-
Question 1
Incorrect
-
A patient visiting the neurology outpatient clinic presents with a motor deficit. The neurologist observes muscle fasciculations, flaccid weakness, and decreased reflexes.
What is the location of the lesion?Your Answer: Medulla
Correct Answer: Peripheral nerve
Explanation:A lower motor neuron lesion can be identified by a decrease in reflex response.
When a lower motor neuron lesion occurs, it can result in reduced tone, weakness, and muscle fasciculations. These neurons originate in the anterior horn of the spinal cord and connect with the neuromuscular junction.
On the other hand, if the corticospinal tract is affected in the motor cortex, internal capsule, midbrain, or medulla, it would cause an upper motor neuron pattern of weakness. This would be characterized by hypertonia, brisk reflexes, and an upgoing plantar reflex response.
Reflexes are automatic responses that our body makes in response to certain stimuli. These responses are controlled by the nervous system and do not require conscious thought. There are several common reflexes that are associated with specific roots in the spinal cord. For example, the ankle reflex is associated with the S1-S2 root, while the knee reflex is associated with the L3-L4 root. Similarly, the biceps reflex is associated with the C5-C6 root, and the triceps reflex is associated with the C7-C8 root. Understanding these reflexes can help healthcare professionals diagnose and treat certain conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A 28-year-old woman presents to the emergency department with a suspected heroin overdose. Her Glasgow Coma Scale (GCS) score is 9, with only eye opening to trapezial squeeze and incoherent speech with inappropriate words. During her evaluation, the physician orders an arterial blood gas test.
What are the expected arterial blood gas results in this situation?Your Answer: Partially compensated respiratory alkalosis
Correct Answer: Uncompensated respiratory acidosis
Explanation:Respiratory acidosis can occur as a result of opioid overdose due to the depression of the central nervous system, which leads to a reduction in respiratory rate. This causes an accumulation of carbon dioxide in the blood, resulting in the formation of carbonic acid and a subsequent decrease in blood pH.
It is unlikely that the respiratory acidosis in an acute opioid overdose would be compensated by the kidneys within the short time frame. Therefore, a normal arterial blood gas (ABG) result would be incorrect.
Partially compensated respiratory acidosis is also unlikely in this case, as the patient’s respiratory acidosis is unlikely to have been compensated at this stage.
However, partially compensated respiratory alkalosis may occur if the patient has an increased respiratory rate. This leads to a decrease in carbon dioxide levels in the blood, resulting in an alkalotic state. Over time, the bicarbonate levels in the blood will decrease to correct the pH.
Understanding Opioids: Types, Receptors, and Clinical Uses
Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.
Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.
The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A 44-year-old man visits the urology clinic with a complaint of erectile dysfunction. What happens when there is an increase in parasympathetic stimulation in the penis?
Your Answer: Ejaculation
Correct Answer: Erection
Explanation:To remember the process of erection, use the memory aid P for parasympathetic points, S for sympathetic shoots. This means that parasympathetic stimulation leads to an erection, while sympathetic stimulation causes ejaculation, detumescence, and vasospasm of the pudendal artery. Additionally, it causes the smooth muscle in the epididymis and vas to contract to convey the ejaculate.
Understanding Penile Erection and Priapism
Penile erection is a complex physiological process that involves the autonomic and somatic nervous systems. The sympathetic nerves, originating from T11-L2, and parasympathetic nerves, originating from S2-4, join to form the pelvic plexus. Parasympathetic discharge causes erection, while sympathetic discharge causes ejaculation and detumescence. Somatic nerves are supplied by dorsal penile and pudendal nerves, and efferent signals are relayed from Onufs nucleus (S2-4) to innervate ischiocavernosus and bulbocavernosus muscles. Autonomic discharge to the penis triggers the veno-occlusive mechanism, which leads to the flow of arterial blood into the penile sinusoidal spaces. During the detumescence phase, arteriolar constriction reduces arterial inflow and allows venous return to normalize.
