AV node?

      Your Answer:

      Correct Answer: Right coronary artery

      Explanation:

      The AV node is typically supplied by the right coronary artery in right-dominant hearts, while in left-dominant hearts it is supplied by the left circumflex artery. The left circumflex artery also supplies the left atrium and some of the left ventricle, while the right marginal artery supplies the right ventricle, the posterior descending artery supplies the posterior third of the interventricular septum, and the left anterior descending artery supplies the left ventricle.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 65 - A 75-year-old man presents to the emergency department with acute chest pain that...

    Incorrect

    • A 75-year-old man presents to the emergency department with acute chest pain that is radiating to his left shoulder. He has a medical history of a previous transient ischaemic attack three years ago and is currently taking aspirin 75mg OD.

      Upon initial assessment, an ECG reveals ST-segment elevation in V1-V3. The patient undergoes percutaneous coronary intervention with a drug-eluting stent and is stable post-procedure. His treatment plan includes ramipril, ticagrelor, simvastatin, and atenolol.

      What is the mechanism of action of the newly prescribed antiplatelet medication?

      Your Answer:

      Correct Answer: Inhibit the binding of ADP to platelets

      Explanation:

      Ticagrelor and clopidogrel have a similar mechanism of action in inhibiting ADP binding to platelet receptors, which prevents platelet aggregation. In patients with STEMI who undergo percutaneous coronary intervention with a drug-eluting stent, dual antiplatelet therapy, beta-blockers, ACE inhibitors, and anti-hyperlipidemic drugs are commonly used for secondary management.

      Glycoprotein IIb/IIIa complex is a fibrinogen receptor found on platelets that, when activated, leads to platelet aggregation. Glycoprotein IIb/IIIa inhibitors, such as abciximab, bind to this receptor and prevent ligands like fibrinogen from accessing their binding site. Glycoprotein IIb/IIIa antagonists, like eptifibatide, compete with ligands for the receptor’s binding site, blocking the formation of thrombi.

      Dipyridamole inhibits platelet cAMP-phosphodiesterase, leading to increased intra-platelet cAMP and decreased arachidonic acid release, resulting in reduced thromboxane A2 formation. It also inhibits adenosine reuptake by vascular endothelial cells and erythrocytes, leading to increased adenosine concentration, activation of adenyl cyclase, and increased cAMP production.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 66 - A 50-year-old patient is admitted to the cardiology department with infective endocarditis. While...

    Incorrect

    • A 50-year-old patient is admitted to the cardiology department with infective endocarditis. While examining the patient's hands, the physician observes a collapsing pulse. What other findings can be expected during the examination?

      Your Answer:

      Correct Answer: Diastolic murmur in the aortic area

      Explanation:

      Aortic regurgitation is often associated with a collapsing pulse, which is a clinical sign. This condition occurs when the aortic valve allows blood to flow back into the left ventricle during diastole. As a result, a diastolic murmur can be heard in the aortic area. While infective endocarditis can cause aortic regurgitation, it can also affect other valves in the heart, leading to a diastolic murmur in the pulmonary area. However, this would not cause a collapsing pulse. A diastolic murmur in the mitral area is indicative of mitral stenosis, which is not associated with a collapsing pulse. Aortic stenosis, which is characterized by restricted blood flow between the left ventricle and aorta, is associated with an ejection systolic murmur in the aortic area, but not a collapsing pulse. Finally, mitral valve regurgitation, which affects blood flow between the left atrium and ventricle, is associated with a pansystolic murmur in the mitral area, but not a collapsing pulse.

      Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.

      The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.

      Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 67 - A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing...

    Incorrect

    • A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing sudden onset of shortness of breath and sharp pleuritic pain on the right side of her chest. A chest x-ray is done as part of the initial evaluation, revealing a wedge-shaped opacification. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Pulmonary embolism

      Explanation:

      Symptoms and Signs of Pulmonary Embolism

      Pulmonary embolism is a medical condition that can be difficult to diagnose due to its varied symptoms and signs. While chest pain, dyspnoea, and haemoptysis are commonly associated with pulmonary embolism, only a small percentage of patients present with this textbook triad. The symptoms and signs of pulmonary embolism can vary depending on the location and size of the embolism.

