00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 70-year-old man is admitted to the respiratory ward with an exacerbation of...

    Incorrect

    • A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?

      Your Answer: 94%-98%

      Correct Answer: 88%-92%

      Explanation:

      As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.

      Guidelines for Oxygen Therapy in Emergency Situations

      In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.

      The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.

      For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.

      The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.

      Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.

    • This question is part of the following fields:

      • Respiratory System
      53.1
      Seconds
  • Question 2 - A 45-year-old businessman is admitted to the emergency department with suspected pneumonia following...

    Correct

    • A 45-year-old businessman is admitted to the emergency department with suspected pneumonia following a lower respiratory tract infection. The patient had returned to the UK three days ago from a business trip to China. He reports experiencing a productive cough and feeling extremely fatigued and short of breath upon waking up. He has no significant medical history and is a non-smoker and non-drinker.

      He is taken for a chest X-ray, where he learns that several of his colleagues who were on the same business trip have also been admitted to the emergency department with similar symptoms. The X-ray shows opacification in the right middle and lower zones, indicating consolidation. Initial blood tests reveal hyponatraemia and lymphopenia. Based on his presentation and X-ray findings, he is diagnosed with pneumonia.

      Which organism is most likely responsible for causing his pneumonia?

      Your Answer: Legionella pneumophila

      Explanation:

      If multiple individuals in an air conditioned space develop pneumonia, Legionella pneumophila should be considered as a possible cause. Legionella pneumophila is often associated with hyponatremia and lymphopenia. Haemophilus influenzae is a frequent cause of lower respiratory tract infections in patients with COPD. Klebsiella pneumoniae is commonly found in patients with alcohol dependence. Pneumocystis jiroveci is typically observed in HIV-positive patients and is characterized by a dry cough and desaturation during exercise.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      19.1
      Seconds
  • Question 3 - A 59-year-old man has been found to have cancer. He is experiencing a...

    Correct

    • A 59-year-old man has been found to have cancer. He is experiencing a range of symptoms, some of which appear to be unrelated to the location or size of the tumor. This is due to the fact that cancerous tissue can acquire the ability to produce endocrine effects on other cells in the body. Can you provide an instance of this phenomenon?

      Your Answer: Production of PTH

      Explanation:

      Paraneoplastic syndrome is a set of symptoms that arise from the secretion of hormones and cytokines by cancer cells or the immune system’s response to the tumor.

      Squamous cell lung cancer often produces PTHrP (parathyroid hormone-related protein), which leads to hypercalcemia in affected patients.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      21.4
      Seconds
  • Question 4 - A 35-year-old woman presents with sudden chest pain and difficulty breathing. She recently...

    Incorrect

    • A 35-year-old woman presents with sudden chest pain and difficulty breathing. She recently returned from a trip to Italy with her family. She has no significant medical history but takes oral contraceptives. On examination, her pulse is 100 bpm, temperature is 37°C, oxygen saturation is 95%, respiratory rate is 28/min, and blood pressure is 116/76 mmHg. Chest examination is unremarkable and chest x-ray is normal. What is the most appropriate diagnostic test to confirm the diagnosis?

      Your Answer: Blood cultures

      Correct Answer: CT pulmonary angiogram (CTPA)

      Explanation:

      Diagnosis of Pulmonary Embolism in a Woman with Chest Pain and Dyspnoea

      This woman is experiencing chest pain and difficulty breathing, with a rapid heart rate and breathing rate. However, there are no visible signs on chest examination and her chest x-ray appears normal. Despite having no fever, her oxygen levels are lower than expected for a healthy person. To rule out a pulmonary embolism, doctors must consider risk factors such as recent air travel and use of oral contraceptives.

      The gold standard for diagnosing a pulmonary embolism is a CT pulmonary angiogram, as it can detect even large saddle embolus near the pulmonary arteries. While VQ scanning was previously used, it can miss these larger emboli. Additionally, doctors may perform Doppler ultrasounds of the venous system to check for deep vein thrombosis.

      This presentation is not indicative of atypical pneumonia, such as Legionella, as the patient’s temperature would be expected to be high and chest signs would be present. Overall, a thorough evaluation is necessary to accurately diagnose and treat a pulmonary embolism in a patient with chest pain and dyspnoea.

    • This question is part of the following fields:

      • Respiratory System
      22
      Seconds
  • Question 5 - Which of the following muscles is not innervated by the ansa cervicalis? ...