Priapism is a prolonged, unwanted erection lasting more than four hours in the absence of sexual desire. It is classified into low flow priapism, high flow priapism, and recurrent priapism. Low flow priapism is the most common type and is due to veno-occlusion, resulting in high intracavernosal pressures. It is often painful and requires emergency treatment if present for more than four hours. High flow priapism is due to unregulated arterial blood flow and usually presents as a semi-rigid, painless erection. Recurrent priapism is typically seen in sickle cell disease, most commonly of the high flow type. Causes of priapism include intracavernosal drug therapies, blood disorders such as leukemia and sickle cell disease, neurogenic disorders such as spinal cord transection, and trauma to the penis resulting in arterio-venous malformations. Management includes ice packs/cold showers, aspiration of blood from corpora or intracavernosal alpha adrenergic agonists for low flow priapism. Delayed therapy of low flow priapism may result in erectile dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
After spending 8 weeks in a plaster cast on his left leg, John, a 25-year-old male, visits the clinic to have it removed. During the examination, it is observed that his left foot is in a plantar flexed position, indicating foot drop. Which nerve is typically impacted, resulting in foot drop?
Your Answer: Tibial nerve
Correct Answer: Common peroneal nerve
Explanation:Footdrop, which is impaired dorsiflexion of the ankle, can be caused by a lesion of the common peroneal nerve. This nerve is a branch of the sciatic nerve and divides into the deep and superficial peroneal nerves after wrapping around the neck of the fibula. The deep peroneal nerve is responsible for innervating muscles that control dorsiflexion of the foot, such as the tibialis anterior, extensor hallucis longus, and extensor digitorum longus. Damage to the common or deep peroneal nerve can result in weakness or paralysis of these muscles, leading to unopposed plantar flexion of the foot. The superficial peroneal nerve, on the other hand, innervates muscles that evert the foot. Other nerves that innervate muscles in the lower limb include the femoral nerve, which controls hip flexion and knee extension, the tibial nerve, which mainly controls plantar flexion and inversion of the foot, and the obturator nerve, which mainly controls thigh adduction.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 25-year-old woman is being assessed in the delivery room for lack of progress in labour. The release of oxytocin during labour and delivery is facilitated by a positive feedback loop. Which part of the brain is responsible for producing this hormone?
Your Answer: Paraventricular nucleus of the hypothalamus
Explanation:The paraventricular nucleus of the hypothalamus is responsible for producing oxytocin. This is achieved through the release of magnocellular neurosecretory neurons. Vasopressin (ADH) is also produced by these neurons.
The mammillary bodies of the hypothalamus play a crucial role in recollective memory. Damage to these bodies, such as in cases of thiamine deficiency in Wernicke-Korsakoff syndrome, can result in memory impairment.
Located at the lowest part of the brainstem and continuous with the spinal cord, the medulla oblongata contains the cardiac and respiratory groups, as well as vasomotor centers that regulate heart rate, blood pressure, and breathing.
The substantia nigra is responsible for producing dopamine, which plays a role in regulating movement and emotion.
The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 54-year-old factory worker gets his arm caught in a metal grinder and is rushed to the ER. Upon examination, he displays an inability to extend his metacarpophalangeal joints and abduct his shoulder. Additionally, he experiences weakness in his elbow and wrist. What specific injury has occurred?
Your Answer: Ulnar nerve
Correct Answer: Posterior cord of brachial plexus
Explanation:Lesion of the posterior cord results in the impairment of the axillary and radial nerve, which are responsible for innervating various muscles such as the deltoid, triceps, brachioradialis, wrist extensors, finger extensors, subscapularis, teres minor, and latissimus dorsi.
Brachial Plexus Cords and their Origins
The brachial plexus cords are categorized based on their position in relation to the axillary artery. These cords pass over the first rib near the lung’s dome and under the clavicle, just behind the subclavian artery. The lateral cord is formed by the anterior divisions of the upper and middle trunks and gives rise to the lateral pectoral nerve, which originates from C5, C6, and C7. The medial cord is formed by the anterior division of the lower trunk and gives rise to the medial pectoral nerve, the medial brachial cutaneous nerve, and the medial antebrachial cutaneous nerve, which originate from C8, T1, and C8, T1, respectively. The posterior cord is formed by the posterior divisions of the three trunks (C5-T1) and gives rise to the upper and lower subscapular nerves, the thoracodorsal nerve to the latissimus dorsi (also known as the middle subscapular nerve), and the axillary and radial nerves.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 46-year-old homeless man is admitted to the emergency department due to intoxication. He reports experiencing progressive weakness in his lower limbs, as well as tingling and numbness in his hands. Additionally, he has been having issues with his memory and vision. Upon examination, there is generalised weakness and reduced proprioception and vibration sensation in the distal limbs, worse in the hands than the feet. Romberg's test is negative, but Babinski is positive. The patient's knee reflexes are brisk, and ankle jerks are absent. Based on this presentation, which spinal pathways are affected?
