00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner...

    Correct

    • A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner at home. She has been experiencing a high-pitched ringing in her left ear for the past 6 months. She attributes this to attending loud concerts frequently and has not sought medical attention until now. She reports that she can hear better when she is outside but struggles in quiet environments. Upon examination, there are no abnormalities seen during otoscopy. One of the possible diagnoses for this patient is otosclerosis, a condition that primarily affects the stapes bone. Which structure does the stapes bone come into contact with in the cochlea?

      Your Answer: Oval window

      Explanation:

      The oval window is where the stapes connects with the cochlea, and it is the most inner of the ossicles. The stapes has a stirrup-like shape, with a head that articulates with the incus and two limbs that connect it to the base. The base of the stapes is in contact with the oval window, which is one of the only two openings between the middle and inner ear. The organ of Corti, which is responsible for hearing, is located on the basilar membrane within the cochlear duct. The round window is the other opening between the middle and inner ear, and it allows the fluid within the cochlea to move, transmitting sound to the hair cells. The helicotrema is the point where the scala tympani and scala vestibuli meet at the apex of the cochlear labyrinth. The tectorial membrane is a membrane that extends along the entire length of the cochlea. A female in her third decade of life with unilateral conductive hearing loss and a family history of hearing loss is likely to have otosclerosis, a condition that affects the stapes and can cause severe or total hearing loss due to abnormal bone growth and fusion with the cochlea.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      26.4
      Seconds
  • Question 2 - Sophie is a 15-year-old girl who has been brought to your GP clinic...

    Incorrect

    • Sophie is a 15-year-old girl who has been brought to your GP clinic by her father. She has not yet started to develop breasts or have her first period. She does not seem worried, but her father is concerned. Sophie has a history of eczema and has been using topical steroids for several years. When her father leaves the room, she also admits to occasionally using tanning beds.

      What could be a possible cause of delayed puberty in Sophie?

      Your Answer: Obesity

      Correct Answer: Cystic fibrosis

      Explanation:

      Delayed puberty can be caused by various factors, with constitutional delay being the most common cause. However, other causes must be ruled out before diagnosing constitutional delay. Some of these causes include chronic illnesses like kidney disease and Crohn’s disease, malnutrition from conditions such as anorexia nervosa, cystic fibrosis, and coeliac disease, excessive physical exercise, psychosocial deprivation, steroid therapy, hypothyroidism, tumours near the hypothalamo-pituitary axis, congenital anomalies like septo-optic dysplasia and congenital panhypopituitarism, irradiation treatment, and trauma such as surgery or head injury.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      31.7
      Seconds
  • Question 3 - Which of the structures listed below are not located within the mediastinum? ...

    Incorrect

    • Which of the structures listed below are not located within the mediastinum?

      Your Answer: Arch of azygos vein

      Correct Answer: Vertebral bodies

      Explanation:

      Both the lungs and vertebral bodies are located outside of the mediastinum.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      23.9
      Seconds
  • Question 4 - Which of the following laryngeal tumors is unlikely to spread to the cervical...

    Incorrect

    • Which of the following laryngeal tumors is unlikely to spread to the cervical lymph nodes?

      Your Answer: Aryepiglottic fold

      Correct Answer: Glottic

      Explanation:

      The area of the vocal cords lacks lymphatic drainage, making it a lymphatic boundary. The upper portion above the vocal cords drains to the deep cervical nodes through vessels that penetrate the thyrohyoid membrane. The lower portion below the vocal cords drains to the pre-laryngeal, pre-tracheal, and inferior deep cervical nodes. The aryepiglottic and vestibular folds have a significant lymphatic drainage and are prone to early metastasis.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      13.8
      Seconds
  • Question 5 - A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible...

    Correct

    • A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.

      What specific lung volume would accurately describe the clinician's observation?

      Your Answer: Tidal volume (TV)

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      16.8
      Seconds
  • Question 6 - A 28-year-old female patient presents to your clinic seeking help to quit smoking....

    Incorrect

    • A 28-year-old female patient presents to your clinic seeking help to quit smoking. Despite several attempts in the past, she has been unsuccessful. She has a medical history of bipolar disorder and well-managed epilepsy, for which she takes lamotrigine. She currently smokes 15 cigarettes per day and is especially interested in the health benefits of quitting smoking since she has recently found out that she is pregnant. As her physician, you decide to prescribe a suitable medication to assist her in her efforts. What would be the most appropriate treatment option?

      Your Answer: Bupropion

      Correct Answer: Nicotine gum

      Explanation:

      Standard treatments for nicotine dependence do not include amitriptyline, fluoxetine, or gabapentin. Nicotine replacement therapy (NRT) can be helpful for motivated patients, but it is not a cure for addiction and may require multiple attempts. Bupropion and varenicline are other smoking cessation aids, but they have multiple side effects and may not be suitable for all patients. NICE guidelines recommend discussing the best method of smoking cessation with the patient, but NRT is considered safer in pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      25.1
      Seconds
  • Question 7 - A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She...

    Correct

    • A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She has been experiencing increased breathlessness, particularly at night. Her medical history includes long-standing COPD, heart failure, and previous breast cancer that was treated with a mastectomy and radiotherapy. She used to smoke 20 cigarettes a day for 22 years but has since quit.

      During the examination, her respiratory rate is 23/min, oxygen saturation is 93%, blood pressure is 124/98mmHg, and temperature is 37.2ºC. A gas transfer test is performed, and her transfer factor is found to be low.

      What is the most likely diagnosis?

      Your Answer: Pulmonary oedema

      Explanation:

      TLCO, also known as transfer factor, is a measurement of how quickly gas can move from a person’s lungs into their bloodstream. To test TLCO, a patient inhales a mixture of carbon monoxide and a tracer gas, holds their breath for 10 seconds, and then exhales forcefully. The exhaled gas is analyzed to determine how much tracer gas was absorbed during the 10-second period.

      A high TLCO value is associated with conditions such as asthma, pulmonary hemorrhage, left-to-right cardiac shunts, polycythemia, hyperkinetic states, male gender, and exercise. Conversely, most other conditions result in a low TLCO value, including pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary edema, emphysema, and anemia.

      Understanding Transfer Factor in Lung Function Testing

      The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.

      KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.

    • This question is part of the following fields:

      • Respiratory System
      136.2
      Seconds
  • Question 8 - What is the embryonic origin of the pulmonary artery? ...

    Incorrect

    • What is the embryonic origin of the pulmonary artery?

      Your Answer: Second pharyngeal arch

      Correct Answer: Sixth pharyngeal arch

      Explanation:

      The right pulmonary artery originates from the proximal portion of the sixth pharyngeal arch on the right side, while the distal portion of the same arch gives rise to the left pulmonary artery and the ductus arteriosus.

      The Development and Contributions of Pharyngeal Arches

      During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.

      Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.

      Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.

    • This question is part of the following fields:

      • Respiratory System
      7.2
      Seconds
  • Question 9 - A 55-year-old man presents to his GP complaining of vertigo, describing a sensation...

    Correct

    • A 55-year-old man presents to his GP complaining of vertigo, describing a sensation of the room spinning around him. He reports that the symptoms are exacerbated when he rolls over in bed. The GP suspects that otoliths in the semicircular canals of the inner ear may be the cause. What diagnostic test could the GP perform to confirm this suspicion?

      Your Answer: Dix-Hallpike manoeuvre

      Explanation:

      Benign paroxysmal positional vertigo (BPPV) is suspected based on the patient’s history. To confirm the diagnosis, the Dix-Hallpike manoeuvre can be performed, which involves quickly moving the patient from a sitting to supine position and observing for nystagmus.

      If BPPV is confirmed, the Epley manoeuvre can be used for treatment. This manoeuvre aims to dislodge otoliths by promoting fluid movement in the inner ear’s semicircular canals.

      Carpal tunnel syndrome can be diagnosed by a positive Tinel’s sign. This involves tapping the median nerve over the flexor retinaculum, causing paraesthesia in the median nerve’s distribution.

      The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.

      Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.

      Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.

    • This question is part of the following fields:

      • Respiratory System
      20.4
      Seconds
  • Question 10 - A 27-year-old man is undergoing respiratory spirometry. He performs a maximal inhalation followed...

    Incorrect

    • A 27-year-old man is undergoing respiratory spirometry. He performs a maximal inhalation followed by a maximal exhalation. Which of the following measurements will most accurately depict this process?

      Your Answer: Functional residual capacity

      Correct Answer: Vital capacity

      Explanation:

      The maximum amount of air that can be breathed in and out within one minute is known as maximum voluntary ventilation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      30.9
      Seconds
  • Question 11 - A senior citizen who has been a lifelong smoker visits the respiratory clinic...

    Incorrect

    • A senior citizen who has been a lifelong smoker visits the respiratory clinic for a check-up on his emphysema. What alterations in his lung function test results would you anticipate?

      Your Answer: Reduced residual volume and reduced vital capacity

      Correct Answer: Increased residual volume and reduced vital capacity

      Explanation:

      Emphysema causes an increase in residual volume, leading to a decrease in vital capacity. This is due to damage to the alveolar walls, which results in the formation of large air sacs called bullae. The lungs lose their compliance, making it difficult to fully exhale and causing air to become trapped in the bullae. As a result, the total volume that can be exhaled is reduced, leading to a decrease in vital capacity.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      28.8
      Seconds
  • Question 12 - A 20-year-old male arrives at the emergency department with a sudden worsening of...

    Incorrect

    • A 20-year-old male arrives at the emergency department with a sudden worsening of his asthma symptoms. He is experiencing difficulty in speaking and breathing, with cyanosis of the lips and a respiratory rate of 33 breaths per minute. He reports feeling lightheaded. Although his airways are open, his chest sounds are faint upon auscultation. The patient is administered oxygen, nebulized salbutamol, and intravenous aminophylline.

      What is the mechanism of action of aminophylline?

      Your Answer: Activates phosphodiesterase inhibitor resulting in smooth muscle relaxation

      Correct Answer: Binds to adenosine receptors and blocks adenosine-mediated bronchoconstriction

      Explanation:

      Aminophylline works by binding to adenosine receptors and preventing adenosine-induced bronchoconstriction. This mode of action is different from antihistamines like loratadine, which is an incorrect option. Theophylline, a shorter acting form of aminophylline, competitively inhibits type III and type IV phosphodiesterase enzymes responsible for breaking down cyclic AMP in smooth muscle cells, leading to possible bronchodilation. Additionally, theophylline binds to the adenosine A2B receptor and blocks adenosine-mediated bronchoconstriction. In inflammatory conditions, theophylline activates histone deacetylase, which prevents the transcription of inflammatory genes that require histone acetylation for transcription to begin. Therefore, the last three options are incorrect. (Source: Drugbank)

      Aminophylline infusions are utilized to manage acute asthma and COPD. In patients who have not received xanthines (theophylline or aminophylline) before, a loading dose of 5 mg/kg is administered through a slow intravenous injection lasting at least 20 minutes. For the maintenance infusion, 1g of aminophylline is mixed with 1 litre of normal saline to create a solution of 1 mg/ml. The recommended dose is 500-700 mcg/kg/hour, or 300 mcg/kg/hour for elderly patients. It is important to monitor plasma theophylline concentrations.

    • This question is part of the following fields:

      • Respiratory System
      25.4
      Seconds
  • Question 13 - A 9-month-old infant comes to your clinic with her mother who is concerned...

    Incorrect

    • A 9-month-old infant comes to your clinic with her mother who is concerned about her irritability, lack of appetite, and unusual behavior. The baby has been crying excessively and having trouble sleeping. The mother also noticed her pulling at her right ear. Upon examination, the baby appears tired but not sick and has no fever. During otoscopy, you observe erythema in the external auditory canal, but the tympanic membrane looks normal. Can you identify the correct order of the ossicles from lateral to medial as sound is transmitted?