      The PIOPED study conducted in 2007 found that tachypnea, or a respiratory rate greater than 16/min, was the most common clinical sign in patients diagnosed with pulmonary embolism, occurring in 96% of cases. Other common signs included crackles in the chest (58%), tachycardia (44%), and fever (43%). Interestingly, the Well’s criteria for diagnosing a PE uses tachycardia rather than tachypnea. It is important for healthcare professionals to be aware of the varied symptoms and signs of pulmonary embolism to ensure prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 68 - As a medical student in general practice, you encounter a 68-year-old female patient...

    Incorrect

    • As a medical student in general practice, you encounter a 68-year-old female patient who has come in for her routine blood pressure check. She informs you that she has GTN spray at home. Can you explain how nitric oxide leads to vasodilation?

      Your Answer:

      Correct Answer: Activates guanylate cyclase

      Explanation:

      Smooth muscle relaxation and vasodilation are caused by the release of nitric oxide in response to nitrates. Nitric oxide activates guanylate cyclase, which converts GTP to cGMP. This leads to the opening of K+ channels and hyperpolarization of the cell membrane, causing the closure of voltage-gated Ca2+ channels and pumping of Ca2+ out of the smooth muscle. This results in vasodilation. Nitric oxide does not inhibit the release of Bradykinin.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 69 - A 50-year-old male is brought to the trauma unit following a car accident,...

    Incorrect

    • A 50-year-old male is brought to the trauma unit following a car accident, with an estimated blood loss of 1200ml. His vital signs are as follows: heart rate of 125 beats per minute, blood pressure of 125/100 mmHg, and he feels cold to the touch.

      Which component of his cardiovascular system has played the biggest role in maintaining his blood pressure stability?

      Your Answer:

      Correct Answer: Arterioles

      Explanation:

      The highest resistance in the cardiovascular system is found in the arterioles, which means they contribute the most to the total peripheral resistance. In cases of compensated hypovolaemic shock, such as in this relatively young patient, the body compensates by increasing heart rate and causing peripheral vasoconstriction to maintain blood pressure.

      Arteriole vasoconstriction in hypovolaemic shock patients leads to an increase in total peripheral resistance, which in turn increases mean arterial blood pressure. This has a greater effect on diastolic blood pressure, resulting in a narrowing of pulse pressure and clinical symptoms such as cold peripheries and delayed capillary refill time.

      Capillaries are microscopic channels that provide blood supply to the tissues and are the primary site for gas and nutrient exchange. Venules, on the other hand, are small veins with diameters ranging from 8-100 micrometers and join multiple capillaries exiting from a capillary bed.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 70 - A 25-year-old man has a cannula inserted into his cephalic vein. What is...

    Incorrect

    • A 25-year-old man has a cannula inserted into his cephalic vein. What is the structure through which the cephalic vein passes?

      Your Answer:

      Correct Answer: Clavipectoral fascia

      Explanation:

      Preserving the cephalic vein is important for creating an arteriovenous fistula in patients with end stage renal failure, as it is a preferred vessel for this purpose. The vein travels through the calvipectoral fascia, but does not pass through the pectoralis major muscle, before ending in the axillary vein.

      The Cephalic Vein: Path and Connections

      The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.

      After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.

      Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 71 - A 52-year-old woman has come to you with her ambulatory blood pressure monitor...

    Incorrect

    • A 52-year-old woman has come to you with her ambulatory blood pressure monitor readings, which are consistently high. You suggest starting her on ramipril and advise her to avoid certain things that could impact the absorption of the medication.

      What should she avoid?

      Your Answer:

      Correct Answer: Antacids

      Explanation:

      ACE-inhibitors’ therapeutic effect is reduced by antacids as they interfere with their absorption. However, low dose aspirin is safe to use alongside ACE-inhibitors. Coffee and tea do not affect the absorption of ACE-inhibitors. Patients taking ACE-inhibitors need not avoid high-intensity exercise, unlike those on statins who have an increased risk of muscle breakdown due to rhabdomyolysis.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 72 - A 50-year-old woman comes to you complaining of increased urinary frequency and lower...

