00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 65-year-old man is undergoing an upper GI endoscopy due to difficulty swallowing....

    Incorrect

    • A 65-year-old man is undergoing an upper GI endoscopy due to difficulty swallowing. During the procedure, a suspicious-looking blockage is found at 33 cm from the incisors. The endoscopist tries to widen the area with a balloon, but the tumor causes a rupture in the oesophageal wall. Where will the contents of the oesophagus now drain?

      Your Answer: Anterior mediastinum

      Correct Answer: Posterior mediastinum

      Explanation:

      The oesophagus is expected to remain within the thoracic cavity and situated in the posterior mediastinum at this point.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      20.2
      Seconds
  • Question 2 - A 35-year-old woman presents to the medical assessment unit with sudden onset shortness...

    Correct

    • A 35-year-old woman presents to the medical assessment unit with sudden onset shortness of breath. She reports no cough or fever and has no other associated symptoms. She recently returned from a hiking trip in France and takes the oral contraceptive pill but no other regular medications. She smokes 10 cigarettes a day but drinks no alcohol. On examination, she is tachypnoeic and tachycardic with an elevated JVP. Her calves are soft and non-tender with no pitting oedema. Initial blood tests show a positive D-dimer and elevated CRP. What is the appropriate treatment for this patient?

      Your Answer: Low molecular weight heparin

      Explanation:

      Treatment for Suspected Pulmonary Embolism

      When a patient presents with risk factors for pulmonary embolism (PE) such as recent travel and oral contraceptive pill use, along with symptoms like tachypnea, tachycardia, and hypoxia, it is important to consider the possibility of a significant PE. In such cases, treatment with low molecular weight heparin should be given promptly to prevent further complications. A low-grade fever is also common in venothromboembolic disease. Elevated JVP signifies significant right heart strain due to a significant PE, but maintained blood pressure is a positive sign.

      The most common ECG finding in PE is an isolated sinus tachycardia, while the CXR may be clear, but prominent pulmonary arteries reflect pulmonary hypertension due to clot load in the pulmonary tree. A D-dimer test is recommended if the Wells score for PE is less than 4.

      According to NICE guidelines on venous thromboembolic diseases, low molecular weight heparin is the appropriate initial treatment for suspected PE. It is important not to delay treatment to await CTPA unless it can be performed immediately. There is no evidence of pneumonia to warrant IV antibiotics. Unfractionated heparin may be considered for patients with an eGFR of less than 30, high risk of bleeding, or those undergoing thrombolysis, but this is not the case with this patient. Thrombolysis is not indicated unless there is haemodynamic instability, even in suspected large PEs.

      In summary, prompt treatment with low molecular weight heparin is crucial in suspected cases of PE, and other treatment options should be considered based on individual patient factors.

    • This question is part of the following fields:

      • Respiratory System
      34.6
      Seconds
  • Question 3 - Which of the following nerve roots provide nerve fibers to the ansa cervicalis?...

    Correct

    • Which of the following nerve roots provide nerve fibers to the ansa cervicalis?

      Your Answer: C1, C2 and C3

      Explanation:

      The ansa cervicalis muscles can be remembered using the acronym GHost THought SOmeone Stupid Shot Irene. These muscles include the GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The ansa cervicalis is made up of a superior and inferior root, which originate from C1, C2, and C3. The superior root begins where the nerve crosses the internal carotid artery and descends in the anterior triangle of the neck. The inferior root joins the superior root in the mid neck region and can pass either superficially or deep to the internal jugular vein.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      3.1
      Seconds
  • Question 4 - A 67-year-old female smoker with a two-month history of worsening shortness of breath...

    Correct

    • A 67-year-old female smoker with a two-month history of worsening shortness of breath presents for evaluation. On examination, she appears comfortable at rest with a regular pulse of 72 bpm, respiratory rate of 16/min, and blood pressure of 128/82 mmHg. Physical findings include reduced expansion on the left lower zone, dullness to percussion over this area, and absent breath sounds over the left lower zone with bronchial breath sounds just above this region. What is the likely clinical diagnosis?