      Your Answer: Stapes, malleus, incus.

      Correct Answer: Malleus, incus, stapes.

      Explanation:

      The correct order of the three middle ear bones is malleus, incus, and stapes, with the malleus being the most lateral and attaching to the tympanic membrane. The incus lies between the other two bones and articulates with both the malleus and stapes, while the stapes is the most medial and has a stirrup-like shape, connecting to the oval window of the cochlea. When a young child presents with ear pain, it may not be obvious, so it is important to use an otoscope to examine the ears. In this case, the otoscopy showed redness in the external auditory canal, indicating otitis externa.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      61.1
      Seconds
  • Question 14 - During a neck dissection, a nerve is observed to pass behind the medial...

    Correct

    • During a neck dissection, a nerve is observed to pass behind the medial aspect of the second rib. Which nerve from the list below is the most probable?

      Your Answer: Phrenic nerve

      Explanation:

      The crucial aspect to note is that the phrenic nerve travels behind the inner side of the first rib. Towards the top, it is situated on the exterior of scalenus anterior.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      19.5
      Seconds
  • Question 15 - A 75-year-old man presents with a 2-month history of progressive shortness of breath...

    Incorrect

    • A 75-year-old man presents with a 2-month history of progressive shortness of breath and a recent episode of coughing up blood in the morning. He has also experienced significant weight loss of over 12 lbs and loss of appetite. Upon physical examination, conjunctival pallor is noted. The patient has a 30 pack year history of smoking. A chest x-ray reveals a mediastinal mass and ipsilateral elevation of the right diaphragm. What structure is being compressed by the mediastinal mass to explain these findings?

      Your Answer: Superior vena cava

      Correct Answer: Phrenic nerve

      Explanation:

      Lung cancer can cause the hemidiaphragm on the same side to rise due to pressure on the phrenic nerve. Haemoptysis is a common symptom of lung cancer, along with significant weight loss and a history of smoking. A chest x-ray can confirm the presence of a mediastinal mass, which is likely to be lung cancer.

      A rapidly expanding lung mass can cause compression of surrounding structures, leading to complications. For example, an apical tumor can compress the brachial plexus, causing sensory symptoms in the arms or Erb’s or Klumpke’s palsies. Compression of the cervical sympathetic chain can cause Horner’s syndrome, which includes meiosis, anhidrosis, ptosis, and enophthalmos.

      A mediastinal mass can also compress the recurrent laryngeal nerve as it winds around the aortic arch, resulting in hoarseness of voice or aphonia. Superior vena caval syndrome is a medical emergency that can cause swelling of the face, neck, upper chest, and arms, as well as the development of collaterals on the chest wall. Malignancy is the most common cause, but non-malignant causes can include an aortic aneurysm, fibrosing mediastinitis, or iatrogenic factors.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      37
      Seconds
  • Question 16 - A 70-year-old man with lung cancer is having a left pneumonectomy. The left...

    Correct

    • A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?

      Your Answer: T6

      Explanation:

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      13.1
      Seconds
  • Question 17 - A 23-year-old woman comes to your clinic with a complaint of ear pain...

    Incorrect

    • A 23-year-old woman comes to your clinic with a complaint of ear pain and difficulty hearing on one side. During the examination, you observe that she has a fever and a bulging tympanic membrane. What nerve transmits pain from the middle ear?

      Your Answer: Maxillary nerve

      Correct Answer: Glossopharyngeal nerve

      Explanation:

      The correct answer is the glossopharyngeal nerve, which is responsible for carrying sensation from the middle ear.

      The ninth cranial nerve, or glossopharyngeal nerve, carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas such as the pharyngeal wall, tonsils, pharyngotympanic tube, middle ear, tympanic membrane, external auditory canal, and auricle. It also provides motor fibers to the stylopharyngeus and parasympathetic fibers to the parotid gland. Additionally, it carries information from the baroreceptors and chemoreceptors of the carotid sinus.

      On the other hand, the seventh cranial nerve, or facial nerve, innervates the muscles of facial expression, stylohyoid, stapedius, and the posterior belly of digastric. It carries sensation from part of the external acoustic meatus, auricle, and behind the auricle, and taste from the anterior two-thirds of the tongue. It also provides parasympathetic fibers to the submandibular, sublingual, nasal, and lacrimal glands.

      The eighth cranial nerve, or vestibulocochlear nerve, has a vestibular component that carries balance information from the labyrinths of the inner ear and a cochlear component that carries hearing information from the cochlea of the inner ear.

      The twelfth cranial nerve, or hypoglossal nerve, supplies motor innervation to all of the intrinsic muscles of the tongue and all of the extrinsic muscles of the tongue except for palatoglossus.

      Lastly, the maxillary nerve is the second division of the trigeminal nerve, the fifth cranial nerve, which carries sensation from the upper teeth and gingivae, the nasal cavity, and skin across the lower eyelids and cheeks.

      Based on the patient’s symptoms of ear pain, the most likely diagnosis is otitis media, as indicated by her fever and the presence of a bulging tympanic membrane on otoscopy.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      18.7
      Seconds
  • Question 18 - A 29-year-old male is injured by a gunshot to his right chest resulting...

    Incorrect

    • A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?

      Your Answer: Pulmonary artery

      Correct Answer: Phrenic nerve

      Explanation:

      At the base of the right lung, the phrenic nerve is located in the anterior position.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      27
      Seconds
  • Question 19 - A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor...

    Incorrect

    • A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor measures 4 centimeters in its largest dimension and is not invading any surrounding structures. However, there are metastases in the ipsilateral hilar lymph nodes, and no distant metastases have been found. What is the TNM score for this patient, considering the primary tumor (T), regional lymph nodes (N), and distant metastases (M)?

      Your Answer: T2 N2 M0

      Correct Answer: T2 N1 M0

      Explanation:

      It is crucial to have knowledge about the TNM system for staging lung cancer. The absence of distant metastases eliminates one of the options immediately (as M must be 0).

      The size and invasion of the tumor are significant factors:
      – T1 is less than 3 cm
      – T2 is between 3 cm and 7 cm
      – T3 is more than 7 cm and/or involves invasion of the chest wall, parietal pleura, diaphragm, phrenic nerve, mediastinal pleura, or parietal pericardium
      – T4 can be any size but involves invasion of other structures

      To differentiate between N1 and N2, remember that N1 involves ipsilateral hilar or peribronchial lymph nodes, while N2 involves ipsilateral mediastinal and/or subcarinal lymph nodes.

      Small Cell Lung Cancer: Characteristics and Management

      Small cell lung cancer is a type of lung cancer that usually develops in the central part of the lungs and arises from APUD cells. This type of cancer is often associated with the secretion of hormones such as ADH and ACTH, which can cause hyponatremia and Cushing’s syndrome, respectively. In addition, ACTH secretion can lead to bilateral adrenal hyperplasia and hypokalemic alkalosis due to high levels of cortisol. Patients with small cell lung cancer may also experience Lambert-Eaton syndrome, which is characterized by antibodies to voltage-gated calcium channels causing a myasthenic-like syndrome.

      Management of small cell lung cancer depends on the stage of the disease. Patients with very early stage disease may be considered for surgery, while those with limited disease typically receive a combination of chemotherapy and radiotherapy. Patients with more extensive disease are offered palliative chemotherapy. Unfortunately, most patients with small cell lung cancer are diagnosed with metastatic disease, making treatment more challenging.

      Overall, small cell lung cancer is a complex disease that requires careful management and monitoring. Early detection and treatment can improve outcomes, but more research is needed to better understand the underlying mechanisms of this type of cancer.

    • This question is part of the following fields:

      • Respiratory System
      73.2
      Seconds
  • Question 20 - Which one of the following is not a typical feature of central chemoreceptors...

    Incorrect

    • Which one of the following is not a typical feature of central chemoreceptors in the regulation of respiration?

      Your Answer:

      Correct Answer: They are stimulated primarily by venous hypercapnia

      Explanation:

      Arterial carbon dioxide stimulates them, but it takes longer to reach equilibrium compared to the carotid peripheral chemoreceptors. They are not as responsive to acidity because of the blood-brain barrier.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 21 - A 49-year-old man comes to the clinic with recent onset of asthma and...

    Incorrect

    • A 49-year-old man comes to the clinic with recent onset of asthma and frequent nosebleeds. Laboratory results reveal elevated eosinophil counts and a positive pANCA test.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Eosinophilic granulomatosis with polyangiitis (EGPA)

      Explanation:

      The presence of adult-onset asthma, eosinophilia, and a positive pANCA test strongly suggests a diagnosis of eosinophilic granulomatosis with polyangiitis (EGPA) in this patient.

      Although GPA can cause epistaxis, the absence of other characteristic symptoms such as saddle-shaped nose deformity, haemoptysis, renal failure, and positive cANCA make EGPA a more likely diagnosis.

      Polyarteritis Nodosa, Temporal Arteritis, and Toxic Epidermal Necrolysis have distinct clinical presentations that do not match the symptoms exhibited by this patient.

      Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)

      Eosinophilic granulomatosis with polyangiitis (EGPA), previously known as Churg-Strauss syndrome, is a type of small-medium vessel vasculitis that is associated with ANCA. It is characterized by asthma, blood eosinophilia (more than 10%), paranasal sinusitis, mononeuritis multiplex, and pANCA positivity in 60% of cases.

      Compared to granulomatosis with polyangiitis, EGPA is more likely to have blood eosinophilia and asthma as prominent features. Additionally, leukotriene receptor antagonists may trigger the onset of the disease.

      Overall, EGPA is a rare but serious condition that requires prompt diagnosis and treatment to prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 22 - A 10-year-old boy comes to your clinic with a complaint of ear pain...

    Incorrect

    • A 10-year-old boy comes to your clinic with a complaint of ear pain that started last night and kept him awake. He missed school today because of the pain and reports muffled sounds on the affected side. During otoscopy, you observe a bulging tympanic membrane with visible fluid behind it, indicating a middle ear infection. Can you identify which nerves pass through the middle ear?

      Your Answer:

      Correct Answer: Chorda tympani

      Explanation:

      The chorda tympani is the correct answer. It is a branch of the seventh cranial nerve, the facial nerve, and carries parasympathetic and taste fibers. It passes through the middle ear before exiting and joining with the lingual nerve to reach the tongue and salivary glands.

      The vestibulocochlear nerve is the eighth cranial nerve and carries balance and hearing information.

      The maxillary nerve is the second division of the fifth cranial nerve and carries sensation from the upper teeth, nasal cavity, and skin.

      The mandibular nerve is the third division of the fifth cranial nerve and carries sensation from the lower teeth, tongue, mandible, and skin. It also carries motor fibers to certain muscles.

      The glossopharyngeal nerve is the ninth cranial nerve and carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas. It also carries motor and parasympathetic fibers.

      The patient in the question has ear pain, likely due to otitis media, as evidenced by a bulging tympanic membrane and fluid level on otoscopy.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 23 - A 52-year-old woman visited her family physician with complaints of pain in her...

    Incorrect

    • A 52-year-old woman visited her family physician with complaints of pain in her wrist and small joints of the hand. She mentioned that her joints felt stiff in the morning but improved throughout the day. The doctor prescribed glucocorticoids and methotrexate, which helped alleviate her symptoms. After a year, she returned to her doctor with a dry cough and shortness of breath that had been bothering her for a month. She denied any recent weight loss or coughing up blood. She is a non-smoker and drinks alcohol moderately. The woman has no significant medical or surgical history and has been a homemaker while her husband works in a shipyard. Her father died of a heart attack at the age of 77. What is the most likely finding on her chest X-ray?