    Incorrect

    • A 50-year-old woman comes to you complaining of increased urinary frequency and lower abdominal pain. She has a medical history of hypertension that is managed with a high dose of ramipril.

      Upon conducting a urine dipstick test, the results indicate a urinary tract infection. You prescribe a 5-day course of trimethoprim.

      What blood test will require monitoring in this patient?

      Your Answer:

      Correct Answer: Urea and electrolytes

      Explanation:

      Patients taking ACE-inhibitors should be cautious when using trimethoprim as it can lead to life-threatening hyperkalaemia, which may result in sudden death. Therefore, it is essential to monitor the potassium levels regularly by conducting urea and electrolyte tests.

      When using trimethoprim with methotrexate, it is crucial to monitor the complete blood count regularly due to the increased risk of myelosuppression. However, if the patient is only taking trimethoprim, there is no need to monitor troponins and creatine kinase.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 73 - A 65-year-old man with a history of claudication for several years is evaluated...

    Incorrect

    • A 65-year-old man with a history of claudication for several years is evaluated in the clinic. A duplex scan reveals an 85% stenosis of the superficial femoral artery. After two weeks, he returns with a sudden onset of severe leg pain that has been present for an hour. Upon examination, absent pulses are noted in the affected limb, and it is significantly cooler than the opposite limb. What is the most likely cause of this presentation?

      Your Answer:

      Correct Answer: Thrombosis

      Explanation:

      When dealing with an already present lesion, the probability of encountering a complication like thrombosis is higher than that of an embolus. To address this, patients should be administered heparin and undergo imaging with duplex scanning. Although an early surgical bypass or intra-arterial thrombolysis may be necessary, performing an embolectomy is generally not recommended as the lesion is not an embolus, rendering the operation ineffective.

      Understanding Claudication

      Claudication is a medical condition that causes pain in the limbs during physical activity. It is usually caused by arterial insufficiency, which occurs when atheroma develops in the arterial wall and blocks the blood flow to the tissues. The most common symptom of claudication is calf pain that worsens during exercise and improves with rest. However, if the disease is located in more proximal areas, other symptoms such as buttock claudication and impotence may occur.

      The condition usually develops progressively, and in severe cases, it can lead to critical limb ischemia, which is characterized by severe pain, diminished sensation, pallor, and absent pulses. Risk factors for claudication include smoking, diabetes, and hyperlipidemia.

      To diagnose claudication, doctors may measure ankle-brachial pressure indices, perform duplex scanning, or conduct formal angiography. Treatment options depend on the severity of the condition. Patients with long claudication distances and no ulceration or gangrene may be managed conservatively, while those with rest pain, ulceration, or gangrene will require intervention. All patients should receive an antiplatelet agent and a statin, unless there are compelling contraindications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 74 - Which of the structures listed below overlies the cephalic vein? ...

    Incorrect

    • Which of the structures listed below overlies the cephalic vein?

      Your Answer:

      Correct Answer: None of the above

      Explanation:

      The cephalic vein is a superficial vein in the upper limb that runs over the fascial planes and terminates in the axillary vein after piercing the coracoid membrane. It is located anterolaterally to the biceps.

      The Cephalic Vein: Path and Connections

      The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.

      After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.

      Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 75 - You are shadowing a cardiologist during a clinic session and the first patient...

    Incorrect

    • You are shadowing a cardiologist during a clinic session and the first patient is an 80-year-old man who has come for his annual check-up. He reports experiencing swollen ankles, increased shortness of breath, and difficulty sleeping flat. He has a history of heart failure but has been stable for the past 10 years. He believes that his condition has worsened since starting a new medication, but he cannot recall the name of the drug. Unfortunately, the electronic medical records are down, and you cannot access his medication history. Which of the following medications is most likely responsible for his symptoms?