    Incorrect

    • Which of the following muscles is not innervated by the ansa cervicalis?

      Your Answer: None of the above

      Correct Answer: Mylohyoid

      Explanation:

      The muscles of the ansa cervicalis are: GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The mylohyoid muscle is innervated by the mylohyoid branch of the inferior alveolar nerve. A mnemonic to remember these muscles is GHost THought SOmeone Stupid Shot Irene.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      3.9
      Seconds
  • Question 6 - A 49-year-old woman of African descent visits her primary care physician with concerns...

    Incorrect

    • A 49-year-old woman of African descent visits her primary care physician with concerns about a lump in her neck that has been present for a week. She reports no significant increase in size and denies any pain or difficulty swallowing. The patient has no notable medical history, except for a visit to the eye doctor last year for a red-eye that required treatment with topical steroid drops. During the examination, the doctor observes some red, tender nodules on the patient's shin, which the patient says come and go and do not cause much discomfort. A chest x-ray reveals bilateral hilar lymphadenopathy with no other significant findings. What is typically linked to this patient's condition?

      Your Answer: Pain in the small joints of the hand

      Correct Answer: Elevated angiotensin-converting enzyme levels

      Explanation:

      Sarcoidosis is likely in this patient based on their symptoms and examination findings, including a neck lump, tender nodules on the shin, and a history of red-eye. Bilateral lymphadenopathy on chest X-ray further supports the diagnosis, as does the presence of elevated angiotensin-converting enzyme levels, which are commonly seen in sarcoidosis. Hypercalcemia, fatigue, and uveitis are also associated with sarcoidosis, while exposure to silica is not supported by this patient’s presentation.

      Investigating Sarcoidosis

      Sarcoidosis is a disease that does not have a single diagnostic test, and therefore, diagnosis is mainly based on clinical observations. Although ACE levels may be used to monitor disease activity, they are not reliable in diagnosing sarcoidosis due to their low sensitivity and specificity. Routine blood tests may show hypercalcemia and a raised ESR.

      A chest x-ray is a common investigation for sarcoidosis and may reveal different stages of the disease. Stage 0 is normal, stage 1 shows bilateral hilar lymphadenopathy (BHL), stage 2 shows BHL and interstitial infiltrates, stage 3 shows diffuse interstitial infiltrates only, and stage 4 shows diffuse fibrosis. Other investigations, such as spirometry, may show a restrictive defect, while a tissue biopsy may reveal non-caseating granulomas. However, the Kveim test, which involves injecting part of the spleen from a patient with known sarcoidosis under the skin, is no longer performed due to concerns about cross-infection.

      In addition, a gallium-67 scan is not routinely used to investigate sarcoidosis. CT scans may also be used to investigate sarcoidosis, and they may show diffuse areas of nodularity predominantly in a peribronchial distribution with patchy areas of consolidation, particularly in the upper lobes. Ground glass opacities may also be present, but there are no gross reticular changes to suggest fibrosis.

      Overall, investigating sarcoidosis involves a combination of clinical observations, blood tests, chest x-rays, and other investigations such as spirometry and tissue biopsy. CT scans may also be used to provide more detailed information about the disease.

    • This question is part of the following fields:

      • Respiratory System
      25.3
      Seconds
  • Question 7 - A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis....

    Incorrect

    • A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis. He has a history of recurrent chest infections since childhood and has difficulty maintaining a healthy weight. Despite using inhalers, he has not experienced any significant improvement. Genetic testing has been ordered to investigate the possibility of cystic fibrosis.

      What is the typical role of the cystic fibrosis transmembrane conductance regulator?

      Your Answer: Potassium channel

      Correct Answer: Chloride channel

      Explanation:

      The chloride channel, specifically a cyclic-AMP regulated chloride channel, is the correct answer. Cystic fibrosis can be caused by various mutations, but they all affect the same gene, the cystic fibrosis transmembrane conductance regulator gene. This gene encodes a chloride channel that, when dysfunctional, results in increased viscosity of secretions and the development of cystic fibrosis.

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      12
      Seconds
  • Question 8 - A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He...

    Correct

    • A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He has been smoking 10 cigarettes per day for the past 30 years. What is the number of pack years equivalent to his smoking history?

      Your Answer: 15

      Explanation:

      Pack Year Calculation

      Pack year calculation is a tool used to estimate the risk of tobacco exposure. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking. One pack of cigarettes contains 20 cigarettes. For instance, if a person smoked half a pack of cigarettes per day for 30 years, their pack year history would be 15 (1/2 x 30 = 15).