Your Answer: Dorsal column & anterior spinothalamic tract
Correct Answer: Dorsal column & lateral corticospinal tracts
Explanation:Subacute combined degeneration of the spinal cord (SACD) is characterized by the patchy loss of myelin, primarily affecting the ascending dorsal columns and descending lateral corticospinal tracts. This results in a range of symptoms, including progressive weakness, tingling, numbness, and upper motor neuron signs in the lower limbs. Vision changes and cognitive decline may also occur.
While the dorsal column is affected in SACD, the ascending anterior spinothalamic tract, which carries crude touch and pressure information, is typically not involved. Muscle weakness due to lateral corticospinal tract involvement is a hallmark of SACD.
The anterior spinocerebellar tract, which carries unconscious proprioceptive and cutaneous information from the lower body, is not typically affected in SACD. Similarly, the lateral spinothalamic tract, which carries pain and temperature information, is not commonly involved.
The reticulospinal and vestibulospinal tracts, which are primarily involved in locomotion, postural control, and changes in head orientation, are also not commonly affected in SACD.
Subacute Combined Degeneration of Spinal Cord
Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.
This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 45-year-old woman presents to the clinic with a history of multiple minor falls and confusion. She has been experiencing daily headaches with nausea for the past 3 years, which have worsened at night and occasionally wake her up. Imaging reveals an intracranial mass located on the left hemisphere's convexity, and a biopsy of the mass shows a whorled pattern of calcified cellular growth that forms syncytial nests and appears as round, eosinophilic laminar structure.
What is the most probable diagnosis for this patient?Your Answer: Ependymoma
Correct Answer: Meningioma
Explanation:Meningiomas are the second most frequent type of primary brain tumour, often found in the convexities of cerebral hemispheres and parasagittal regions. The biopsy findings of this patient suggest the presence of psammoma bodies, which are mineral deposits formed by calcification of spindle cells in concentric whorls within the tumour.
Ependymomas usually present as paraventricular tumours and exhibit perivascular rosettes under light microscopy.
Glioblastomas are the most common primary malignant brain tumour in adults. Light microscopy reveals hypercellular areas of atypical astrocytes surrounding regions of necrosis.
Medulloblastomas are malignant cerebellar tumours that typically occur in children and are characterized by small blue cells that may encircle neutrophils.
Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
An 8-year-old boy is brought to the general practice by his father. The father has observed several peculiar episodes where his son would stop what he was doing and become unresponsive to sounds and touch for 5-10 seconds. The doctor suspects epilepsy as the cause.
What EEG pattern is typical of the underlying condition?Your Answer: 3-6 Hz polyspike-and-wave
Correct Answer: 3Hz spike-and-wave
Explanation:An absence seizure is characterized by 3Hz oscillations on EEG, making it a defining feature. Therefore, EEG is the primary diagnostic tool used to detect absence seizures.
Absence seizures, also known as petit mal, are a type of epilepsy that is commonly observed in children. This form of generalised epilepsy typically affects children between the ages of 3-10 years old, with girls being twice as likely to be affected as boys. Absence seizures are characterised by brief episodes that last only a few seconds and are followed by a quick recovery. These seizures may be triggered by hyperventilation or stress, and the child is usually unaware of the seizure. They may occur multiple times a day and are identified by a bilateral, symmetrical 3Hz spike and wave pattern on an EEG.