      Your Answer:

      Correct Answer: Hydralazine

      Explanation:

      Hydralazine is unique among these drugs as it has been known to cause fluid retention by elevating the plasma concentration of renin. Conversely, the other drugs listed are recognized for their ability to reduce fluid overload and promote fluid elimination.

      Hydralazine: An Antihypertensive with Limited Use

      Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.

      Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 76 - John, a 67-year-old male, is brought to the emergency department by ambulance. The...

    Incorrect

    • John, a 67-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has emesis, homonymous hemianopia, weakness of left upper and lower limb, and dysphasia. He makes the healthcare professionals aware he has a worsening headache.

      He has a past medical history of atrial fibrillation for which he is taking warfarin. His INR IS 4.3 despite his target range of 2-3.

      A CT is ordered and the report suggests the anterior cerebral artery is the affected vessel.

      Which areas of the brain can be affected with a haemorrhage stemming of this artery?

      Your Answer:

      Correct Answer: Frontal and parietal lobes

      Explanation:

      The frontal and parietal lobes are partially supplied by the anterior cerebral artery, which is a branch of the internal carotid artery. Specifically, it mainly provides blood to the anteromedial region of these lobes.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 77 - An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation....

    Incorrect

    • An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation. The patient has a medical history of a metallic heart valve.

      The patient is informed that INR levels will be used to monitor the effects of warfarin. INR is a ratio of the value during warfarin treatment to the normal value, which is used to measure a specific aspect of clotting.

      What is the value that is utilized during this monitoring process?

      Your Answer:

      Correct Answer: Prothrombin time

      Explanation:

      Warfarin leads to an extended prothrombin time, which is the correct answer. The prothrombin time assesses the extrinsic and common pathways of the clotting cascade, and warfarin affects factor VII from the extrinsic pathway, as well as factor II (prothrombin) and factor X from the common pathway. This results in a prolonged prothrombin time, and the INR is a ratio of the prothrombin time during warfarin treatment to the normal prothrombin time.

      The activated partial thromboplastin time is an incorrect answer. Although high levels of warfarin may prolong the activated partial thromboplastin time, the INR is solely based on the prothrombin time.

      Bleeding time is also an incorrect answer. While warfarin can cause a prolonged bleeding time, the INR measures the prothrombin time.

      Fibrinogen levels are another incorrect answer. Fibrinogen is necessary for blood clotting, and warfarin can decrease fibrinogen levels after prolonged use. However, fibrinogen levels are not used in the INR measurement.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 78 - Whilst in general practice, you review John, a 50-year-old patient with hypertension. Despite...

    Incorrect

    • Whilst in general practice, you review John, a 50-year-old patient with hypertension. Despite taking lisinopril, his blood pressure remains clinically elevated. Based on current guidelines you consider add-on therapy with a thiazide-like diuretic.

      Which of the following electrolyte imbalances may arise with this new treatment?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      Hypokalaemia may be caused by thiazides

      Thiazide diuretics can lead to hypokalaemia by stimulating aldosterone production and inhibiting the Na-Cl symporter. This inhibition results in more sodium being available to activate the Na/K-ATPase channel, leading to increased potassium loss in the urine and hypokalaemia.

      Thiazide diuretics may also cause other side effects such as hypocalciuria, hypomagnesemia, and hyperlipidemia. The other options that describe the opposite of these disturbances are incorrect.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 79 - Which of the following structures is in danger of direct harm after a...

    Incorrect

    • Which of the following structures is in danger of direct harm after a femoral condyle fracture dislocation in an older adult?

      Your Answer:

      Correct Answer: Popliteal artery

      Explanation:

      The fracture segment can be pulled backwards by the contraction of the gastrocnemius heads, which may result in damage or compression of the popliteal artery that runs adjacent to the bone.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 80 - A 57-year-old man presents to the emergency department with a severe headache that...

    Incorrect

    • A 57-year-old man presents to the emergency department with a severe headache that started 3 weeks ago and is localised to the back of the head. He rates it 8/10 on a pain scale and reports that it has gradually become worse. The patient has a medical history of Ehlers-Danlos syndrome.