      The pack year calculation is a standardized method of measuring tobacco exposure. It helps healthcare professionals to estimate the risk of developing smoking-related diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and heart disease. The higher the pack year history, the greater the risk of developing these diseases. Therefore, it is important for individuals who smoke or have a history of smoking to discuss their pack year history with their healthcare provider to determine appropriate screening and prevention measures.

    • This question is part of the following fields:

      • Respiratory System
      6
      Seconds
  • Question 9 - A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain,...

    Correct

    • A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?

      Your Answer: Epithelial crescents in Bowman's capsule

      Explanation:

      Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.

      Granulomatosis with Polyangiitis: An Autoimmune Condition

      Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.

      To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.

      The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.

    • This question is part of the following fields:

      • Respiratory System
      17.5
      Seconds
  • Question 10 - A 57-year-old man comes to his GP complaining of worsening shortness of breath...

    Correct

    • A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.

      Can you provide the definition of this particular lung volume?

      Your Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration

      Explanation:

      The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      17.9
      Seconds
  • Question 11 - A 50-year-old man visits the GP clinic for a routine hearing examination. He...

    Incorrect

    • A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.

      What are the test findings for this patient?

      Your Answer: Rinne: air conduction = bone conduction bilaterally; Weber: equal in both ears

      Correct Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears

      Explanation:

      The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      7.9
      Seconds
  • Question 12 - A 26-year-old man presents to the emergency department with a feeling of food...

    Incorrect

    • A 26-year-old man presents to the emergency department with a feeling of food stuck in his throat. He experienced this sensation 2 hours ago after consuming fish at a nearby seafood restaurant. The patient reports no breathing difficulties. Upon laryngoscopy, a fish bone is found lodged in the left piriform recess. While removing the fish bone, a nerve located deep to the mucosa covering the recess is damaged.

      Which function is most likely to be affected in this individual?

      Your Answer: Salivation

      Correct Answer: Cough reflex

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is located just beneath a thin layer of mucosa covering the recess. This nerve plays a crucial role in the cough reflex, as it carries sensory information from the area above the vocal cords. Attempts to remove foreign objects from the piriform recess can also lead to nerve damage.

      Other functions, such as mastication, the pharyngeal reflex, salivation, and taste sensation, are mediated by different nerves and are not directly related to the piriform recess or the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      10.5
      Seconds
  • Question 13 - A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has...

    Incorrect

    • A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.

      What is the most effective approach to manage his condition and prevent further decline in his FEV1?

      Your Answer: Add a long-acting beta2-agonist and an inhaled corticosteroid

      Correct Answer: Smoking cessation

      Explanation:

      The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      21.8
      Seconds
  • Question 14 - What is the anatomical level of the transpyloric plane? ...

    Incorrect

    • What is the anatomical level of the transpyloric plane?

      Your Answer: T10

      Correct Answer: L1

      Explanation:

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      3.5
      Seconds
  • Question 15 - Which one of the following would cause a rise in the carbon monoxide...

    Incorrect

    • Which one of the following would cause a rise in the carbon monoxide transfer factor (TLCO)?

      Your Answer: Pulmonary fibrosis

      Correct Answer: Pulmonary haemorrhage

      Explanation:

      When alveolar haemorrhage takes place, the TLCO typically rises as a result of the increased absorption of carbon monoxide by haemoglobin within the alveoli.

      Understanding Transfer Factor in Lung Function Testing

      The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.

      KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.

    • This question is part of the following fields:

      • Respiratory System
      6.8
      Seconds
  • Question 16 - A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives...

    Incorrect

    • A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.

      What radiographic feature would you anticipate observing on her chest X-ray?

      Your Answer: Pleural effusion

      Correct Answer: Flattened diaphragm

      Explanation:

      The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.

      Understanding COPD: Symptoms and Diagnosis

      Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.

      To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.

      In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.

    • This question is part of the following fields:

      • Respiratory System
      13.6
      Seconds
  • Question 17 - A 65-year-old patient presents at the lung cancer clinic for their initial assessment....

    Correct

    • A 65-year-old patient presents at the lung cancer clinic for their initial assessment. Their general practitioner referred them due to a persistent cough lasting 5 months and a weight loss of one stone in a month. The patient has quit smoking recently but used to smoke 20-30 cigarettes daily for 30 years. No asbestos exposure is reported.

