-
Question 1
Correct
-
A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.
What specific lung volume would accurately describe the clinician's observation?Your Answer: Tidal volume (TV)
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Correct
-
A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?
Your Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?
Your Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood
Explanation:Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of the testing, what is the definition of functional residual capacity?
Your Answer: Functional residual capacity = vital capacity + residual volume
Correct Answer: Functional residual capacity = expiratory reserve volume + residual volume
Explanation:To calculate the volume of air in the lungs after a normal relaxed expiration, one can use the formula for functional residual capacity (FRC), which is determined by the balance between the lungs’ tendency to recoil inwards and the chest wall’s tendency to pull outwards. FRC can be calculated by adding the expiratory reserve volume and the residual volume. In individuals with tetraplegia, decreases in FRC are primarily caused by a reduction in the outward pull of the chest wall, which occurs over time due to the inability to regularly expand the chest wall to large lung volumes. This reduction in FRC can increase the risk of atelectasis.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 78-year-old man comes to the emergency department complaining of increasing difficulty in breathing over the past two days. He has a medical history of squamous cell lung cancer.
Upon examination, the trachea is observed to have shifted towards the left side, with dull percussion and absence of breath sounds throughout the left chest.
What is the probable diagnosis?Your Answer: Left lobar pneumonia
Correct Answer: Left lung collapse
Explanation:When a lung collapses, it can cause the trachea to shift towards the affected side, and there may be dullness on percussion and reduced breath sounds throughout the lung field. This is because the decrease in pressure on the affected side causes the mediastinum and trachea to move towards it.
A massive pleural effusion, on the other hand, would cause widespread dullness and absent breath sounds, but it would push the trachea away from the affected side due to increased pressure.
Pneumonia typically only affects one lung zone, so there would not be widespread dullness or absent breath sounds throughout the hemithorax. It also does not usually affect the position of the mediastinum or trachea.
Pneumothorax would be hyperresonant on percussion, not dull, and it may push the trachea away from the affected side in severe cases, but this is more common in tension pneumothoraces that occur after trauma.
A lobectomy may cause the trachea to shift towards the same side as the surgery due to decreased pressure, but it would not cause dullness or absent breath sounds throughout the lung fields.
Understanding White Lung Lesions on Chest X-Rays
When examining a chest x-ray, white shadowing in the lungs can indicate a variety of conditions. These may include consolidation, pleural effusion, collapse, pneumonectomy, specific lesions such as tumors, or fluid accumulation such as pulmonary edema. In cases where there is a complete white-out of one side of the chest, it is important to assess the position of the trachea. If the trachea is pulled towards the side of the white-out, it may indicate pneumonectomy, lung collapse, or pulmonary hypoplasia. If the trachea is pushed away from the white-out, it may indicate pleural effusion, a large thoracic mass, or a diaphragmatic hernia. Other signs of a positive mass effect may include leftward bowing of the azygo-oesophageal recess and splaying of the ribs on the affected side. Understanding the potential causes of white lung lesions on chest x-rays can aid in accurate diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A 65-year-old man is undergoing an upper GI endoscopy due to difficulty swallowing. During the procedure, a suspicious-looking blockage is found at 33 cm from the incisors. The endoscopist tries to widen the area with a balloon, but the tumor causes a rupture in the oesophageal wall. Where will the contents of the oesophagus now drain?
Your Answer: Posterior mediastinum
Explanation:The oesophagus is expected to remain within the thoracic cavity and situated in the posterior mediastinum at this point.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
What causes a cervical rib?
Your Answer: Hyperplasia of the annulus fibrosus
Correct Answer: Elongation of the transverse processes of the 7th cervical vertebrae
Explanation:Cervical ribs are formed when the transverse process of the 7th cervical vertebrae becomes elongated, resulting in a fibrous band that connects to the first thoracic rib.
Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Correct
-
A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.
Can you provide the definition of this particular lung volume?Your Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration
Explanation:The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A 35-year-old female presents with recurrent episodes of severe vertigo that have been disabling. She experiences these episodes multiple times a day, with each one lasting for about 10-20 minutes. Along with the vertigo, she also experiences ringing in both ears, nausea, and vomiting. She has noticed a change in her hearing in both ears, with difficulty hearing at times and normal hearing at other times. Additionally, she reports increased pressure in her ears. During the examination, you notice a painless rash behind her ear that has been present for many years.