      Your Answer:

      Correct Answer: Intrapulmonary nodules

      Explanation:

      1. Caplan syndrome is a condition characterized by intrapulmonary nodules found peripherally and bilaterally in individuals with both pneumoconiosis and rheumatoid arthritis. The immune system changes associated with rheumatoid arthritis are thought to affect the body’s response to coal dust particles, leading to the development of nodules.
      2. A normal chest X-ray does not rule out the possibility of underlying respiratory disease. If there is a high clinical suspicion, further investigation should be pursued to confirm or rule out potential diagnoses, such as asthma.
      3. Chronic obstructive respiratory disease, which includes chronic bronchitis and emphysema, is characterized by hyperinflated lungs and a flattened diaphragm on chest X-ray. This is due to the loss of elastic recoil in the lungs and airway obstruction caused by inflammation of the bronchi.
      4. Silicosis is a restrictive lung disease that develops in individuals exposed to silica, such as sandblasters and those working in silica mines. Eggshell calcification of hilar lymph nodes is a characteristic finding on chest X-ray.
      5. Squamous cell carcinoma of the lungs, a non-small cell type of lung cancer, is associated with a central bronchial opacity around the hilar region on chest X-ray. This type of cancer is more common in smokers and may be accompanied by hypercalcemia as a paraneoplastic syndrome.

      Respiratory Manifestations of Rheumatoid Arthritis

      Patients with rheumatoid arthritis may experience a range of respiratory problems. These can include pulmonary fibrosis, pleural effusion, pulmonary nodules, bronchiolitis obliterans, and pleurisy. Additionally, drug therapy for rheumatoid arthritis, such as methotrexate, can lead to complications like pneumonitis. In some cases, patients may develop Caplan’s syndrome, which involves the formation of massive fibrotic nodules due to occupational coal dust exposure. Finally, immunosuppression caused by rheumatoid arthritis treatment can increase the risk of infection, including atypical infections. Overall, it is important for healthcare providers to be aware of these potential respiratory complications in patients with rheumatoid arthritis.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 24 - A 19-year-old male is admitted with acute asthma. He has been treated with...

    Incorrect

    • A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.

      His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.

      Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:

      pH 7.42 (7.36-7.44)
      PaO2 8.4 kPa (11.3-12.6)
      PaCO2 5.3 kPa (4.7-6.0)
      Standard HCO3 19 mmol/L (20-28)
      Base excess −4 (+/-2)
      Oxygen saturation 89%

      What is the most appropriate action for this man?

      Your Answer:

      Correct Answer: Call ITU to consider intubation

      Explanation:

      Urgent Need for Ventilation in Life-Threatening Asthma

      This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.

      It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 25 - A patient in their 60s presents to surgical outpatients with diffuse abdominal pain....

    Incorrect

    • A patient in their 60s presents to surgical outpatients with diffuse abdominal pain. As a second-line imaging investigation, a CT scan is requested. The radiologist looks through the images to write the report. Which of the following would they expect to find at the level of the transpyloric plane (L1)?

      Your Answer:

      Correct Answer: Hila of the kidneys

      Explanation:

      The hila of the kidneys are at the level of the transpyloric plane, with the left kidney slightly higher than the right. The adrenal glands sit just above the kidneys at the level of T12. The neck of the pancreas, not the body, is at the level of the transpyloric plane. The coeliac trunk originates at the level of T12 and the inferior mesenteric artery originates at L3.

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 26 - A 27-year-old woman, who has had eczema and asthma since childhood, comes for...

    Incorrect

    • A 27-year-old woman, who has had eczema and asthma since childhood, comes for her yearly asthma check-up. She has been using her salbutamol inhaler more frequently over the last 3 months and is concerned that it may be due to getting a new kitten. In allergic asthma, which cell is present in excessive amounts?

      Your Answer:

      Correct Answer: Eosinophils

      Explanation:

      The patient’s medical background indicates that she may have atopic asthma. It is probable that her symptoms have worsened and she has had to use more salbutamol reliever due to an allergy to her new kitten’s animal dander.

      Individuals with allergic asthma have been found to have increased levels of eosinophils in their airways. The severity of asthma is linked to the number of eosinophils present, as they contribute to long-term airway inflammation by causing damage, blockages, and hyperresponsiveness.

      The immediate symptoms of asthma after exposure are caused by mast cell degranulation.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 27 - A 4-year-old girl with a known diagnosis of cystic fibrosis presents to her...

    Incorrect

    • A 4-year-old girl with a known diagnosis of cystic fibrosis presents to her pediatrician with a 2-day history of left-ear pain. Her mother reports that she has been frequently tugging at her left ear and had a fever this morning. Apart from this, she has been healthy. On examination, a red, bulging eardrum is observed. The pediatrician suspects bacterial otitis media. What is the probable causative organism responsible for this patient's symptoms?

      Your Answer:

      Correct Answer: Haemophilus influenzae

      Explanation:

      Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis are common bacterial organisms that can cause bacterial otitis media. Pseudomonas aeruginosa can also be a common cause in patients with cystic fibrosis.

      The patient’s symptoms are typical of acute otitis media (AOM), which can cause ear pain, fever, and temporary hearing loss. AOM is more common in children due to their short, horizontal eustachian tubes that allow for easier movement of organisms from the upper respiratory tract to the middle ear.

      AOM can be caused by either bacteria or viruses, and it can be difficult to distinguish between the two. However, features that may suggest a bacterial cause include the absence of upper respiratory tract infection symptoms and conditions that predispose to bacterial infections. In some cases, viral AOM can increase the risk of bacterial superinfection. Antibiotics may be prescribed for prolonged cases of AOM that do not appear to be resolving within a few days or in patients with immunosuppression.

      Escherichia coli and Enterococcus faecalis are not the correct answers as they are not commonly associated with AOM. Haemophilus influenzae is more likely due to the proximity of the middle ear to the upper respiratory tract. Staphylococcus aureus is also an unlikely cause of bacterial AOM.

      Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 28 - A 55-year-old man from Hong Kong complains of fatigue, weight loss, and recurrent...

    Incorrect

    • A 55-year-old man from Hong Kong complains of fatigue, weight loss, and recurrent nosebleeds. During clinical examination, left-sided cervical lymphadenopathy is observed, and an ulcerated mass is found in the nasopharynx upon oropharyngeal examination. Which viral agent is typically associated with the development of this condition?

      Your Answer:

      Correct Answer: Epstein Barr virus

      Explanation:

      Nasopharyngeal carcinoma is typically diagnosed through Trotter’s triad, which includes unilateral conductive hearing loss, ipsilateral facial and ear pain, and ipsilateral paralysis of the soft palate. This condition is commonly associated with previous Epstein Barr Virus infection, but there is no known link between the development of nasopharyngeal carcinoma and the other viruses mentioned.

      Understanding Nasopharyngeal Carcinoma

      Nasopharyngeal carcinoma is a type of squamous cell carcinoma that affects the nasopharynx. It is a rare form of cancer that is more common in individuals from Southern China and is associated with Epstein Barr virus infection. The presenting features of nasopharyngeal carcinoma include cervical lymphadenopathy, otalgia, unilateral serous otitis media, nasal obstruction, discharge, and/or epistaxis, and cranial nerve palsies such as III-VI.

      To diagnose nasopharyngeal carcinoma, a combined CT and MRI scan is typically used. The first line of treatment for this type of cancer is radiotherapy. It is important to catch nasopharyngeal carcinoma early to increase the chances of successful treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 29 - A 50-year-old woman presents to your GP clinic with a complaint of a...

    Incorrect

    • A 50-year-old woman presents to your GP clinic with a complaint of a malodorous discharge from her left ear for the last 2 weeks. She also reports experiencing some hearing loss in her left ear and suspects it may be due to earwax. However, upon examination, there is no earwax present but instead a crust on the lower portion of the tympanic membrane. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Cholesteatoma

      Explanation:

      When a patient presents with unilateral foul smelling discharge and deafness, it is important to consider the possibility of a cholesteatoma. If this is suspected during examination, it is necessary to refer the patient to an ENT specialist.

      Pain is a common symptom of otitis media, while otitis externa typically causes inflammation and swelling of the ear canal. Impacted wax can lead to deafness, but it is unlikely to cause a discharge with a foul odor. It is also improbable for a woman of 45 years to have a foreign object in her ear for three weeks.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 30 - A 67-year-old man has been diagnosed with stage III lung cancer and is...

    Incorrect

    • A 67-year-old man has been diagnosed with stage III lung cancer and is concerned about potential complications. What are the risks he may face?

      Your Answer:

      Correct Answer: Pneumothorax

      Explanation:

      Pneumothorax is more likely to occur in individuals with lung cancer.

      Pneumothorax: Characteristics and Risk Factors

      Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity, which is the space between the lungs and the chest wall. This condition can occur spontaneously or as a result of trauma or medical procedures. There are several risk factors associated with pneumothorax, including pre-existing lung diseases such as COPD, asthma, cystic fibrosis, lung cancer, and Pneumocystis pneumonia. Connective tissue diseases like Marfan’s syndrome and rheumatoid arthritis can also increase the risk of pneumothorax. Ventilation, including non-invasive ventilation, can also be a risk factor.

      Symptoms of pneumothorax tend to come on suddenly and can include dyspnoea, chest pain (often pleuritic), sweating, tachypnoea, and tachycardia. In some cases, catamenial pneumothorax can be the cause of spontaneous pneumothoraces occurring in menstruating women. This type of pneumothorax is thought to be caused by endometriosis within the thorax. Early diagnosis and treatment of pneumothorax are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 31 - A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of...

    Incorrect

    • A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?

      Your Answer:

      Correct Answer: Left phrenic nerve

      Explanation:

      It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 32 - Sophie, a 4-year-old patient with Down's syndrome, is brought to the general practitioner...

    Incorrect

    • Sophie, a 4-year-old patient with Down's syndrome, is brought to the general practitioner by her father. He is worried as Sophie has been crying more than usual and has started holding her right ear. She is diagnosed with acute bacterial otitis media.

      What is the most probable bacteria responsible for this infection?

      Your Answer:

      Correct Answer: Haemophilus influenzae

      Explanation:

      Haemophilus influenzae is a frequent culprit behind bacterial otitis media, a common ear infection.

      The majority of cases of acute bacterial otitis media are caused by Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella.

      Genital gonorrhoeae is caused by N. gonorrhoeae, a sexually transmitted infection that presents with discharge and painful urination.

      Meningococcal sepsis, a life-threatening condition, is caused by N. meningitides.

      Staph. aureus is responsible for superficial skin infections like impetigo.

      Syphilis, which typically manifests as a painless genital sore called a chancre, is caused by T. pallidum.

      Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 33 - Which one of the following is not a cause of increased anion gap...

    Incorrect

    • Which one of the following is not a cause of increased anion gap acidosis?

      Your Answer:

      Correct Answer: Acetazolamide

      Explanation:

      Causes of anion gap acidosis can be remembered using the acronym MUDPILES, which stands for Methanol, Uraemia, DKA/AKA, Paraldehyde/phenformin, Iron/INH, Lactic acidosis, Ethylene glycol, and Salicylates.

      Disorders of Acid-Base Balance

      The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 34 - A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst,...

    Incorrect

    • A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.

      What could be the probable reason for this patient's clinical presentation?

      Your Answer:

      Correct Answer: Diabetes mellitus

      Explanation:

      Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.

      It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 35 - Control of ventilation. Which statement is false? ...

    Incorrect

    • Control of ventilation. Which statement is false?

      Your Answer:

      Correct Answer: Central chemoreceptors respond to changes in O2

      Explanation:

      The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 36 - A 14-year-old girl presents to her GP with complaints of earache and hearing...