      A circular lesion was detected in the right upper lobe during a recent chest x-ray. A subsequent computed tomography (CT) scan indicated that this lung lesion is indicative of a primary lesion.

      What is the most probable sub-type of lung cancer in this case?

      Your Answer: Adenocarcinoma

      Explanation:

      Adenocarcinoma has become the most prevalent form of lung cancer, as per the given scenario. This type of cancer accounts for approximately one-third of all cases and can occur in both smokers and non-smokers. Therefore, the most probable answer to the question is adenocarcinoma. Mesothelioma, on the other hand, is a rare and incurable cancer that is almost exclusively linked to asbestos exposure and affects the pleura. It would not present as an upper lobe mass, but rather as a loss of lung volume or pleural opacity. Alveolar cell carcinoma, which is less common than adenocarcinoma, would likely cause significant sputum production.

      Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.

    • This question is part of the following fields:

      • Respiratory System
      70.3
      Seconds
  • Question 18 - A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness...

    Incorrect

    • A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness of breath. Upon examination, he is found to be cyanotic and hypoxic, and is admitted to the respiratory ward for oxygen therapy.

      Following some initial tests, the consultant informs the patient that his hemoglobin has a high affinity for oxygen, resulting in reduced oxygen delivery to the tissues.

      What is the probable reason for this alteration in the oxygen dissociation curve?

      Your Answer: Low pH

      Correct Answer: Low 2,3-DPG

      Explanation:

      The correct answer is low 2,3-DPG. The professor’s description refers to a left shift in the oxygen dissociation curve, which indicates that haemoglobin has a high affinity for oxygen and is less likely to release it to the tissues. Factors that cause a left shift include low temperature, high pH, low PCO2, and low 2,3-DPG. 2,3-DPG is a substance that helps release oxygen from haemoglobin, so low levels of it result in less oxygen being released, causing a left shift in the oxygen dissociation curve.

      The answer high temperature is incorrect because it causes a right shift in the oxygen dissociation curve, promoting oxygen delivery to the tissues. Hypercapnoea also causes a right shift in the curve, promoting oxygen delivery. Hyperglycaemia has no effect on haemoglobin’s ability to release oxygen, so it is also incorrect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      54.6
      Seconds
  • Question 19 - A patient in her 50s undergoes spirometry, during which she is instructed to...

    Incorrect

    • A patient in her 50s undergoes spirometry, during which she is instructed to perform a maximum forced exhalation following a maximum inhalation. The volume of exhaled air is measured. What is the term used to describe the difference between this volume and her total lung capacity?

      Your Answer: Functional residual capacity

      Correct Answer: Residual volume

      Explanation:

      The total lung capacity can be calculated by adding the vital capacity and residual volume. The expiratory reserve volume refers to the amount of air that can be exhaled after a normal breath compared to a maximal exhalation. The functional residual capacity is the amount of air remaining in the lungs after a normal exhalation. The inspiratory reserve volume is the difference between the amount of air in the lungs after a normal breath and a maximal inhalation. The residual volume is the amount of air left in the lungs after a maximal exhalation, which is the difference between the total lung capacity and vital capacity. The vital capacity is the maximum amount of air that can be inhaled and exhaled, measured by the volume of air exhaled after a maximal inhalation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      21.3
      Seconds
  • Question 20 - A 16-year-old male presents to the emergency department with a 48-hour history of...

    Incorrect

    • A 16-year-old male presents to the emergency department with a 48-hour history of tachypnea and tachycardia. His blood glucose level is 18mmol/l. While breathing 40% oxygen, an arterial blood sample is taken. The results show a PaO2 of 22kPa, pH of 7.35, PaCO2 of 3.5kPa, and HCO3- of 18.6 mmol/l. How should these blood gas results be interpreted?

      Your Answer:

      Correct Answer: Metabolic acidosis with full respiratory compensation

      Explanation:

      The patient’s blood gas analysis shows a lower oxygen pressure by about 10kPa than the percentage of oxygen. The PaCo2 level is 3.5, indicating respiratory alkalosis or compensation for metabolic acidosis. The HCO3- level is 18.6, which suggests metabolic acidosis or metabolic compensation for respiratory alkalosis. These results indicate that the patient has metabolic acidosis with complete respiratory compensation. Additionally, the patient’s high blood glucose level suggests that the metabolic acidosis is due to diabetic ketoacidosis.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (6/19) 32%
Passmed