      Unfortunately, the patient passes away after suffering a brainstem stroke.

      During the autopsy, a vertebral artery dissection is discovered at the point of entry into the cranial cavity.

      Where is this location?

      Your Answer:

      Correct Answer: Foramen magnum

      Explanation:

      The vertebral arteries pass through the foramen magnum to enter the cranial cavity.

      Other foramina and their corresponding arteries include the stylomastoid foramen for the posterior auricular artery (stylomastoid branch), the foramen ovale for the accessory meningeal artery, and the foramen spinosum for the middle meningeal artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 81 - An 80-year-old woman came in with an acute myocardial infarction. The ECG revealed...

    Incorrect

    • An 80-year-old woman came in with an acute myocardial infarction. The ECG revealed ST segment elevation in leads II, III, and aVF. Which coronary artery is the most probable to be blocked?

      Your Answer:

      Correct Answer: Right coronary artery

      Explanation:

      Localisation of Myocardial Infarction

      Myocardial infarction (MI) is a medical emergency that occurs when there is a blockage in the blood flow to the heart muscle. The location of the blockage determines the type of MI and the treatment required. An inferior MI is caused by the occlusion of the right coronary artery, which supplies blood to the bottom of the heart. This type of MI can cause symptoms such as chest pain, shortness of breath, and nausea. It is important to identify the location of the MI quickly to provide appropriate treatment and prevent further damage to the heart muscle. Proper diagnosis and management can improve the patient’s chances of survival and reduce the risk of complications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 82 - An 80-year-old man is seen in the stroke clinic for a history of...

    Incorrect

    • An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.

      What is the mode of action of the prescribed medication?

      Your Answer:

      Correct Answer: ADP receptor inhibitor

      Explanation:

      Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 83 - A 65-year-old farmer arrives at the Emergency department with complaints of intense chest...

    Incorrect

    • A 65-year-old farmer arrives at the Emergency department with complaints of intense chest pain that spreads to his left arm and causes breathing difficulties. His heart rate is 94 bpm. What ECG changes would you expect to observe based on the probable diagnosis?

      Your Answer:

      Correct Answer: ST elevation in leads II, III, aVF

      Explanation:

      ECG Changes in Myocardial Infarction

      When interpreting an electrocardiogram (ECG) in a patient with suspected myocardial infarction (MI), it is important to consider the specific changes that may be present. In the case of a ST-elevation MI (STEMI), the ECG may show ST elevation in affected leads, such as II, III, and aVF. However, it is possible to have a non-ST elevation MI (NSTEMI) with a normal ECG, or with T wave inversion instead of upright T waves.

      Other ECG changes that may be indicative of cardiac issues include a prolonged PR interval, which could suggest heart block, and ST depression, which may reflect ischemia. Additionally, tall P waves may be seen in hyperkalemia.

      It is important to note that a patient may have an MI without displaying any ECG changes at all. In these cases, checking cardiac markers such as troponin T can help confirm the diagnosis. Overall, the various ECG changes that may be present in MI can aid in prompt and accurate diagnosis and treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 84 - Which of these statements relating to the external carotid is false? ...

    Incorrect

    • Which of these statements relating to the external carotid is false?

      Your Answer:

      Correct Answer: It ends by bifurcating into the superficial temporal and ascending pharyngeal artery

      Explanation:

      The external carotid artery ends by splitting into two branches – the superficial temporal and maxillary branches. It has a total of eight branches, with three located on its anterior surface – the thyroid, lingual, and facial arteries. The pharyngeal artery is a medial branch, while the posterior auricular and occipital arteries are located on the posterior surface.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 85 - A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling...

    Incorrect

    • A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?

      Your Answer:

      Correct Answer: Accessory pathway

      Explanation:

      The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.

      Understanding Wolff-Parkinson White Syndrome

      Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.

      The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 86 - You are designing a research project looking at the sensitivities and specificities of...

    Incorrect

    • You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically, you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      Your Answer:

      Correct Answer: Calcium ions

      Explanation:

      Troponin C plays a crucial role in muscle contraction by binding to calcium ions. However, it is not a specific marker for myocardial necrosis as it can be released due to damage in both skeletal and cardiac muscles.