    Incorrect

    • A 14-year-old girl presents to her GP with complaints of earache and hearing difficulty in her left ear. Upon examination, her GP observes a bulging tympanic membrane and diagnoses her with acute otitis media. The GP prescribes a course of oral antibiotics.

      However, after a few days, the girl's fever persists and her pain worsens, prompting her to visit the emergency department. Upon examination, the girl has a tender and erythematous retro-auricular swelling with a temperature of 38.9ºC. She has no ear discharge, and the rest of her examination is unremarkable.

      What complication has developed in this case?

      Your Answer:

      Correct Answer: Mastoiditis

      Explanation:

      Mastoiditis is a potential complication of acute otitis media, which can cause pain and swelling behind the ear over the mastoid bone. However, there is no evidence of tympanic membrane perforation, neurological symptoms or signs of meningitis or brain abscess, or facial nerve injury in this case.

      Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 37 - Which one of the following does not decrease the functional residual capacity? ...

    Incorrect

    • Which one of the following does not decrease the functional residual capacity?

      Your Answer:

      Correct Answer: Upright position

      Explanation:

      When a patient is in an upright position, the functional residual capacity (FRC) can increase due to less pressure from the diaphragm and abdominal organs on the lung bases. This increase in FRC can also be caused by emphysema and asthma. On the other hand, factors such as abdominal swelling, pulmonary edema, reduced muscle tone of the diaphragm, and aging can lead to a decrease in FRC. Additionally, laparoscopic surgery, obesity, and muscle relaxants can also contribute to a reduction in FRC.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 38 - A 35-year-old woman presents with sudden chest pain and difficulty breathing. She recently...

    Incorrect

    • A 35-year-old woman presents with sudden chest pain and difficulty breathing. She recently returned from a trip to Italy with her family. She has no significant medical history but takes oral contraceptives. On examination, her pulse is 100 bpm, temperature is 37°C, oxygen saturation is 95%, respiratory rate is 28/min, and blood pressure is 116/76 mmHg. Chest examination is unremarkable and chest x-ray is normal. What is the most appropriate diagnostic test to confirm the diagnosis?

      Your Answer:

      Correct Answer: CT pulmonary angiogram (CTPA)

      Explanation:

      Diagnosis of Pulmonary Embolism in a Woman with Chest Pain and Dyspnoea

      This woman is experiencing chest pain and difficulty breathing, with a rapid heart rate and breathing rate. However, there are no visible signs on chest examination and her chest x-ray appears normal. Despite having no fever, her oxygen levels are lower than expected for a healthy person. To rule out a pulmonary embolism, doctors must consider risk factors such as recent air travel and use of oral contraceptives.

      The gold standard for diagnosing a pulmonary embolism is a CT pulmonary angiogram, as it can detect even large saddle embolus near the pulmonary arteries. While VQ scanning was previously used, it can miss these larger emboli. Additionally, doctors may perform Doppler ultrasounds of the venous system to check for deep vein thrombosis.

      This presentation is not indicative of atypical pneumonia, such as Legionella, as the patient’s temperature would be expected to be high and chest signs would be present. Overall, a thorough evaluation is necessary to accurately diagnose and treat a pulmonary embolism in a patient with chest pain and dyspnoea.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 39 - Which of the following physiological changes does not take place after a tracheostomy?...

    Incorrect

    • Which of the following physiological changes does not take place after a tracheostomy?

      Your Answer:

      Correct Answer: Work of breathing is increased.

      Explanation:

      HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 40 - A patient on the medical ward was waiting for a cardiac procedure. On...

    Incorrect

    • A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:

      pH 7.55
      pCO2 2.7kPa
      pO2 11.2kPa
      HCO3 24mmol/l

      What is the most appropriate interpretation of these results?

      Your Answer:

      Correct Answer: Respiratory alkalosis

      Explanation:

      The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 41 - A 15-year-old girl presents with difficulty breathing and is unable to speak in...

    Incorrect

    • A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?

      Your Answer:

      Correct Answer: Silent chest

      Explanation:

      Identify the life-threatening features of an asthma attack.

      Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.

      A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.

      It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 42 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Incorrect

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer:

      Correct Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 43 - A 72-year-old man with thyroid cancer is hospitalized for dyspnea. What is the...

    Incorrect

    • A 72-year-old man with thyroid cancer is hospitalized for dyspnea. What is the most appropriate test to evaluate potential compression of the upper respiratory tract?

      Your Answer:

      Correct Answer: Flow volume loop

      Explanation:

      Understanding Flow Volume Loops

      A flow volume loop is a graphical representation of the amount of air that a person can inhale and exhale over time. It is often described as a triangle on top of a semi-circle. This loop is useful in assessing the compression of the upper airway, which can be caused by various conditions such as asthma, chronic obstructive pulmonary disease (COPD), and sleep apnea.

      To interpret a flow volume loop, the vertical axis represents the flow rate, while the horizontal axis represents the volume of air. The loop starts at the bottom left corner, where the person begins to inhale. As the person inhales, the flow rate increases, creating the upward slope of the triangle. At the top of the triangle, the person reaches their maximum inhalation volume.

      The person then begins to exhale, creating the downward slope of the triangle. The flow rate decreases as the person exhales, until they reach their maximum exhalation volume, represented by the semi-circle. The loop then returns to the starting point, completing one full cycle.

      Overall, flow volume loops are a valuable tool in diagnosing and monitoring respiratory conditions. By analyzing the shape and size of the loop, healthcare professionals can identify abnormalities in lung function and determine the appropriate treatment plan.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 44 - Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness...

    Incorrect

    • Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness and blurred vision. She works as a librarian, drinks about 15 units of alcohol per week, and has smoked about 25 cigarettes a day for 35 years.

      During the examination, her blood pressure is found to be elevated at 152/98 mmHg. There are reduced breath sounds over the area of the right lower lobe. Some of her blood test results are as follows:

      - Hb 120 g/L (Female: 115-160)
      - Platelets 420 * 109/L (150-400)
      - WBC 9.1 * 109/L (4.0-11.0)
      - Na+ 148 mmol/L (135-145)
      - K+ 3.2 mmol/L (3.5-5.0)
      - Urea 8.5 mmol/L (2.0-7.0)
      - Creatinine 150 µmol/L (55-120)
      - 24-hour urine free cortisol 260 ug/l (10-100)
      - Glucose 17.8 mmol/l (4.0-7.0)

      She mentions that, aside from a persistent cough due to smoking, which occasionally produces blood, she feels fine.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Small cell lung carcinoma

      Explanation:

      A small cell lung carcinoma that secretes ACTH can lead to Cushing’s syndrome, as seen in this patient. The history and examination findings suggest lung cancer, and the raised cortisol level can be explained by the paraneoplastic syndrome caused by ACTH release. Muscle weakness and blurred vision are typical symptoms of Cushing’s syndrome. Squamous cell lung carcinoma and adrenal adenoma are less likely causes, while Cushing’s disease is not applicable in this case.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 45 - A 32-year-old woman arrives at the emergency department complaining of sudden shortness of...

    Incorrect

    • A 32-year-old woman arrives at the emergency department complaining of sudden shortness of breath and a sharp pain on the right side of her chest that worsens with inspiration. Upon examination, the doctor observes hyper-resonance and reduced breath sounds on the right side of her chest.

      What is a risk factor for this condition, considering the probable diagnosis?

      Your Answer:

      Correct Answer: Cystic fibrosis

      Explanation:

      Pneumothorax can be identified by reduced breath sounds and a hyper-resonant chest on the same side as the pain. Cystic fibrosis is a significant risk factor for pneumothorax due to the frequent chest infections, lung remodeling, and air trapping associated with the disease. While tall, male smokers are also at increased risk, Marfan’s syndrome, not Turner syndrome, is a known risk factor.

      Pneumothorax: Characteristics and Risk Factors

      Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity, which is the space between the lungs and the chest wall. This condition can occur spontaneously or as a result of trauma or medical procedures. There are several risk factors associated with pneumothorax, including pre-existing lung diseases such as COPD, asthma, cystic fibrosis, lung cancer, and Pneumocystis pneumonia. Connective tissue diseases like Marfan’s syndrome and rheumatoid arthritis can also increase the risk of pneumothorax. Ventilation, including non-invasive ventilation, can also be a risk factor.

      Symptoms of pneumothorax tend to come on suddenly and can include dyspnoea, chest pain (often pleuritic), sweating, tachypnoea, and tachycardia. In some cases, catamenial pneumothorax can be the cause of spontaneous pneumothoraces occurring in menstruating women. This type of pneumothorax is thought to be caused by endometriosis within the thorax. Early diagnosis and treatment of pneumothorax are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 46 - A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double...

    Incorrect

    • A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double vision, shortness of breath, and rapid breathing. These symptoms typically occur in the evening or after physical activity.

      What respiratory condition could be causing her symptoms?

      Your Answer:

      Correct Answer: Restrictive lung disease

      Explanation:

      The presence of myasthenia gravis can result in a restrictive pattern of lung disease due to weakened chest wall muscles, leading to incomplete expansion during inhalation.

      Occupational lung disease, also known as pneumoconioses, is caused by inhaling specific types of dust particles in the workplace, resulting in a restrictive pattern of lung disease. However, symptoms such as drooping eyelids and double vision are typically not associated with this condition.

      Pneumonia is an infection of the lung tissue that typically presents with symptoms such as coughing, chest pain, fever, and difficulty breathing.

      Pulmonary embolism is an acute condition that presents with symptoms such as chest pain, shortness of breath, and coughing up blood.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 47 - You are on call for the pediatric ward at night and are urgently...

    Incorrect

    • You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.

      What is the most appropriate immediate management for this pediatric patient?

      Your Answer:

      Correct Answer: Back blows

      Explanation:

      Resuscitation Council (UK) Recommendations for Choking Emergencies

      When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 48 - A 26-year-old man has been experiencing a chronic cough and wheeze since starting...

    Incorrect

    • A 26-year-old man has been experiencing a chronic cough and wheeze since starting a new job. He has noticed that his peak flow measurements are significantly reduced while at work but improve on the weekends. What substance is commonly linked to this type of asthma?

      Your Answer:

      Correct Answer: Isocyanates

      Explanation:

      Occupational Asthma: Causes and Symptoms

      Occupational asthma is a type of asthma that is caused by exposure to certain chemicals in the workplace. Patients may experience worsening asthma symptoms while at work or notice an improvement in symptoms when away from work. The most common cause of occupational asthma is exposure to isocyanates, which are found in spray painting and foam moulding using adhesives. Other chemicals associated with occupational asthma include platinum salts, soldering flux resin, glutaraldehyde, flour, epoxy resins, and proteolytic enzymes.

      To diagnose occupational asthma, it is recommended to measure peak expiratory flow at work and away from work. If there is a significant difference in peak expiratory flow, referral to a respiratory specialist is necessary. Treatment may include avoiding exposure to the triggering chemicals and using medications to manage asthma symptoms. It is important for employers to provide a safe working environment and for employees to report any concerns about potential exposure to harmful chemicals.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 49 - The pressure within the pleural space is positive with respect to atmospheric pressure,...

    Incorrect

    • The pressure within the pleural space is positive with respect to atmospheric pressure, in which of the following scenarios?

      Your Answer:

      Correct Answer: During a Valsalva manoeuvre

      Explanation:

      Extrinsic compression causes an increase in intrapleural pressure during a Valsalva manoeuvre.

      Understanding Pleural Pressure

      Pleural pressure refers to the pressure surrounding the lungs within the pleural space. The pleura is a thin membrane that invests the lungs and lines the walls of the thoracic cavity. The visceral pleura covers the lung, while the parietal pleura covers the chest wall. The two sides are continuous and meet at the hilum of the lung. The size of the lung is determined by the difference between the alveolar pressure and the pleural pressure, or the transpulmonary pressure.