      Your Answer: Pleural effusion

      Explanation:

      Pleural Effusion and its Investigation

      Pleural effusion is a condition where there is an abnormal accumulation of fluid in the pleural space, which is the space between the lungs and the chest wall. This can be caused by various factors such as post-infection, carcinoma, or emboli. To determine the cause of the pleural effusion, a pleural tap is the most appropriate investigation. The sample obtained from the pleural tap is sent for cytology, protein concentration, and culture.

      A normal pleural tap would have clear appearance, pH of 7.60-7.64, protein concentration of less than 2%, white blood cells count of less than 1000/mm³, glucose level similar to that of plasma, LDH level of less than 50% of plasma concentration, amylase level of 30-110 U/L, triglycerides level of less than 2 mmol/l, and cholesterol level of 3.5-6.5 mmol/l.

      A transudative tap is associated with conditions such as congestive heart failure, liver cirrhosis, severe hypoalbuminemia, and nephrotic syndrome. On the other hand, an exudative tap is associated with malignancy, infection (such as empyema due to bacterial pneumonia), trauma, pulmonary infarction, and pulmonary embolism.

      In summary, pleural effusion can be caused by various factors and a pleural tap is the most appropriate investigation to determine the cause. The results of the pleural tap can help differentiate between transudative and exudative effusions, which can provide important information for diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      29.7
      Seconds
  • Question 5 - A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain,...

    Incorrect

    • A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain, nausea, vomiting, and a decreased level of consciousness. Upon examination, the patient exhibits Kussmaul respiration and an acetone-like breath odor.

      What type of metabolic disturbance is most consistent with the symptoms and presentation of this patient?

      Your Answer: Metabolic acidosis, oxygen dissociation curve shifts to the left

      Correct Answer: Metabolic acidosis, oxygen dissociation curve shifts to the right

      Explanation:

      The correct answer is that metabolic acidosis shifts the oxygen dissociation curve to the right. This is seen in the condition described in the question, diabetic ketoacidosis, which is associated with metabolic acidosis. Acidosis causes more oxygen to be unloaded from haemoglobin, leading to a rightward shift in the curve. The other answer options are incorrect, as they either describe a different type of acidosis or an incorrect direction of the curve shift.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      17.9
      Seconds
  • Question 6 - A 50-year-old woman comes to see you at the clinic with progressive muscle...

    Correct

    • A 50-year-old woman comes to see you at the clinic with progressive muscle weakness, numbness, and tingling in her left arm. She reports experiencing neck and shoulder pain on the left side as well. She has no significant medical history and is generally healthy. She denies any recent injuries or trauma. Based on your clinical assessment, you suspect that she may have thoracic outlet syndrome.

      What additional physical finding is most likely to confirm your suspicion of thoracic outlet syndrome in this patient?

      Your Answer: Absent radial pulse

      Explanation:

      Compression of the subclavian artery by a cervical rib can result in an absent radial pulse, which is a common symptom of thoracic outlet syndrome. Adson’s test can be used to diagnose this condition, which can be mistaken for cervical radiculopathy. Flapping tremors are typically observed in patients with encephalopathy caused by liver failure or carbon dioxide retention. An irregular pulse may indicate an arrhythmia like atrial fibrillation or heart block. Aortic stenosis, which is characterized by an ejection systolic murmur, often causes older patients to experience loss of consciousness during physical activity. A bounding pulse, on the other hand, is a sign of strong myocardial contractions that may be caused by heart failure, arrhythmias, pregnancy, or thyroid disease.

      Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.

    • This question is part of the following fields:

      • Respiratory System
      34.6
      Seconds
  • Question 7 - A 70-year-old man visits a respiratory clinic complaining of shortness of breath even...

    Correct

    • A 70-year-old man visits a respiratory clinic complaining of shortness of breath even with minimal activity. Upon conducting a thorough assessment, you suspect that he may have idiopathic pulmonary fibrosis. To aid in your diagnosis, you decide to review his previous medical records. You come across the following spirometry results:

      Measurement volume (ml)
      Vital Capacity (VC) 4400
      Inspiratory Reserve Volume (IRV) 3000
      Functional Residual Capacity (FRC) 2800
      Residual Volume (RV) 1200

      What is the total lung capacity (TLC) of this patient?