The first-line treatment for absence seizures includes sodium valproate and ethosuximide. The prognosis for this condition is generally good, with 90-95% of affected individuals becoming seizure-free during adolescence.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 67-year-old man comes to the clinic with persistent speech difficulties. He is concerned that he might have suffered a stroke. Which scoring system should be used to assess if he has had a stroke?
Your Answer: CHADS2-VASC score
Correct Answer: ROSIER score
Explanation:Stroke Assessment and Investigations
Whilst diagnosing a stroke may be straightforward in some cases, it can be challenging in others due to vague symptoms. The FAST screening tool, which stands for Face/Arms/Speech/Time, is a well-known tool used by the general public to identify stroke symptoms. However, medical professionals use a validated tool called the ROSIER score, recommended by the Royal College of Physicians. The ROSIER score assesses loss of consciousness or syncope, seizure activity, and new, acute onset of asymmetric facial, arm, or leg weakness, speech disturbance, or visual field defect. A score of more than zero indicates a likely stroke.
When investigating suspected stroke, a non-contrast CT head scan is the first line radiological investigation. The key question is whether the stroke is ischaemic or haemorrhagic, as this determines the appropriate treatment. Ischaemic strokes may show areas of low density in the grey and white matter of the territory, which may take time to develop. On the other hand, haemorrhagic strokes typically show areas of hyperdense material (blood) surrounded by low density (oedema). It is crucial to determine the type of stroke promptly, given the increasing role of thrombolysis and thrombectomy in acute stroke management. In rare cases, a third pathology such as a tumour may also be detected.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Correct
-
A 65-year-old woman presents to ED with left-sided face weakness.
On examination, her left eyebrow is drooped and so is the left corner of her mouth. There is reduced movement on the left side of her face; she cannot wrinkle her brow; she cannot completely close her left eye and when you ask her to smile it is asymmetrical. You notice her speech is slightly slurred.
What is the crucial finding that distinguishes this patient's probable diagnosis from a stroke?Your Answer: Cannot wrinkle her brow
Explanation:The patient is likely experiencing Bell’s palsy, which is a condition affecting the lower motor neurons. This can sometimes be mistaken for a stroke, which affects the upper motor neurons. However, unlike a stroke, Bell’s palsy affects the entire side of the face, including the inability to wrinkle the brow.
In cases of facial paralysis, forehead sparing occurs when the patient is still able to wrinkle their brow on the same side as the affected area. This is due to some crossover of upper motor neuron supply to the forehead, but not to the lower face. However, in the case of a lower motor neuron lesion, there is no compensation from the opposite side, resulting in the inability to wrinkle the brow on the affected side and no forehead sparing.
Bell’s palsy is a sudden, one-sided facial nerve paralysis of unknown cause. It typically affects individuals between the ages of 20 and 40, and is more common in pregnant women. The condition is characterized by a lower motor neuron facial nerve palsy that affects the forehead, while sparing the upper face. Patients may also experience postauricular pain, altered taste, dry eyes, and hyperacusis.
The management of Bell’s palsy has been a topic of debate, with various treatment options proposed in the past. However, there is now consensus that all patients should receive oral prednisolone within 72 hours of onset. The addition of antiviral medications is still a matter of discussion, with some experts recommending it for severe cases. Eye care is also crucial to prevent exposure keratopathy, and patients may need to use artificial tears and eye lubricants. If they are unable to close their eye at bedtime, they should tape it closed using microporous tape.
Follow-up is essential for patients who show no improvement after three weeks, as they may require urgent referral to ENT. Those with more long-standing weakness may benefit from a referral to plastic surgery. The prognosis for Bell’s palsy is generally good, with most patients making a full recovery within three to four months. However, untreated cases can result in permanent moderate to severe weakness in around 15% of patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 27-year-old male with a history of paraplegia, due to C5 spinal cord injury sustained 8 weeks prior, is currently admitted to an orthopaedic and spinal ward. One night, he wakes up in distress with a headache and diaphoresis above the level of his spinal cord injury. His blood pressure is currently 160/110 mmHg. It was recorded 2 hours ago as 110/70mmHg. His pulse rate is 50. The patient also has an indwelling catheter which was changed earlier today.
The healthcare provider on-call suspects that autonomic dysreflexia might be the cause of the patient's symptoms.