      During quiet breathing, the pleural pressure is negative, meaning it is below atmospheric pressure. However, during active expiration, the abdominal muscles contract to force up the diaphragm, resulting in positive pleural pressure. This may temporarily collapse the bronchi and cause limitation of air flow.

      Gravity affects pleural pressure, with the pleural pressure at the base of the lung being greater (less negative) than at its apex in an upright individual. When lying on the back, the pleural pressure becomes greatest along the back. Alveolar pressure is uniform throughout the lung, so the top of the lung generally experiences a greater transpulmonary pressure and is therefore more expanded and less compliant than the bottom of the lung.

      In summary, understanding pleural pressure is important in understanding lung function and how it is affected by various factors such as gravity and muscle contraction.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 50 - A 63-year-old man visits his GP complaining of worsening shortness of breath. He...

    Incorrect

    • A 63-year-old man visits his GP complaining of worsening shortness of breath. He was diagnosed with COPD six years ago and has been frequently admitted to the emergency department due to lower respiratory tract infections, especially in the past year. He has a smoking history of 50 pack-years and currently smokes 20 cigarettes per day.

      During the examination, the patient appears to be struggling to breathe even at rest and is in the tripod position. His heart rate is 78/min, blood pressure is 140/88 mmHg, oxygen saturation is 88% on air, respiratory rate is 26 breaths per minute, and temperature is 36.4ºC. His chest expansion is symmetrical, and breath sounds are equal throughout the lung fields.

      Recent spirometry results show that his FEV1 was 47% a week ago, 53% a month ago, and 67% six months ago. What intervention would be most effective in slowing the decline of his FEV1?

      Your Answer:

      Correct Answer: Smoking cessation

      Explanation:

      Slowing the decrease in FEV1 in COPD can be most effectively achieved by quitting smoking.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 51 - Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of...

    Incorrect

    • Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of gradual worsening shortness of breath over the past two months. During the medical history, it was discovered that she has had Chronic Obstructive Pulmonary Disease (COPD) for 20 years.

      Upon examination, there are no breath sounds at both lung bases and a stony dull note to percussion over the same areas. Based on this clinical scenario, what is the probable cause of her recent exacerbation of shortness of breath?

      Your Answer:

      Correct Answer: Pleural transudate effusion secondary to cor pulmonale

      Explanation:

      The most likely cause of a pleural transudate is heart failure. This is due to the congestion of blood into the systemic venous circulation, which can result from long-standing COPD and increase in pulmonary vascular resistance leading to right-sided heart failure or cor pulmonale. Other options such as infective exacerbation of COPD or pulmonary edema secondary to heart failure are less likely to explain the clinical signs. Pleural exudate effusion secondary to cor pulmonale is also not the most appropriate answer as it would cause a transudate pleural effusion, not an exudate.

      Understanding the Causes and Features of Pleural Effusion

      Pleural effusion is a medical condition characterized by the accumulation of fluid in the pleural space, which is the area between the lungs and the chest wall. The causes of pleural effusion can be classified into two types: transudate and exudate. Transudate is characterized by a protein concentration of less than 30g/L and is commonly caused by heart failure, hypoalbuminemia, liver disease, and other conditions. On the other hand, exudate is characterized by a protein concentration of more than 30g/L and is commonly caused by infections, pneumonia, tuberculosis, and other conditions.

      The symptoms of pleural effusion may include dyspnea, non-productive cough, and chest pain. Upon examination, patients may exhibit dullness to percussion, reduced breath sounds, and reduced chest expansion. It is important to identify the underlying cause of pleural effusion to determine the appropriate treatment plan. Early diagnosis and treatment can help prevent complications and improve the patient’s overall health.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 52 - Which of the following nerve roots provide nerve fibers to the ansa cervicalis?...

    Incorrect

    • Which of the following nerve roots provide nerve fibers to the ansa cervicalis?

      Your Answer:

      Correct Answer: C1, C2 and C3

      Explanation:

      The ansa cervicalis muscles can be remembered using the acronym GHost THought SOmeone Stupid Shot Irene. These muscles include the GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The ansa cervicalis is made up of a superior and inferior root, which originate from C1, C2, and C3. The superior root begins where the nerve crosses the internal carotid artery and descends in the anterior triangle of the neck. The inferior root joins the superior root in the mid neck region and can pass either superficially or deep to the internal jugular vein.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 53 - Cystic fibrosis is caused by a mutation in the CFTR gene. On which...

    Incorrect

    • Cystic fibrosis is caused by a mutation in the CFTR gene. On which chromosome is this gene located?

      Your Answer:

      Correct Answer: Chromosome 7

      Explanation:

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 54 - A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis....

    Incorrect

    • A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis. He has a history of recurrent chest infections since childhood and has difficulty maintaining a healthy weight. Despite using inhalers, he has not experienced any significant improvement. Genetic testing has been ordered to investigate the possibility of cystic fibrosis.

      What is the typical role of the cystic fibrosis transmembrane conductance regulator?

      Your Answer:

      Correct Answer: Chloride channel

      Explanation:

      The chloride channel, specifically a cyclic-AMP regulated chloride channel, is the correct answer. Cystic fibrosis can be caused by various mutations, but they all affect the same gene, the cystic fibrosis transmembrane conductance regulator gene. This gene encodes a chloride channel that, when dysfunctional, results in increased viscosity of secretions and the development of cystic fibrosis.

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 55 - An 75-year-old woman presents to her GP with a 4-month history of dysphagia,...

    Incorrect

    • An 75-year-old woman presents to her GP with a 4-month history of dysphagia, weight loss, and a change in her voice tone. After a nasendoscopy, laryngeal carcinoma is confirmed. The surgical team plans her operation based on a head and neck CT scan. Which vertebrae are likely located posterior to the carcinoma?

      Your Answer:

      Correct Answer: C3-C6

      Explanation:

      The larynx is situated in the front of the neck, specifically at the level of the C3-C6 vertebrae. It is positioned below the pharynx and contains the vocal cords that produce sound. The C1-C3 vertebrae are located much higher than the larynx, while the C2-C4 vertebrae cover the area from the oropharynx to the first part of the larynx. The C6-T1 vertebrae are situated behind the larynx and the upper portions of the trachea and esophagus.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 56 - A 50-year-old female presents to her GP with complaints of shortness of breath...

    Incorrect

    • A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Myasthenia gravis

      Explanation:

      Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 57 - A 59-year-old man comes to see his GP complaining of vertigo that has...

    Incorrect

    • A 59-year-old man comes to see his GP complaining of vertigo that has been going on for three days. He also reports experiencing left-sided ear pain and a change in his sense of taste, as well as constant ringing in his left ear. He took paracetamol on his own, but the vertigo persisted, so he decided to seek medical attention.

      During the examination, the doctor observes that the man has a drooping left face with involvement of the forehead. Upon otoscopic examination, vesicles are seen in the external auditory canal of the left ear. A neurological examination is performed, which is normal except for the left facial paralysis.

      What is the appropriate treatment for this man's condition?

      Your Answer:

      Correct Answer: Oral acyclovir and corticosteroids

      Explanation:

      Ramsay Hunt syndrome is treated with a combination of oral acyclovir and corticosteroids. This condition is caused by the varicella zoster virus, as evidenced by the presence of vesicles on the left ear and involvement of the seventh and eighth cranial nerves. Symptoms include facial paralysis and hearing impairments. Treatment typically involves a seven to ten day course of oral acyclovir and a five day course of corticosteroids, such as prednisolone.

      It is important to note that oseltamivir (tamiflu) is an antiviral used for influenzae, while chloroquine is typically used for malaria. Amoxicillin is an antibiotic and is not effective in treating viral infections. While corticosteroids can provide relief from inflammation, they are not the primary treatment for Ramsay Hunt syndrome when used alone.

      Understanding Ramsay Hunt Syndrome

      Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.

      To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 58 - An 80-year-old man is brought to the emergency department in respiratory arrest. According...

    Incorrect

    • An 80-year-old man is brought to the emergency department in respiratory arrest. According to his partner, he has a history of congestive heart failure and has recently been battling an infection. After being placed on mechanical ventilation, you observe that the patient has decreased lung compliance.

      What could be the cause of this observation?

      Your Answer:

      Correct Answer: Pulmonary oedema

      Explanation:

      Reduced lung compliance is a common consequence of pulmonary edema, which occurs when fluid accumulates in the alveoli and exerts mechanical stress on the air-filled alveoli. This can happen in patients with acute decompensation of congestive cardiac failure, often triggered by an infection. On the other hand, emphysema can increase compliance due to long-term damage that reduces the elastic recoil of the lungs. Additionally, lung surfactant produced by type II pneumocytes can increase lung compliance. Finally, aging can also lead to increased compliance as the loss of lung connective tissue can reduce elastic recoil.

      Understanding Lung Compliance in Respiratory Physiology

      Lung compliance refers to the extent of change in lung volume in response to a change in airway pressure. An increase in lung compliance can be caused by factors such as aging and emphysema, which is characterized by the loss of alveolar walls and associated elastic tissue. On the other hand, a decrease in lung compliance can be attributed to conditions such as pulmonary edema, pulmonary fibrosis, pneumonectomy, and kyphosis. These conditions can affect the elasticity of the lungs and make it more difficult for them to expand and contract properly. Understanding lung compliance is important in respiratory physiology as it can help diagnose and manage various respiratory conditions. Proper management of lung compliance can improve lung function and overall respiratory health.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 59 - A 5-year-old boy comes to the clinic with his mother, complaining of ear...

    Incorrect

    • A 5-year-old boy comes to the clinic with his mother, complaining of ear pain that started last night. He has been unable to sleep due to the pain and has not been eating well. His mother reports that he seems different than his usual self. The affected side has muffled sounds, and he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid-level. What is the structure that connects the middle ear to the nasopharynx?

      Your Answer:

      Correct Answer: Eustachian tube

      Explanation:

      The pharyngotympanic tube, also known as the Eustachian tube, is responsible for connecting the middle ear and the nasopharynx, allowing for pressure equalization in the middle ear. It opens on the anterior wall of the middle ear and extends anteriorly, medially, and inferiorly to open into the nasopharynx. The palatovaginal canal connects the pterygopalatine fossa with the nasopharynx, while the pterygoid canal runs from the anterior boundary of the foramen lacerum to the pterygopalatine fossa. The semicircular canals are responsible for sensing balance, while the greater palatine canal transmits the greater and lesser palatine nerves, as well as the descending palatine artery and vein. In the case of ear pain, otitis media is a likely cause, which can be confirmed through otoscopy. The pharyngotympanic tube is particularly important in otitis media as it is the only outlet for pus or fluid in the middle ear, provided the tympanic membrane is intact.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 60 - Which one of the following is not found in the anterior mediastinum? ...

    Incorrect

    • Which one of the following is not found in the anterior mediastinum?

      Your Answer:

      Correct Answer: Thoracic duct

      Explanation:

      The posterior and superior mediastinum contain the thoracic duct.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 61 - An 80-year-old woman visits her doctor complaining of a persistent cough. She has...

    Incorrect

    • An 80-year-old woman visits her doctor complaining of a persistent cough. She has been smoking 20 cigarettes a day for the past 30 years and is worried that this might be the reason for her symptom. The doctor diagnoses her with chronic obstructive pulmonary disease (COPD) which is likely caused by chronic bronchitis. Can you provide the definition of chronic bronchitis?

      Your Answer:

      Correct Answer: Chronic productive cough for at least 3 months in at least 2 years

      Explanation:

      Chronic bronchitis is characterized by a persistent cough with sputum production for a minimum of 3 months in two consecutive years, after excluding other causes of chronic cough. Emphysema, on the other hand, is defined by the enlargement of air spaces beyond the terminal bronchioles. None of the remaining options are considered as definitions of COPD.

      COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 62 - A 55-year-old woman comes to your clinic seeking help to quit smoking. She...

    Incorrect

    • A 55-year-old woman comes to your clinic seeking help to quit smoking. She has been using nicotine patches for 6 months but has not been successful in her attempts. You decide to prescribe bupropion.

      What is a typical side effect of bupropion?

      Your Answer:

      Correct Answer: Gastrointestinal disturbance

      Explanation:

      Side Effects of Buproprion

      Buproprion is a medication that can cause aggression and hallucination in some patients. However, the more common side effects are gastrointestinal disturbances such as diarrhoea, nausea, and dry mouth. These side effects are often experienced by patients taking buproprion. It is important to be aware of the potential side effects of any medication and to speak with a healthcare provider if any concerns arise. Additional information on buproprion and its potential side effects can be found in the electronic Medicines Compendium and Medicines Complete.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 63 - A 29-year-old cyclist is brought to the emergency department by air ambulance following...

    Incorrect

    • A 29-year-old cyclist is brought to the emergency department by air ambulance following a car collision. She was intubated at the scene and currently has a Glasgow Coma Score of 8. Where is the control and regulation of the respiratory centers located?

      Your Answer:

      Correct Answer: Brainstem

      Explanation:

      The brainstem houses the respiratory centres, which are responsible for regulating various aspects of breathing. These centres are located in the upper pons, lower pons and medulla oblongata.

      The thalamus plays a role in sensory, motor and cognitive functions, and its axons connect with the cerebral cortex. The cerebellum coordinates voluntary movements and helps maintain balance and posture. The parietal lobe processes sensory information, including discrimination and body orientation. The primary visual cortex is located in the occipital lobe.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 64 - A 35-year-old man comes to the clinic complaining of worsening retrosternal chest pain...

    Incorrect

    • A 35-year-old man comes to the clinic complaining of worsening retrosternal chest pain that radiates to the neck and shoulders and is pleuritic in nature. During examination, a pericardial friction rub is heard at the end of expiration. The diagnosis is pericarditis. What nerve supplies this area?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      The correct answer is the phrenic nerve, which provides sensory innervation to the pericardium, the central part of the diaphragm, and the mediastinal part of the parietal pleura. It also supplies motor function to the diaphragm. The long thoracic nerve, medial pectoral nerve, thoracodorsal nerve, and vagus nerve are all incorrect answers.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 65 - During a radical neck dissection, at what age would division of which of...

    Incorrect

    • During a radical neck dissection, at what age would division of which of the following fascial layers expose the ansa cervicalis?

      Your Answer:

      Correct Answer: Pretracheal fascia

      Explanation:

      To access the ansa cervicalis, one must cut through the pretracheal fascia on the posterolateral side of the thyroid gland. This nerve is located in front of the carotid sheath. However, it should be noted that the pre vertebral fascia is situated further back and cannot be reached by dividing the investing layer of fascia.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 66 - A 35-year-old man visits his GP with complaints of persistent cough and difficulty...

    Incorrect

    • A 35-year-old man visits his GP with complaints of persistent cough and difficulty breathing for over four months. Despite not being a smoker, he is puzzled as to why his symptoms have not improved. Upon further investigation, he is diagnosed with chronic obstructive pulmonary disease (COPD). The GP suspects a genetic factor contributing to the early onset of the disease and orders blood tests. The results reveal a deficiency in a protein responsible for shielding lung cells from neutrophil elastase. What is the name of the deficient protein?

      Your Answer:

      Correct Answer: Alpha-1 antitrypsin

      Explanation:

      COPD is typically found in older smokers, but non-smokers with A-1 antitrypsin deficiency may also develop the condition. This genetic condition is tested for with genetic and blood tests, as the protein it affects would normally protect lung cells from damage caused by neutrophil elastase. C1 inhibitor is not related to early onset COPD, but rather plays a role in hereditary angioedema. Plasminogen activator inhibitor-1 deficiency increases the risk of fibrinolysis, while surfactant protein D deficiency is associated with a higher likelihood of bacterial lung infections due to decreased ability of alveolar macrophages to bind to pathogens. Emphysema is primarily caused by uninhibited action of neutrophil elastase due to a1- antitrypsin deficiency, rather than elastin destruction.

      Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.

      A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.

      Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 67 - A 65-year-old man presents with a persistent dry cough and unintentional weight loss...

    Incorrect

    • A 65-year-old man presents with a persistent dry cough and unintentional weight loss of 5kg over the past 3 months. He denies experiencing chest pain, dyspnoea, fever or haemoptysis. The patient has a history of smoking 10 cigarettes a day for the last 50 years and has been diagnosed with COPD. A nodule is detected on chest x-ray, and biopsy results indicate a tumour originating from the bronchial glands.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Adenocarcinoma of the lung

      Explanation:

      Adenocarcinoma has become the most prevalent form of lung cancer, originating from the bronchial glands as a type of non-small-cell lung cancer.

      While a bronchogenic cyst may cause chest pain and dysphagia, it is typically diagnosed during childhood and does not stem from the bronchial glands.

      Sarcoidosis may result in a persistent cough and weight loss, but it typically affects multiple systems and does not involve nodules originating from the bronchial glands.

      Small cell carcinoma of the lung is a significant consideration, but given the description of a tumor originating from the bronchial glands, adenocarcinoma is the more probable diagnosis.

      Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 68 - A 25-year-old man presents to the Emergency department with acute onset of shortness...

    Incorrect

    • A 25-year-old man presents to the Emergency department with acute onset of shortness of breath during a basketball game. He reports no history of trauma and is typically healthy. Upon examination, he appears tall and lean, and respiratory assessment reveals reduced breath sounds and hyper-resonant percussion notes on the right side. The trachea remains centrally located. A chest x-ray confirms a diagnosis of a collapsed lung due to a right-sided pneumothorax. What is the reason for the lung's failure to re-expand?

      Your Answer:

      Correct Answer: Increase in intrapleural pressure

      Explanation:

      The process of lung expansion relies on the negative pressure in the intrapleural space between the visceral and parietal pleura, which is present throughout respiration. This negative pressure pulls the lung towards the chest wall, allowing it to expand. However, if air enters the intrapleural space, the negative pressure is lost and the lung cannot fully reinflate. It is important to note that the intrapleural space is a potential space between the pleural surfaces, and there is typically no actual space present under normal circumstances.

      Management of Pneumothorax: BTS Guidelines

      Pneumothorax is a condition where air accumulates in the pleural space, causing the lung to collapse. The British Thoracic Society (BTS) has published guidelines for the management of spontaneous pneumothorax, which can be primary or secondary. Primary pneumothorax occurs without any underlying lung disease, while secondary pneumothorax is associated with lung disease.

      The BTS recommends that patients with a rim of air less than 2 cm and no shortness of breath may be discharged, while those with a larger rim of air or shortness of breath should undergo aspiration or chest drain insertion. For secondary pneumothorax, patients over 50 years old with a rim of air greater than 2 cm or shortness of breath should undergo chest drain insertion. Aspiration may be attempted for those with a rim of air between 1-2 cm, but chest drain insertion is recommended if aspiration fails.

      Patients with iatrogenic pneumothorax, which is caused by medical procedures, have a lower likelihood of recurrence than those with spontaneous pneumothorax. Observation is usually sufficient, but chest drain insertion may be required in some cases. Ventilated patients and those with chronic obstructive pulmonary disease (COPD) may require chest drain insertion.

      Patients with pneumothorax should be advised to avoid smoking to reduce the risk of further episodes. They should also be aware of restrictions on air travel and scuba diving. The CAA recommends a waiting period of two weeks after successful drainage before air travel, while the BTS advises against scuba diving unless the patient has undergone bilateral surgical pleurectomy and has normal lung function and chest CT scan postoperatively.

      In summary, the BTS guidelines provide a comprehensive approach to the management of pneumothorax, taking into account the type of pneumothorax and the patient’s individual circumstances. Early intervention and appropriate follow-up can help prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 69 - A 20-year-old man presents to the emergency department with diabetic ketoacidosis. After early...

    Incorrect

    • A 20-year-old man presents to the emergency department with diabetic ketoacidosis. After early treatment, an arterial blood gas is taken, which shows the following results.

      ABG result - temperature 35.0 ºC:

      pH 7.30 (7.35 - 7.45)
      PaCO2 3.5 kPa (4.7 - 6.0)
      PaO2 10 kPa (11 - 13)
      HCO3- 16 mEq/L (22 - 26)
      Na+ 138 mmol/L (135 - 145)
      K+ 3.3 mmol/L (3.5 - 5.0)

      What physiological change is occurring in this patient?

      Your Answer:

      Correct Answer: Metabolic acidosis is causing a decreased affinity of haemoglobin for oxygen

      Explanation:

      In acidosis, the oxyhaemoglobin dissociation curve shifts to the right, indicating a decrease in affinity of haemoglobin for oxygen. This is due to an increase in the number of [H+] ions, reflecting greater metabolic activity. Low [H+] levels cause a shift to the left. The low HCO3- in this patient can be explained by metabolic acidosis, but it does not cause a shift in the oxyhaemoglobin dissociation curve. Hypokalaemia may be a result of treatment for diabetic ketoacidosis, but it does not cause a shift in the oxygen dissociation curve. When temperature increases, the oxyhaemoglobin dissociation curve also shifts to the right, causing a decrease in haemoglobin affinity for oxygen. Hypothermia causes a shift to the left, indicating an increased affinity of haemoglobin for oxygen.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 70 - An 80-year-old man with metastatic lung cancer arrives at the acute medical unit...

    Incorrect

    • An 80-year-old man with metastatic lung cancer arrives at the acute medical unit with sudden shortness of breath. A chest x-ray shows a malignant pleural effusion encasing the right lung. The medical registrar intends to perform a pleural tap to drain the effusion and send a sample to the lab. The registrar takes into account the effusion's position around the lung. What is the minimum level of the effusion in the mid-axillary line?

      Your Answer:

      Correct Answer: 10th rib

      Explanation:

      The parietal pleura can be found at the 10th rib in the mid-axillary line, while the visceral pleura is closely attached to the lung tissue and can be considered as one. The location of the parietal pleura is more inferior than that of the visceral pleura, with the former being at the 8th rib in the midclavicular line and the 10th rib in the midaxillary line. The location of the parietal pleura in the scapular line is not specified.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 71 - A 27-year-old man with a history of epilepsy is admitted to the hospital...

    Incorrect

    • A 27-year-old man with a history of epilepsy is admitted to the hospital after experiencing a tonic-clonic seizure. He is currently taking sodium valproate as his only medication. A venous blood gas is obtained immediately.

      What are the expected venous blood gas results for this patient?

      Your Answer:

      Correct Answer: Low pH, high lactate, low SaO2

      Explanation:

      Acidosis shifts the oxygen dissociation curve to the right, which enhances oxygen delivery to the tissues by causing more oxygen to dissociate from Hb. postictal lactic acidosis is a common occurrence in patients with tonic-clonic seizures, and it is typically managed by monitoring for spontaneous resolution. During a seizure, tissue hypoxia can cause lactic acidosis. Therefore, a venous blood gas test for this patient should show low pH, high lactate, and low SaO2.

      If the venous blood gas test shows a high pH, normal lactate, and low SaO2, it would not be consistent with postictal lactic acidosis. This result indicates alkalosis, which can be caused by gastrointestinal losses, renal losses, or Cushing syndrome.

      A high pH, normal lactate, and normal SaO2 would also be inconsistent with postictal lactic acidosis because tissue hypoxia would cause an increase in lactate levels.