      Your Answer: 5600ml

      Explanation:

      The correct answer is 5600ml, which represents the total lung capacity. This value is obtained by adding the vital capacity, which is the maximum amount of air that can be breathed out after a deep inhalation, to the residual volume, which is the amount of air that remains in the lungs after a maximal exhalation. The vital capacity is composed of three volumes: the inspiratory reserve volume, the tidal volume, and the expiratory reserve volume. Other formulas are available to calculate different lung volumes, but they are not as commonly used.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      22.2
      Seconds
  • Question 8 - A senior citizen who has been a lifelong smoker visits the respiratory clinic...

    Incorrect

    • A senior citizen who has been a lifelong smoker visits the respiratory clinic for a check-up on his emphysema. What alterations in his lung function test results would you anticipate?

      Your Answer: Increased residual volume and increased vital capacity

      Correct Answer: Increased residual volume and reduced vital capacity

      Explanation:

      Emphysema causes an increase in residual volume, leading to a decrease in vital capacity. This is due to damage to the alveolar walls, which results in the formation of large air sacs called bullae. The lungs lose their compliance, making it difficult to fully exhale and causing air to become trapped in the bullae. As a result, the total volume that can be exhaled is reduced, leading to a decrease in vital capacity.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      43.3
      Seconds
  • Question 9 - During a radical neck dissection, at what age would division of which of...

    Incorrect

    • During a radical neck dissection, at what age would division of which of the following fascial layers expose the ansa cervicalis?

      Your Answer: Prevertebral fascia

      Correct Answer: Pretracheal fascia

      Explanation:

      To access the ansa cervicalis, one must cut through the pretracheal fascia on the posterolateral side of the thyroid gland. This nerve is located in front of the carotid sheath. However, it should be noted that the pre vertebral fascia is situated further back and cannot be reached by dividing the investing layer of fascia.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      11.8
      Seconds
  • Question 10 - A 9-year-old boy is rushed to the emergency department following a fish bone...

    Incorrect

    • A 9-year-old boy is rushed to the emergency department following a fish bone choking incident during dinner. The patient is not experiencing any airway obstruction and has been given sufficient pain relief.

      After being referred for laryngoscopy, a fish bone is discovered in the piriform recess. What is the potential structure that could be harmed due to the location of the fish bone?

      Your Answer: Superior laryngeal nerve

      Correct Answer: Internal laryngeal nerve

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is in close proximity to this area. The internal laryngeal nerve is responsible for providing sensation to the laryngeal mucosa. The ansa cervicalis, external laryngeal nerve, glossopharyngeal nerve, and superior laryngeal nerve are not at high risk of injury from foreign bodies in the piriform recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      9
      Seconds
  • Question 11 - A middle-aged woman who is obese comes in with complaints of polyuria. She...

    Incorrect

    • A middle-aged woman who is obese comes in with complaints of polyuria. She has a history of squamous cell lung carcinoma. What could be the possible reason for her polyuria?

      Your Answer: Syndrome of inappropriate ADH secretion

      Correct Answer: Hyperparathyroidism

      Explanation:

      Polyuria is caused by all the options listed above, except for syndrome of inappropriate ADH secretion. However, the patient’s age does not match the typical onset of type 1 diabetes, which usually occurs in young individuals. Furthermore, squamous cell lung carcinoma is commonly associated with a paraneoplastic syndrome that results in the release of excess parathyroid hormone by the tumor, leading to hypercalcemia and subsequent polyuria, along with other symptoms such as renal and biliary stones, bone pain, abdominal discomfort, nausea, vomiting, depression, and anxiety.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      14.4
      Seconds
  • Question 12 - A 25-year-old female presents to the emergency department with complaints of shortness of...

    Correct

    • A 25-year-old female presents to the emergency department with complaints of shortness of breath that started 2 hours ago. She has no medical history. The results of her arterial blood gas (ABG) test are as follows:

      Normal range
      pH: 7.49 (7.35 - 7.45)
      pO2: 12.2 (10 - 14)kPa
      pCO2: 3.4 (4.5 - 6.0)kPa
      HCO3: 22 (22 - 26)mmol/l
      BE: +2 (-2 to +2)mmol/l

      Her temperature is 37ºC, and her pulse is 98 beats/minute and regular. Based on this information, what is the most likely diagnosis?