What is the most likely diagnosis?Your Answer: Meniere’s disease
Explanation:Suspect Meniere’s disease in a patient presenting with vertigo, tinnitus, and fluctuating sensorineural hearing loss. Acoustic neuroma would present with additional symptoms such as facial numbness and loss of corneal reflex. Herpes Zoster Oticus (Ramsey Hunt syndrome) would present with facial palsy and a painless rash. Vestibular neuronitis would have longer episodes of vertigo, nausea, and vomiting, but no hearing loss. Benign paroxysmal positional vertigo would have brief episodes of vertigo after sudden head movements.
Meniere’s disease is a condition that affects the inner ear and its cause is unknown. It is more commonly seen in middle-aged adults but can occur at any age and affects both men and women equally. The condition is characterized by the excessive pressure and progressive dilation of the endolymphatic system. The main symptoms of Meniere’s disease are recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Vertigo is usually the most prominent symptom, but patients may also experience a sensation of aural fullness or pressure, nystagmus, and a positive Romberg test. These episodes can last from minutes to hours and are typically unilateral, but bilateral symptoms may develop over time.
The natural history of Meniere’s disease is that symptoms usually resolve in the majority of patients after 5-10 years. However, most patients will be left with some degree of hearing loss, and psychological distress is common. ENT assessment is required to confirm the diagnosis, and patients should inform the DVLA as the current advice is to cease driving until satisfactory control of symptoms is achieved. Acute attacks can be managed with buccal or intramuscular prochlorperazine, and admission to the hospital may be required. Prevention strategies include the use of betahistine and vestibular rehabilitation exercises, which may be beneficial.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 27-year-old woman is expecting her first baby. During routine midwife appointments, it was discovered that she has hypertension and proteinuria, which are signs of pre-eclampsia. To prevent respiratory distress syndrome, a complication of prematurity caused by inadequate pulmonary surfactant production, she will require steroid doses before induction of preterm labor. Which cell type is being targeted by corticosteroids in this patient?
Your Answer: Alveolar macrophages
Correct Answer: Type 2 pneumocytes
Explanation:Types of Pneumocytes and Their Functions
Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.
Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.
Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Correct
-
A 30-year-old female complains of weakness, weight gain, and cold intolerance. You suspect hypothyroidism. What vocal change would you anticipate to have occurred, increasing the probability of this potential diagnosis?
Your Answer: Hoarse voice
Explanation:Hoarseness is a symptom that can be caused by hypothyroidism.
When a patient presents with hoarseness, it can be difficult to determine the underlying cause. However, if the hoarseness is accompanied by other symptoms commonly associated with hypothyroidism, it can help narrow down the diagnosis.
The reason for the voice change in hypothyroidism is due to the thickening of the vocal cords caused by the accumulation of mucopolysaccharide. This substance, also known as glycosaminoglycans, is found throughout the body in mucus and joint fluid. When it builds up in the vocal cords, it can lower the pitch of the voice. The thyroid hormone plays a role in preventing this buildup.
Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.
If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
What is the term used to describe the area between the vocal cords?
Your Answer: Piriform recess
Correct Answer: Rima glottidis
Explanation:The narrowest part of the laryngeal cavity is known as the rima glottidis.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Correct
-
A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner at home. She has been experiencing a high-pitched ringing in her left ear for the past 6 months. She attributes this to attending loud concerts frequently and has not sought medical attention until now. She reports that she can hear better when she is outside but struggles in quiet environments. Upon examination, there are no abnormalities seen during otoscopy. One of the possible diagnoses for this patient is otosclerosis, a condition that primarily affects the stapes bone. Which structure does the stapes bone come into contact with in the cochlea?
Your Answer: Oval window
Explanation:The oval window is where the stapes connects with the cochlea, and it is the most inner of the ossicles. The stapes has a stirrup-like shape, with a head that articulates with the incus and two limbs that connect it to the base. The base of the stapes is in contact with the oval window, which is one of the only two openings between the middle and inner ear. The organ of Corti, which is responsible for hearing, is located on the basilar membrane within the cochlear duct. The round window is the other opening between the middle and inner ear, and it allows the fluid within the cochlea to move, transmitting sound to the hair cells. The helicotrema is the point where the scala tympani and scala vestibuli meet at the apex of the cochlear labyrinth. The tectorial membrane is a membrane that extends along the entire length of the cochlea. A female in her third decade of life with unilateral conductive hearing loss and a family history of hearing loss is likely to have otosclerosis, a condition that affects the stapes and can cause severe or total hearing loss due to abnormal bone growth and fusion with the cochlea.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Correct
-
Which of the following nerve roots provide nerve fibers to the ansa cervicalis?