      On the other hand, Troponin T and Troponin I are specific markers for myocardial necrosis. Troponin T binds to tropomyosin to form a complex, while Troponin I holds the troponin-tropomyosin complex in place by binding to actin.

      Muscle contraction occurs when actin slides along myosin, which is the thick component of muscle fibers. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 87 - A 57-year-old woman comes to see her GP to discuss the findings of...

    Incorrect

    • A 57-year-old woman comes to see her GP to discuss the findings of her ABPM, which revealed a blood pressure reading of 145/90 mmHg, leading to a diagnosis of stage 1 hypertension. What is the most common symptom experienced by patients with this condition?

      Your Answer:

      Correct Answer: None

      Explanation:

      Symptoms are not typically caused by hypertension.

      Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.

      Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.

      Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 88 - A 70-year-old man arrives at the Emergency department displaying indications and symptoms of...

    Incorrect

    • A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?

      Your Answer:

      Correct Answer: Myoglobin

      Explanation:

      Enzyme Markers for Myocardial Infarction

      Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 89 - A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation,...

    Incorrect

    • A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?

      Your Answer:

      Correct Answer: T12

      Explanation:

      The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 90 - A 50-year-old male has presented with a record of blood pressure readings taken...

    Incorrect

    • A 50-year-old male has presented with a record of blood pressure readings taken at home over the past week. His readings have consistently been above the accepted range for his age. He is a smoker of 20 cigarettes per day.

      Your senior has prescribed a low dose of ramipril and recommended lifestyle modifications and exercise.

      You have been asked by your senior to discuss the use of this medication and provide any necessary dietary advice.

      Which of the following is the most important piece of information to communicate to this patient?

      A) Taking ramipril with paracetamol compounds its hypotensive effect
      B) Taking ramipril with alcohol compounds its hypotensive effect
      C) Taking ramipril with coffee compounds its hypotensive effect
      D) Taking ramipril with tea compounds its hypotensive effect

      Please select the correct answer and provide an explanation.

      Your Answer:

      Correct Answer: Taking ramipril with alcohol compounds its hypotensive effect

      Explanation:

      ACE inhibitors’ hypotensive effects are worsened by alcohol consumption, leading to symptoms of low blood pressure such as dizziness and lightheadedness. Additionally, the effectiveness of ACE inhibitors may be reduced by hypertension-associated medications like acetaminophen and venlafaxine. Caffeine, found in both tea and coffee, can also elevate blood pressure.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 91 - A 23-year-old male university student presents to the emergency department with lightheadedness and...

    Incorrect

    • A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.

      He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.

      On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.

      An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².

      His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.

      Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.

      Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.

      Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 92 - A 76-year-old male comes for his yearly checkup with the heart failure nurses....

    Incorrect

    • A 76-year-old male comes for his yearly checkup with the heart failure nurses. What is the leading cause of heart failure?

      Your Answer:

      Correct Answer: Ischaemic heart disease

      Explanation:

      The leading cause of heart failure in the western world is ischaemic heart disease, followed by high blood pressure, cardiomyopathies, arrhythmias, and heart valve issues. While COPD can be linked to cor pulmonale, which is a type of right heart failure, it is still not as prevalent as ischaemic heart disease as a cause. This information is based on a population-based study titled Incidence and Aetiology of Heart Failure published in the European Heart Journal in 1999.

      Diagnosis of Chronic Heart Failure

      Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.

      Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.

      BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.

      It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 93 - A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart...

    Incorrect

    • A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart failure and a systolic murmur. He is referred for an echocardiogram, which reveals an ejection fraction of 62% and impaired diastolic function of the myocardial tissue. Additionally, the report notes a septal wall thickness of 17mm. What is the most probable condition responsible for these findings?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Hypertrophic obstructive cardiomyopathy (HOCM) is a likely cause of diastolic dysfunction, which can lead to heart failure with preserved ejection fraction (HF-pEF). This genetic cardiomyopathy is associated with sudden cardiac death, syncope, and heart failure. Unlike other conditions, such as degenerative calcification of the aortic valve or dilated cardiomyopathy, HOCM typically presents with diastolic dysfunction rather than systolic dysfunction. Ischaemic heart disease is also unlikely to be the cause of diastolic dysfunction and would typically present with heart failure and systolic dysfunction.