      Similarly, low pH, high lactate, and normal SaO2 would not be expected in postictal lactic acidosis because acidosis would shift the oxygen dissociation curve to the right, decreasing the oxygen saturation of haemoglobin.

      Finally, normal pH, normal lactate, and normal SaO2 are unlikely to be found in this patient shortly after a seizure. However, if the venous blood gas test was taken days after the seizure following an uncomplicated clinical course, these findings would be more plausible.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 72 - Which one of the following is associated with increased lung compliance in elderly...

    Incorrect

    • Which one of the following is associated with increased lung compliance in elderly individuals?

      Your Answer:

      Correct Answer: Emphysema

      Explanation:

      Understanding Lung Compliance in Respiratory Physiology

      Lung compliance refers to the extent of change in lung volume in response to a change in airway pressure. An increase in lung compliance can be caused by factors such as aging and emphysema, which is characterized by the loss of alveolar walls and associated elastic tissue. On the other hand, a decrease in lung compliance can be attributed to conditions such as pulmonary edema, pulmonary fibrosis, pneumonectomy, and kyphosis. These conditions can affect the elasticity of the lungs and make it more difficult for them to expand and contract properly. Understanding lung compliance is important in respiratory physiology as it can help diagnose and manage various respiratory conditions. Proper management of lung compliance can improve lung function and overall respiratory health.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 73 - A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During...

    Incorrect

    • A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?

      Your Answer:

      Correct Answer: Suprascapular nerve

      Explanation:

      The Suprascapular Nerve and its Function

      The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.

      If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 74 - A 40-year-old woman visits her GP after being treated at the Emergency Department...

    Incorrect

    • A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.

      Which nerve or nerves are likely to have been affected?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 75 - A 35-year-old female patient presents to the GP with complaints of headaches, nasal...

    Incorrect

    • A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?

      Your Answer:

      Correct Answer: Maxillary

      Explanation:

      The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.

      The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.

      Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 76 - A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is...

    Incorrect

    • A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is noted to be widened. Where does the trachea bifurcate?

      Your Answer:

      Correct Answer: T5

      Explanation:

      The trachea divides into two branches at the fifth thoracic vertebrae, or sometimes the sixth in individuals who are tall.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 77 - A 29-year-old man comes to the clinic with a complaint of ear pain....

    Incorrect

    • A 29-year-old man comes to the clinic with a complaint of ear pain. He mentions that the pain started yesterday and has been preventing him from working. He also reports experiencing dizziness and muffled sounds on the affected side. During the examination, you notice that he has a fever and a bulging tympanic membrane with visible fluid. Based on these symptoms, you suspect that he has a middle ear infection. Now, you wonder which ossicle the tensor tympani muscle inserts into.

      Which ossicle does the tensor tympani muscle insert into?

      Your Answer:

      Correct Answer: Malleus

      Explanation:

      The tensor tympani muscle is located in a bony canal above the pharyngotympanic tube and originates from the cartilaginous portion of the tube, the bony canal, and the greater wing of the sphenoid bone. Its function is to reduce the magnitude of vibrations transmitted into the middle ear by pulling the handle of the malleus medially when contracted. This muscle is innervated by the nerve to tensor tympani, which arises from the mandibular nerve.

      The middle ear contains three ossicles, which are the malleus, incus, and stapes. The malleus is the most lateral and attaches to the tympanic membrane, while the incus lies between and articulates with the other two ossicles. The stapes is the most medial and is connected to the oval window of the cochlea. The stapedius muscle is associated with the stapes. The lunate and trapezium are not bones of the middle ear but are carpal bones.

      A patient with ear pain, difficulty hearing, dizziness, and fever may have otitis media, which is confirmed on otoscopy by a bulging tympanic membrane and visible fluid level.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 78 - A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the...

    Incorrect

    • A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the surgeons reach the root of the lung, which structure will be situated furthest back in the anatomical plane?

      Your Answer:

      Correct Answer: Vagus nerve

      Explanation:

      At the lung root, the phrenic nerve is situated in the most anterior position while the vagus nerve is located at the posterior end.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 79 - A 26-year-old male is brought to the emergency department by his mother. He...

    Incorrect

    • A 26-year-old male is brought to the emergency department by his mother. He is agitated, restless, and anxious.

      Upon examination, dilated pupils are observed, and an ECG reveals sinus tachycardia.

      The patient has a medical history of chronic asthma and is currently taking modified-release theophylline tablets.

      According to his mother, he returned from a trip to Pakistan last night and has been taking antibiotics for bacterial gastroenteritis for the past four days. He has three days left on his antibiotic course.

      What could be the cause of his current presentation?

      Your Answer:

      Correct Answer: Ciprofloxacin

      Explanation:

      Terbinafine is frequently prescribed for the treatment of fungal nail infections as an antifungal medication.

      Theophylline and its Poisoning

      Theophylline is a naturally occurring methylxanthine that is commonly used as a bronchodilator in the management of asthma and COPD. Its exact mechanism of action is still unknown, but it is believed to be a non-specific inhibitor of phosphodiesterase, resulting in an increase in cAMP. Other proposed mechanisms include antagonism of adenosine and prostaglandin inhibition.

      However, theophylline poisoning can occur and is characterized by symptoms such as acidosis, hypokalemia, vomiting, tachycardia, arrhythmias, and seizures. In such cases, gastric lavage may be considered if the ingestion occurred less than an hour prior. Activated charcoal is also recommended, while whole-bowel irrigation can be performed if theophylline is in sustained-release form. Charcoal hemoperfusion is preferable to hemodialysis in managing theophylline poisoning.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 80 - A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of...

    Incorrect

    • A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of breath after walking just a few meters, whereas he can usually walk up to 200m. The man appears cyanosed in his extremities and his pulse oximeter shows a reading of 83%. What is the primary mode of carbon dioxide transportation in the bloodstream?

      Your Answer:

      Correct Answer: Bound to haemoglobin as bicarbonate ions

      Explanation:

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 81 - A 26-year-old man presents to the emergency department with a feeling of food...

    Incorrect

    • A 26-year-old man presents to the emergency department with a feeling of food stuck in his throat. He experienced this sensation 2 hours ago after consuming fish at a nearby seafood restaurant. The patient reports no breathing difficulties. Upon laryngoscopy, a fish bone is found lodged in the left piriform recess. While removing the fish bone, a nerve located deep to the mucosa covering the recess is damaged.

      Which function is most likely to be affected in this individual?

      Your Answer:

      Correct Answer: Cough reflex

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is located just beneath a thin layer of mucosa covering the recess. This nerve plays a crucial role in the cough reflex, as it carries sensory information from the area above the vocal cords. Attempts to remove foreign objects from the piriform recess can also lead to nerve damage.

      Other functions, such as mastication, the pharyngeal reflex, salivation, and taste sensation, are mediated by different nerves and are not directly related to the piriform recess or the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 82 - A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of...

    Incorrect

    • A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of the testing, what is the definition of functional residual capacity?

      Your Answer:

      Correct Answer: Functional residual capacity = expiratory reserve volume + residual volume

      Explanation:

      To calculate the volume of air in the lungs after a normal relaxed expiration, one can use the formula for functional residual capacity (FRC), which is determined by the balance between the lungs’ tendency to recoil inwards and the chest wall’s tendency to pull outwards. FRC can be calculated by adding the expiratory reserve volume and the residual volume. In individuals with tetraplegia, decreases in FRC are primarily caused by a reduction in the outward pull of the chest wall, which occurs over time due to the inability to regularly expand the chest wall to large lung volumes. This reduction in FRC can increase the risk of atelectasis.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 83 - A 12-year-old girl is referred to a respiratory specialist due to persistent episodes...

    Incorrect

    • A 12-year-old girl is referred to a respiratory specialist due to persistent episodes of shortness of breath. She also suffers from severe hay fever and eczema. After undergoing a peak expiratory flow test, signs of outflow obstruction of her lungs are detected. The doctor prescribes beclomethasone and salbutamol for her and advises her mother to keep her away from dust, as asthma is often linked to hypersensitivity to dust. Which type of hypersensitivity is associated with asthma?

      Your Answer:

      Correct Answer: Type 1 hypersensitivity

      Explanation:

      Asthma is linked to type 1 hypersensitivity, which is caused by the binding of IgE to Mast cells, resulting in an inflammatory reaction. Other types of hypersensitivity include type 2, which involves the binding of IgG or IgM to cell surface antigens, type 3, which is immune complex-mediated, and type 4, which is T-cell mediated.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 84 - During a clinical trial examining oxygen consumption during exercise, participants aged 50 and...

    Incorrect

    • During a clinical trial examining oxygen consumption during exercise, participants aged 50 and above engage in high-intensity interval training exercises for 20 minutes while physiological measurements are recorded. What is the primary factor that is likely to restrict oxygen supply to tissues after the training session?

      Your Answer:

      Correct Answer: Low pCO2

      Explanation:

      When the pCO2 is low, the oxygen dissociation curve shifts to the left, which increases the affinity of haemoglobin for oxygen. This can limit the amount of oxygen available to tissues. On the other hand, high levels of pCO2 (hypercarbia) shift the curve to the right, decreasing the affinity of haemoglobin for oxygen and increasing oxygen availability to tissues.

      In acidosis, the concentration of 2,3-diphosphoglycerate (DPG) increases, which binds to deoxyhaemoglobin and shifts the oxygen dissociation curve to the right. This results in increased oxygen release from the blood into tissues.

      Hyperthermia also shifts the oxygen dissociation curve to the right, while the performance-enhancing substance myo-inositol trispyrophosphate (ITPP) has a similar effect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 85 - How many fissures can be found in the right lung?

    At what age...

    Incorrect

    • How many fissures can be found in the right lung?

      At what age do these fissures typically develop?

      Your Answer:

      Correct Answer: Two

      Explanation:

      The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 86 - A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing...

    Incorrect

    • A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?

      Your Answer:

      Correct Answer: Phrenic nerve

      Explanation:

      The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.

      The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.

      While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.

      Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.

      Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 87 - A 27-year-old male admitted to the ICU after a car accident has a...

    Incorrect

    • A 27-year-old male admitted to the ICU after a car accident has a pneumothorax. Using a bedside spirometer, his inspiratory and expiratory volumes were measured. What is the typical tidal volume for a male of his age?

      Your Answer:

      Correct Answer: 500ml

      Explanation:

      The amount of air that is normally breathed in and out without any extra effort is called tidal volume, which is 500ml in males and 350ml in females.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 88 - A 65-year-old man presents with respiratory symptoms and is referred to his primary...

    Incorrect

    • A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?

      Your Answer:

      Correct Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 89 - A 25-year-old man with a history of asthma since childhood visited his doctor...

    Incorrect

    • A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?

      Your Answer:

      Correct Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood

      Explanation:

      Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 90 - A 6-month-old infant is brought to the paediatrician due to increased work of...

    Incorrect

    • A 6-month-old infant is brought to the paediatrician due to increased work of breathing. The infant was born at term and via spontaneous vaginal delivery 6 months ago.

      During the examination, the paediatrician observes moderate subcostal and intercostal recession and notes that the infant appears tachypnoeic. The infant's temperature is 38.9ºC, and a chest x-ray is ordered, which reveals some consolidation in the right lower zone. Broad-spectrum antibiotics are initiated.

      Upon reviewing the infant's oxygen dissociation curve, the paediatrician notes a leftward shift relative to the standard adult curve. What is the cause of this appearance in the infant's oxygen dissociation curve?

      Your Answer:

      Correct Answer: Foetal haemoglobin (HbF)

      Explanation:

      The factor that shifts the oxygen dissociation curve to the left is foetal haemoglobin (HbF). This is because HbF has a higher affinity for oxygen than adult haemoglobin, haemoglobin A, which allows maternal haemoglobin to preferentially offload oxygen to the foetus across the placenta.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 91 - A 50-year-old man suffers a closed head injury and experiences a decline in...