Your Answer: C1, C2 and C3
Explanation:The ansa cervicalis muscles can be remembered using the acronym GHost THought SOmeone Stupid Shot Irene. These muscles include the GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The ansa cervicalis is made up of a superior and inferior root, which originate from C1, C2, and C3. The superior root begins where the nerve crosses the internal carotid artery and descends in the anterior triangle of the neck. The inferior root joins the superior root in the mid neck region and can pass either superficially or deep to the internal jugular vein.
The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Correct
-
A 24-year-old female arrives at the emergency department in a state of panic following a recent breakup with her partner. She complains of chest tightness and dizziness, fearing that she may be experiencing a heart attack. Upon examination, her vital signs are stable except for a respiratory rate of 34 breaths per minute. What compensatory mechanism is expected in response to the change in her oxyhaemoglobin dissociation curve, and what is the underlying cause?
Your Answer: Left shift, respiratory alkalosis
Explanation:The patient’s oxygen dissociation curve has shifted to the left, indicating respiratory alkalosis. This is likely due to the patient experiencing a panic attack and hyperventilating, leading to a decrease in carbon dioxide levels and an increase in the affinity of haemoglobin for oxygen. Respiratory acidosis, hypercapnia, and a right shift of the curve are not appropriate explanations for this patient’s condition.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
An anxious father brings his 6-month-old to the out of hours GP. The baby has been coughing persistently for the past 2 days and it seems to be getting worse. He also has a runny nose and an audible wheeze. The GP diagnoses bronchiolitis.
What is the most probable causative organism in this case?Your Answer: Respiratory syncytial virus
Explanation:Understanding Bronchiolitis
Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.
The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.
Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.
The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?
Your Answer: Lobular accentuation of enlarged glomeruli with mesangial hypercellularity
Correct Answer: Epithelial crescents in Bowman's capsule
Explanation:Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.
Granulomatosis with Polyangiitis: An Autoimmune Condition
Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.
To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.
The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Correct
-
A 75-year-old man is having a left pneumonectomy for bronchial carcinoma. When the surgeons reach the root of the lung, which structure will be the most anterior in the anatomical plane?
Your Answer: Phrenic nerve
Explanation:The lung root contains two nerves, with the phrenic nerve positioned in the most anterior location and the vagus nerve situated in the most posterior location.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
How many fissures can be found in the right lung?
At what age do these fissures typically develop?Your Answer: Two
Explanation:The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Correct
-
A 23-year-old woman comes to your clinic with a complaint of ear pain and difficulty hearing on one side. During the examination, you observe that she has a fever and a bulging tympanic membrane. What nerve transmits pain from the middle ear?
Your Answer: Glossopharyngeal nerve
Explanation:The correct answer is the glossopharyngeal nerve, which is responsible for carrying sensation from the middle ear.
The ninth cranial nerve, or glossopharyngeal nerve, carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas such as the pharyngeal wall, tonsils, pharyngotympanic tube, middle ear, tympanic membrane, external auditory canal, and auricle. It also provides motor fibers to the stylopharyngeus and parasympathetic fibers to the parotid gland. Additionally, it carries information from the baroreceptors and chemoreceptors of the carotid sinus.
On the other hand, the seventh cranial nerve, or facial nerve, innervates the muscles of facial expression, stylohyoid, stapedius, and the posterior belly of digastric. It carries sensation from part of the external acoustic meatus, auricle, and behind the auricle, and taste from the anterior two-thirds of the tongue. It also provides parasympathetic fibers to the submandibular, sublingual, nasal, and lacrimal glands.
The eighth cranial nerve, or vestibulocochlear nerve, has a vestibular component that carries balance information from the labyrinths of the inner ear and a cochlear component that carries hearing information from the cochlea of the inner ear.
The twelfth cranial nerve, or hypoglossal nerve, supplies motor innervation to all of the intrinsic muscles of the tongue and all of the extrinsic muscles of the tongue except for palatoglossus.
Lastly, the maxillary nerve is the second division of the trigeminal nerve, the fifth cranial nerve, which carries sensation from the upper teeth and gingivae, the nasal cavity, and skin across the lower eyelids and cheeks.
Based on the patient’s symptoms of ear pain, the most likely diagnosis is otitis media, as indicated by her fever and the presence of a bulging tympanic membrane on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)