      Your Answer: Anxiety hyperventilation

      Explanation:

      The patient is exhibiting symptoms and ABG results consistent with respiratory alkalosis. However, it is important to conduct a thorough history and physical examination to rule out any underlying pulmonary pathology or infection. Based on the patient’s history, anxiety-induced hyperventilation is the most probable cause of her condition.

      Respiratory Alkalosis: Causes and Examples

      Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.

    • This question is part of the following fields:

      • Respiratory System
      18.6
      Seconds
  • Question 13 - A 29-year-old pregnant woman is admitted to the hospital and delivers a baby...

    Correct

    • A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.

      What is the cell type responsible for producing the substance that the baby is lacking?

      Your Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      6.8
      Seconds
  • Question 14 - A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales...

    Incorrect

    • A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales one. In which of the following lung regions is the ball expected to settle?

      Your Answer: None of the above

      Correct Answer: Right lower lobe

      Explanation:

      Due to the angle of the right main bronchus from the trachea, small objects are more likely to get stuck in the most dependent part of the right lung. This makes the right lung the preferred location for most objects to enter.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      7.7
      Seconds
  • Question 15 - An 80-year-old man is brought to the emergency department in respiratory arrest. According...

    Incorrect

    • An 80-year-old man is brought to the emergency department in respiratory arrest. According to his partner, he has a history of congestive heart failure and has recently been battling an infection. After being placed on mechanical ventilation, you observe that the patient has decreased lung compliance.

      What could be the cause of this observation?

      Your Answer: Emphysema

      Correct Answer: Pulmonary oedema

      Explanation:

      Reduced lung compliance is a common consequence of pulmonary edema, which occurs when fluid accumulates in the alveoli and exerts mechanical stress on the air-filled alveoli. This can happen in patients with acute decompensation of congestive cardiac failure, often triggered by an infection. On the other hand, emphysema can increase compliance due to long-term damage that reduces the elastic recoil of the lungs. Additionally, lung surfactant produced by type II pneumocytes can increase lung compliance. Finally, aging can also lead to increased compliance as the loss of lung connective tissue can reduce elastic recoil.

      Understanding Lung Compliance in Respiratory Physiology

      Lung compliance refers to the extent of change in lung volume in response to a change in airway pressure. An increase in lung compliance can be caused by factors such as aging and emphysema, which is characterized by the loss of alveolar walls and associated elastic tissue. On the other hand, a decrease in lung compliance can be attributed to conditions such as pulmonary edema, pulmonary fibrosis, pneumonectomy, and kyphosis. These conditions can affect the elasticity of the lungs and make it more difficult for them to expand and contract properly. Understanding lung compliance is important in respiratory physiology as it can help diagnose and manage various respiratory conditions. Proper management of lung compliance can improve lung function and overall respiratory health.

    • This question is part of the following fields:

      • Respiratory System
      13.4
      Seconds
  • Question 16 - A 29-year-old man comes to your clinic with a complaint of ear pain...

    Incorrect

    • A 29-year-old man comes to your clinic with a complaint of ear pain that has been bothering him for the past 2 days. He reports no hearing loss or discharge and feels generally healthy. During the physical examination, you observe that he has no fever. When you palpate the tragus of the affected ear, he experiences pain. Upon otoscopy, you notice that the external auditory canal is red. The tympanic membrane is not bulging, and there is no visible fluid level. Which bone can you see pressing against the tympanic membrane?

      Your Answer: Stapes

      Correct Answer: Malleus

      Explanation:

      The ossicle that is in contact with the tympanic membrane is called the malleus. The middle ear contains three bones known as ossicles, which are arranged from lateral to medial. The malleus is the most lateral ossicle and its handle and lateral process attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus articulates with the incus. The incus is located between the other two ossicles and articulates with both. The body of the incus articulates with the malleus, while the long limb of the bone articulates with the stapes. The Latin word for ‘hammer’ is used to describe the malleus, while the Latin word for ‘anvil’ is used to describe the incus.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      10.7
      Seconds
  • Question 17 - A 70-year-old man visits his primary care physician with complaints of hearing difficulties....