    Incorrect

    • A 50-year-old man suffers a closed head injury and experiences a decline in consciousness upon arrival at the hospital. To monitor his intracranial pressure, an ICP monitor is inserted. What is the normal range for intracranial pressure?

      Your Answer:

      Correct Answer: 7 - 15mm Hg

      Explanation:

      The typical range for intracranial pressure is 7 to 15 mm Hg, with the brain able to tolerate increases up to 24 mm Hg before displaying noticeable clinical symptoms.

      Understanding the Monro-Kelly Doctrine and Autoregulation in the CNS

      The Monro-Kelly doctrine governs the pressure within the cranium by considering the skull as a closed box. The loss of cerebrospinal fluid (CSF) can accommodate increases in mass until a critical point is reached, usually at 100-120ml of CSF lost. Beyond this point, intracranial pressure (ICP) rises sharply, and pressure will eventually equate with mean arterial pressure (MAP), leading to neuronal death and herniation.

      The central nervous system (CNS) has the ability to autoregulate its own blood supply through vasoconstriction and dilation of cerebral blood vessels. However, extreme blood pressure levels can exceed this capacity, increasing the risk of stroke. Additionally, metabolic factors such as hypercapnia can cause vasodilation, which is crucial in ventilating head-injured patients.

      It is important to note that the brain can only metabolize glucose, and a decrease in glucose levels can lead to impaired consciousness. Understanding the Monro-Kelly doctrine and autoregulation in the CNS is crucial in managing intracranial pressure and preventing neurological damage.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 92 - A 60-year-old man visits his GP with worries about his hearing in recent...

    Incorrect

    • A 60-year-old man visits his GP with worries about his hearing in recent months. He has difficulty understanding conversations in noisy environments and his spouse has commented on his need for the television to be turned up to maximum volume.

      During the examination, the GP conducts some basic tests and finds:

      Rinne's Test - Air conduction > bone conduction in both ears
      Weber's Test - Lateralises to the left ear

      What can be inferred from these test results?

      Your Answer:

      Correct Answer: Left sensorineural hearing loss

      Explanation:

      The patient has left sensorineural hearing loss, as indicated by the normal Rinne result (air conduction > bone conduction bilaterally) and abnormal Weber result (lateralising to the unaffected ear). In contrast, if the patient had conductive hearing loss, Rinne’s test would show bone conduction > air conduction, and Weber’s test would localise to the worse ear in bilateral conductive hearing loss or the affected ear in unilateral conductive hearing loss. For right sensorineural hearing loss, Rinne’s test would be normal, but Weber’s test would localise to the left ear.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 93 - A 36-year-old man presents to his GP with symptoms of vertigo. He reports...

    Incorrect

    • A 36-year-old man presents to his GP with symptoms of vertigo. He reports that he has been experiencing constant dizziness for the past 2 days, which has prevented him from going to work. He also reports hearing difficulties and tinnitus in his right ear, as well as nausea and difficulty with balance. He notes that these symptoms are not related to changes in position. He has no significant medical history, except for a recent bout of flu that resolved on its own.

      During the examination, the man is observed to sway to the right while attempting to walk in a straight line. He also has a positive head thrust test to the right side. A complete neurological examination is performed, and aside from mild sensorineural hearing loss in the right ear, his neurological function is normal.

      Which structures are most likely involved in this man's condition?

      Your Answer:

      Correct Answer: Vestibular nerve and labyrinth

      Explanation:

      The patient is displaying symptoms of labyrinthitis, which affects both the vestibular nerve and labyrinth, resulting in vertigo and hearing impairment. In contrast, pure vestibular neuritis only causes vestibular symptoms without affecting hearing. Benign paroxysmal positional vertigo (BPPV) involves otolith displacement and is triggered by head position changes, which is not the case for this patient’s constant vertigo. Facial nerve palsy primarily causes facial drooping and does not affect hearing or vestibular function, making it an unlikely diagnosis for this patient.

      Understanding Viral Labyrinthitis

      Labyrinthitis is a condition that affects the membranous labyrinth, which includes the vestibular and cochlear end organs. It can be caused by a viral or bacterial infection, or it may be associated with systemic diseases. Viral labyrinthitis is the most common form of the condition.

      It’s important to distinguish labyrinthitis from vestibular neuritis, which only affects the vestibular nerve and doesn’t cause hearing impairment. Labyrinthitis, on the other hand, affects both the vestibular nerve and the labyrinth, resulting in both vertigo and hearing loss.

      The condition typically affects people between the ages of 40 and 70 and is characterized by an acute onset of symptoms, including vertigo, nausea and vomiting, hearing loss, and tinnitus. Patients may also experience gait disturbance and fall towards the affected side.

      Diagnosis is based on a patient’s history and examination, which may reveal spontaneous unidirectional horizontal nystagmus towards the unaffected side, sensorineural hearing loss, and an abnormal head impulse test.

      While episodes of labyrinthitis are usually self-limiting, medications like prochlorperazine or antihistamines may help reduce the sensation of dizziness. Understanding the symptoms and management of viral labyrinthitis can help patients seek appropriate treatment and manage their condition effectively.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 94 - A 15-year-old boy presents to his GP with a painless swelling in his...

    Incorrect

    • A 15-year-old boy presents to his GP with a painless swelling in his neck. The mass is located centrally just below the hyoid bone and does not cause any difficulty in swallowing or breathing. Upon examination, the GP notes that the mass moves with protrusion of the tongue and with swallowing. The GP diagnoses the boy with a benign thyroglossal cyst, which is caused by a persistent thyroglossal duct, and advises surgical removal. Where is the thyroglossal duct attached to the tongue?

      Your Answer:

      Correct Answer: Foramen cecum

      Explanation:

      The thyroglossal duct connects the thyroid gland to the tongue via the foramen caecum during embryonic development. The terminal sulcus, median sulcus, palatoglossal arch, and epiglottis are not connected to the thyroid gland.

      Understanding Thyroglossal Cysts

      Thyroglossal cysts are named after the thyroid and tongue, which are the two structures involved in their development. During embryology, the thyroid gland develops from the floor of the pharynx and descends into the neck, connected to the tongue by the thyroglossal duct. The foramen cecum is the point of attachment of the thyroglossal duct to the tongue. Normally, the thyroglossal duct atrophies, but in some people, it may persist and give rise to a thyroglossal duct cyst.

      Thyroglossal cysts are more common in patients under 20 years old and are usually midline, between the isthmus of the thyroid and the hyoid bone. They move upwards with protrusion of the tongue and may be painful if infected. Understanding the embryology and presentation of thyroglossal cysts is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 95 - An 80-year-old man visits the GP clinic for a routine hearing examination. He...

    Incorrect

    • An 80-year-old man visits the GP clinic for a routine hearing examination. He reports a decline in hearing ability in his left ear for the past few months. After conducting Rinne and Weber tests, you determine that he has conductive hearing loss in the left ear. Upon otoscopy, you observe cerumen impaction.

      What are the test findings for this patient?

      Your Answer:

      Correct Answer: Rinne: bone conduction > air conduction in right ear; Weber: lateralising to right ear

      Explanation:

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 96 - What is the anatomical level of the transpyloric plane? ...

    Incorrect

    • What is the anatomical level of the transpyloric plane?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 97 - A 35-year-old patient has been experiencing breathing difficulties for the past year. He...

    Incorrect

    • A 35-year-old patient has been experiencing breathing difficulties for the past year. He finds it challenging to climb small hills, has developed a persistent cough, and has had two chest infections that were treated effectively by his doctor. He has never smoked, and his mother had comparable symptoms when she was his age. Based on his spirometry results, which indicate an FEV1/FVC ratio of 60%, his doctor suspects that his symptoms are caused by a genetic disorder. What is the molecular mechanism that underlies his probable condition?

      Your Answer:

      Correct Answer: Failure to break down neutrophil elastase

      Explanation:

      The patient’s medical history suggests that they may be suffering from alpha-1 antitrypsin deficiency.

      When there is a shortage of alpha-1 antitrypsin, neutrophil elastase is not inhibited and can break down proteins in the lung interstitium. Although neutrophil elastase is a crucial part of the innate immune system, its unregulated activity can lead to excessive breakdown of extracellular proteins like elastin, collagen, fibronectin, and fibrin. This results in reduced pulmonary elasticity, which can cause emphysema and COPD.

      Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.

      A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.

      Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 98 - A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical...

    Incorrect

    • A 45-year-old woman is undergoing consent for a thyroidectomy due to failed medical treatment for Grave's disease. Radioiodine was not an option as she is the sole caregiver for her three young children. During the consent process, she is informed of the potential complications of thyroidectomy, including the risk of injury to the sensory branch of the superior laryngeal nerve. Can you identify which nerve branches off from the superior laryngeal nerve and is responsible for sensory function?

      Your Answer:

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The superior laryngeal nerve, a branch of the vagus nerve, has two branches: the external laryngeal nerve, which is a motor nerve, and the internal laryngeal nerve, which is a sensory nerve. The recurrent laryngeal nerve, also a branch of the vagus nerve, supplies all intrinsic muscles of the larynx except for the cricothyroid muscles.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 99 - A 35-year-old pregnant woman undergoes an ABG test. What is the anticipated outcome...

    Incorrect

    • A 35-year-old pregnant woman undergoes an ABG test. What is the anticipated outcome for a healthy pregnant woman?

      Your Answer:

      Correct Answer: Compensated respiratory alkalosis

      Explanation:

      During pregnancy, a woman’s increased tidal volume leads to a decrease in carbon dioxide levels, resulting in alkalosis. This is because carbon dioxide generates acid, and reduced levels of it lead to a decrease in acid. The kidneys eventually adapt to this change by reducing the amount of alkaline bicarbonate in the body. Therefore, pregnancy causes a compensated respiratory alkalosis.

      If a woman’s bicarbonate levels remain normal, she would have simple respiratory alkalosis.

      On the other hand, if a woman produces excess acid, she would have metabolic acidosis, which is the opposite of what occurs during pregnancy.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 100 - A 38-year-old woman visits her GP with a solitary, painless tumour in her...

    Incorrect

    • A 38-year-old woman visits her GP with a solitary, painless tumour in her left cheek. Upon further examination, she is diagnosed with pleomorphic adenoma. What is the recommended management for this condition?

      Your Answer:

      Correct Answer: Surgical resection

      Explanation:

      Surgical resection is the preferred treatment for pleomorphic adenoma, a benign tumor of the parotid gland that may undergo malignant transformation. Chemotherapy and radiotherapy are not effective in managing this condition. Additionally, salivary stone removal is not relevant to the treatment of pleomorphic adenoma.

      Understanding Pleomorphic Adenoma

      Pleomorphic adenoma, also known as a benign mixed tumour, is a non-cancerous growth that commonly affects the parotid gland. This type of tumour usually develops in individuals aged 40 to 60 years old. The condition is characterized by the proliferation of epithelial and myoepithelial cells of the ducts, as well as an increase in stromal components. The tumour is slow-growing, lobular, and not well encapsulated.

      The clinical features of pleomorphic adenoma include a gradual onset of painless unilateral swelling of the parotid gland. The swelling is typically movable on examination rather than fixed. The management of pleomorphic adenoma involves surgical excision. The prognosis is generally good, with a recurrence rate of 1-5% with appropriate excision (parotidectomy). However, recurrence may occur due to capsular disruption during surgery. If left untreated, pleomorphic adenoma may undergo malignant transformation, occurring in 2-10% of adenomas observed for long periods. Carcinoma ex-pleomorphic adenoma is the most common type of malignant transformation, occurring most frequently as adenocarcinoma.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (6/19) 32%
Passmed