      Types of Heart Failure

      Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 94 - A 79-year-old woman with a history of heart failure visits the clinic complaining...

    Incorrect

    • A 79-year-old woman with a history of heart failure visits the clinic complaining of swollen ankles and difficulty walking. She has previously experienced fluid retention due to her heart failure. During the examination, soft heart sounds are heard and pitting edema is observed in both lower limbs up to 15 cm above the ankles. The decision is made to increase her daily furosemide dose from 40mg to 80 mg. Which part of the nephron does furosemide target?

      Your Answer:

      Correct Answer: Ascending limb of the loop of Henle

      Explanation:

      Furosemide is a loop diuretic that works by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle. It is commonly used to treat fluid retention in patients with heart failure. Other diuretic agents work on different parts of the nephron, such as carbonic anhydrase inhibitors in the proximal and distal tubules, thiazide diuretics in the distal convoluted tubule, and potassium-sparing diuretics like amiloride and spironolactone in the cortical collecting ducts. Understanding the mechanism of action of diuretics can help clinicians choose the most appropriate medication for their patients.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 95 - A 57-year-old woman visits her doctor with complaints of flushing and warmth. She...

    Incorrect

    • A 57-year-old woman visits her doctor with complaints of flushing and warmth. She has been in good health lately, except for a stomach bug she had two weeks ago. Her medical history includes hyperlipidemia, hypertension, myocardial infarction, and type II diabetes mellitus. Although she used to smoke, she has quit and does not drink alcohol. She lives with her husband in a bungalow.

      During the consultation, she reveals that her cardiologist recently prescribed niacin to her. Her recent lab results show an increase in total cholesterol.

      Which of the following is responsible for the adverse effects observed in this patient?

      Substance P
      15%
      Bradykinin
      20%
      Prostaglandins
      48%
      Serotonin
      9%
      Kallikreins
      8%

      The adverse effects of niacin, such as flushing, warmth, and itching, are caused by prostaglandins.

      Your Answer:

      Correct Answer: Prostaglandins

      Explanation:

      The adverse effects of niacin, such as flushing, warmth, and itchiness, are caused by the release of prostaglandins. Niacin activates dermal Langerhans cells, which leads to an increase in prostaglandin release and subsequent vasodilation. To prevent these side effects, aspirin is often given 30 minutes before niacin administration. Aspirin works by altering the activity of COX-2, which reduces prostaglandin release.

      Substance P acts as a neurotransmitter in the central nervous system, and its neurokinin (NK) receptor 1 is found in specific areas of the brain that affect behavior and the neurochemical response to both psychological and somatic stress.

      Bradykinin is an inflammatory mediator that causes vasodilation, but it is not responsible for the adverse effects seen with niacin use.

      Serotonin is a neurotransmitter that plays a role in regulating various processes in the brain. Low levels of serotonin are often associated with anxiety, panic attacks, obesity, and insomnia. However, serotonin does not mediate the side effects observed with niacin use.

      Nicotinic acid, also known as niacin, is a medication used to treat hyperlipidaemia. It is effective in reducing cholesterol and triglyceride levels while increasing HDL levels. However, its use is limited due to the occurrence of side-effects. One of the most common side-effects is flushing, which is caused by prostaglandins. Additionally, nicotinic acid may impair glucose tolerance and lead to myositis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 96 - A 30-year-old female patient complains of chest pain that is mainly located behind...