    Correct

    • A 70-year-old man visits his primary care physician with complaints of hearing difficulties. He states that he has been increasingly struggling to hear his wife's conversations for the past six months. He is concerned that this problem will worsen and eventually lead to complete hearing loss, making it difficult for him to communicate with his children over the phone. His wife is also distressed by the situation, as he frequently asks her to turn up the volume on the television. The man has no history of exposure to loud noises and has well-controlled hypertension. He is a retired police officer and currently resides with his wife. What is the primary pathology underlying this man's most likely diagnosis?

      Your Answer: Degeneration of the cells at the cochlear base

      Explanation:

      The patient has a gradual-onset hearing loss, which is most likely due to presbycusis, an aging-related sensorineural hearing loss. This condition has multiple causes, including environmental factors like noise pollution and biological factors like genetics and oxidative stress. Damage to the organ of Corti stereocilia from exposure to sudden loud noises can also cause hearing loss, which is typically sudden and associated with a history of exposure to loud noises. Other conditions that can cause hearing loss include cholesteatoma, which is due to the accumulation of keratin debris in the middle ear, and otosclerosis, which is characterized by the overgrowth of bone in the middle ear.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      16.3
      Seconds
  • Question 18 - A 36-year-old man presents to his GP with symptoms of vertigo. He reports...

    Incorrect

    • A 36-year-old man presents to his GP with symptoms of vertigo. He reports that he has been experiencing constant dizziness for the past 2 days, which has prevented him from going to work. He also reports hearing difficulties and tinnitus in his right ear, as well as nausea and difficulty with balance. He notes that these symptoms are not related to changes in position. He has no significant medical history, except for a recent bout of flu that resolved on its own.

      During the examination, the man is observed to sway to the right while attempting to walk in a straight line. He also has a positive head thrust test to the right side. A complete neurological examination is performed, and aside from mild sensorineural hearing loss in the right ear, his neurological function is normal.

      Which structures are most likely involved in this man's condition?

      Your Answer: Otoliths

      Correct Answer: Vestibular nerve and labyrinth

      Explanation:

      The patient is displaying symptoms of labyrinthitis, which affects both the vestibular nerve and labyrinth, resulting in vertigo and hearing impairment. In contrast, pure vestibular neuritis only causes vestibular symptoms without affecting hearing. Benign paroxysmal positional vertigo (BPPV) involves otolith displacement and is triggered by head position changes, which is not the case for this patient’s constant vertigo. Facial nerve palsy primarily causes facial drooping and does not affect hearing or vestibular function, making it an unlikely diagnosis for this patient.

      Understanding Viral Labyrinthitis

      Labyrinthitis is a condition that affects the membranous labyrinth, which includes the vestibular and cochlear end organs. It can be caused by a viral or bacterial infection, or it may be associated with systemic diseases. Viral labyrinthitis is the most common form of the condition.

      It’s important to distinguish labyrinthitis from vestibular neuritis, which only affects the vestibular nerve and doesn’t cause hearing impairment. Labyrinthitis, on the other hand, affects both the vestibular nerve and the labyrinth, resulting in both vertigo and hearing loss.

      The condition typically affects people between the ages of 40 and 70 and is characterized by an acute onset of symptoms, including vertigo, nausea and vomiting, hearing loss, and tinnitus. Patients may also experience gait disturbance and fall towards the affected side.

      Diagnosis is based on a patient’s history and examination, which may reveal spontaneous unidirectional horizontal nystagmus towards the unaffected side, sensorineural hearing loss, and an abnormal head impulse test.

      While episodes of labyrinthitis are usually self-limiting, medications like prochlorperazine or antihistamines may help reduce the sensation of dizziness. Understanding the symptoms and management of viral labyrinthitis can help patients seek appropriate treatment and manage their condition effectively.

    • This question is part of the following fields:

      • Respiratory System
      27.3
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (8/18) 44%
Passmed