What is the most common life-threatening outcome associated with this condition?Your Answer: Ischaemic stroke
Correct Answer: Haemorrhagic stroke
Explanation:Autonomic dysreflexia is a condition that occurs in patients who have suffered a spinal cord injury at or above the T6 spinal level. It is caused by a reflex response triggered by various stimuli, such as faecal impaction or urinary retention, which sends signals through the thoracolumbar outflow. However, due to the spinal cord lesion, the usual parasympathetic response is prevented, leading to an unbalanced physiological response. This response is characterized by extreme hypertension, flushing, and sweating above the level of the cord lesion, as well as agitation. If left untreated, severe consequences such as haemorrhagic stroke can occur. The management of autonomic dysreflexia involves removing or controlling the stimulus and treating any life-threatening hypertension and/or bradycardia.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
John Smith, a 81-year-old man, arrives at the emergency department after falling down a few steps. He complains of 7/10 groin pain and is administered pain relief.
During the assessment, the doctor conducts a neurovascular examination and observes decreased sensation in the right medial thigh, indicating a possible nerve injury.
Further investigations reveal a pubic rami fracture.
Which nerve is likely to be affected in this situation, and which muscle compartment of the thigh does it supply?Your Answer: Femoral nerve, anterior compartment of the thigh
Correct Answer: Obturator nerve, ADductor compartment of the thigh
Explanation:The adductor compartment of the thigh is innervated by the obturator nerve, which enters the thigh through the obturator canal after running laterally along the pelvic wall towards the obturator foramen. The muscles innervated by the obturator nerve include the adductor brevis, adductor longus, adductor magnus, gracilis, and obturator externus. The sciatic nerve also innervates the adductor magnus, while the femoral nerve innervates the anterior compartment of the thigh and the sciatic nerve innervates the posterior compartment of the thigh.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 36-year-old woman presents to her general practitioner with sudden-onset painful red-eye and blurred vision in her left eye. She reports that the pain started suddenly while she was out for lunch with her friends. On examination, a hypopyon is present in the left eye, which is also red and has a small and irregularly shaped pupil. Ophthalmoscopy cannot be performed due to photophobia. The patient is diagnosed with anterior uveitis. What medical history might be observed in this patient's past?
Your Answer: Goodpasture's syndrome
Correct Answer: Ankylosing spondylitis
Explanation:The patient in this scenario is likely suffering from anterior uveitis, which is characterized by inflammation of the ciliary body and iris. Symptoms include a red and painful eye, irregularly shaped pupil, and the presence of a hypopyon. Anterior uveitis is commonly associated with the HLA-B27 haplotype. The correct answer to the question about conditions associated with anterior uveitis is ankylosing spondylitis, which is the only condition mentioned that has a known association with HLA-B27. Coeliac disease, Goodpasture’s syndrome, and haemochromatosis are all incorrect answers as they do not have an association with HLA-B27.
Anterior uveitis, also known as iritis, is a type of inflammation that affects the iris and ciliary body in the front part of the uvea. This condition is often associated with HLA-B27 and may be linked to other conditions such as ankylosing spondylitis, reactive arthritis, ulcerative colitis, Crohn’s disease, Behcet’s disease, and sarcoidosis. Symptoms of anterior uveitis include sudden onset of eye discomfort and pain, small and irregular pupils, intense sensitivity to light, blurred vision, redness in the eye, tearing, and a ring of redness around the cornea. In severe cases, pus and inflammatory cells may accumulate in the front chamber of the eye, leading to a visible fluid level. Treatment for anterior uveitis involves urgent evaluation by an ophthalmologist, cycloplegic agents to relieve pain and photophobia, and steroid eye drops to reduce inflammation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
As you help the FY1 draft discharge summaries for the care of the elderly ward, you come across a patient who is reported to have profound apraxia. This individual is 89 years old and has significant dementia. Can you explain what apraxia is?
Your Answer: The observation of painful movements
Correct Answer: Inability to perform voluntary movements
Explanation:Apraxia refers to the incapacity to execute deliberate movements even when the motor and sensory systems are functioning properly. This condition impacts activities like dressing, eating, artistic endeavors (such as drawing), and ideomotor actions (like waving goodbye).