    Incorrect

    • A 30-year-old female patient complains of chest pain that is mainly located behind her sternum but radiates to both shoulders. The pain worsens when she breathes deeply or exercises. She has never smoked, drinks a bottle of wine per week, and had a flu-like illness about ten days ago. During examination, her temperature is 38°C, heart rate is 80 bpm, blood pressure is 118/76 mmHg, and respiratory rate is 16. A high pitched rub is audible during systole, and when asked to take a deep breath, she reports more pain on inspiration. The ECG shows ST elevation in both anterior and inferior leads. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Pericarditis

      Explanation:

      Common Heart Conditions

      Pericarditis is a heart condition that is often triggered by a heart attack or viral infections like Coxsackie B. Patients with pericarditis usually have a history of flu-like symptoms. One of the most common symptoms of pericarditis is widespread ST elevation on the ECG, which is characterized by upward concavity.

      Alcoholic cardiomyopathy is another heart condition that can cause heart failure. Patients with this condition may experience symptoms like shortness of breath, fatigue, and swelling in the legs and ankles.

      Angina is a type of chest pain that can be stable or unstable depending on whether it occurs at rest or during physical activity. Stable angina is usually triggered by physical exertion, while unstable angina can occur even when a person is at rest.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 97 - A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and...

    Incorrect

    • A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and difficulty breathing. The diagnosis is heart failure. Which of the following is the cause of the inadequate response of his stroke volume?

      Your Answer:

      Correct Answer: Preload

      Explanation:

      The response of stroke volume in a normal heart to changes in preload is governed by Starling’s Law. This means that an increase in end diastolic volume in the left ventricle should result in a higher stroke volume, as the cardiac myocytes stretch. However, this effect has a limit, as seen in cases of heart failure where excessive stretch of the cardiac myocytes prevents this response.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 98 - A 35-year-old man visits his GP complaining of feeling increasingly unwell for the...

    Incorrect

    • A 35-year-old man visits his GP complaining of feeling increasingly unwell for the past few weeks. He reports experiencing heavy night sweats, fatigue, and shortness of breath. Upon further questioning, he reveals a history of intravenous drug use for many years and has been using methadone exclusively for the last 2 months. During the physical examination, the GP observes splinter haemorrhages. What is the probable causative organism?

      Your Answer:

      Correct Answer: Staphylococcus aureus

      Explanation:

      The patient is exhibiting symptoms that are indicative of infective endocarditis and has a past of using intravenous drugs. Infective endocarditis can be caused by various factors, but in developed countries, S. aureus is the most prevalent cause. This is especially true for individuals who use intravenous drugs, as in this case.

      Aetiology of Infective Endocarditis

      Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.

      The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.

      Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 99 - A 56-year-old woman comes to you complaining of severe body aches and pains...

    Incorrect

    • A 56-year-old woman comes to you complaining of severe body aches and pains that have been ongoing for the past 2 weeks. She has been taking atorvastatin for the last 5 years and is aware of its potential side effects, but insists that she has never experienced anything like this before.

      Upon examination, her CK levels are found to be above 3000 U/L. Reviewing her medical records, it is noted that she had a medication review with her cardiologist just 2 weeks ago.

      What could be the possible cause of her current symptoms?

      Your Answer:

      Correct Answer: The cardiologist started her on amiodarone

      Explanation:

      The patient’s symptoms and elevated CK levels suggest that she may have rhabdomyolysis, which is a known risk associated with taking statins while also taking amiodarone. It is likely that her cardiologist prescribed amiodarone. To reduce her risk of statin-induced rhabdomyolysis, her atorvastatin dosage should be lowered.

      It is important to note that digoxin and beta-blockers do not increase the risk of statin-induced rhabdomyolysis, and there is no association between laxatives and this condition.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 100 - What is the mechanism of action of dipyridamole when prescribed alongside aspirin for...

    Incorrect

    • What is the mechanism of action of dipyridamole when prescribed alongside aspirin for a 70-year-old man who has had an ischaemic stroke?

      Your Answer:

      Correct Answer: Phosphodiesterase inhibitor

      Explanation:

      Although Dipyridamole is commonly referred to as a non-specific phosphodiesterase inhibitor, it has been found to have a strong effect on PDE5 (similar to sildenafil) and PDE6. Additionally, it reduces the uptake of adenosine by cells.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (2/2) 100%
Passmed