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
Which one of the following statements relating to cerebrospinal fluid is false?
Your Answer: CSF pressure is usually 10-15mmHg
Correct Answer: The choroid plexus is only present in the lateral ventricles
Explanation:The choroid plexus is present in every ventricle.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Correct
-
Does the external branch of the superior laryngeal nerve innervate the cricothyroid muscle?
Your Answer: Cricothyroid
Explanation:The intrinsic muscles of the larynx, with the exception of the cricothyroid muscle, are innervated by the innervation. The cricothyroid muscle is innervated by the external branch of the superior laryngeal nerve.
The Recurrent Laryngeal Nerve: Anatomy and Function
The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.
Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.
Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Correct
-
In what area is a lumbar puncture typically conducted?
Your Answer: Subarachnoid space
Explanation:To obtain samples of CSF, a needle is typically inserted between the third and fourth lumbar vertebrae, with the tip placed in the subarachnoid space. It is important to note that the spinal cord ends at L1 and is not at risk of harm during this procedure. However, if there is clinical evidence of increased intracranial pressure, lumbar puncture should not be performed.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
You have been summoned to attend to a patient on your ward due to concerns about his breathing and possible deterioration. The patient is 78 years old. He is only responsive to pain and his breathing rate is 6 breaths per minute. Upon examination, you observe that he has pinpoint pupils. The nerve responsible for innervating the muscle that causes pupil constriction, known as constrictor pupillae, is derived from which nerve?
Your Answer: Abducens nerve
Correct Answer: Oculomotor nerve
Explanation:The correct answer is the oculomotor nerve, which is the third cranial nerve responsible for supplying motor innervation to four extra-orbital muscles and parasympathetic fibers to constrictor pupillae and ciliaris. The optic nerve is the second cranial nerve that carries visual information from the retina, while the trochlear nerve is the fourth cranial nerve that supplies the superior oblique extra-orbital muscle. The ophthalmic nerve is the first division of the trigeminal nerve that carries sensation from the orbit, upper eyelid, and forehead, and the abducens nerve is the sixth cranial nerve that supplies the lateral rectus extra-orbital muscle. The patient’s presentation is consistent with opioid overdose, which is characterized by reduced respiratory rate, altered conscious level, and pinpoint pupils. Intravenous naloxone can reverse opioid overdose.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 32-year-old man has been struck by a cricket ball on the medial side of his elbow, resulting in significant pain. Additionally, he has experienced numbness in his little finger. Despite x-rays showing no immediate fractures, there is severe swelling in the soft tissue. When requested to adduct his thumb, he is unable to do so. Which nerve is the most likely culprit for the damage?
Your Answer: Radial nerve
Correct Answer: Ulnar nerve
Explanation:The ulnar nerve provides innervation to the adductor pollicis muscle, so any injury to the ulnar nerve can lead to a loss of adduction in the thumb.
The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Correct
-
A 50-year old male visits the endocrinology clinic for a pituitary tumour diagnosis. He needs to undergo a transsphenoidal surgery to remove the pituitary gland. How is the pituitary gland connected to the brain to ensure the transportation of pituitary hormones?
Your Answer: Pituitary portal system
Explanation:The endocrine system is primarily regulated by the pituitary gland, which is itself controlled by the hypothalamus. The neurohypophysis is influenced by the hypothalamus because its cell bodies are located within the hypothalamus, while the adenohypophysis is regulated by neuroendocrine cells in the hypothalamus that release trophic hormones into the pituitary portal vessels. The pituitary gland subsequently secretes various hormones that impact different parts of the body.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
A 25-year-old woman with bothersome axillary hyperhidrosis is scheduled for a thoracoscopic sympathectomy to manage the condition. What anatomical structure must be severed to reach the sympathetic trunk during the procedure?
Your Answer: Intercostal vein
Correct Answer: Parietal pleura
Explanation:The parietal pleura is located anterior to the sympathetic chain. When performing a thoracoscopic sympathetomy, it is necessary to cut through this structure. The intercostal vessels are situated at the back and should be avoided as much as possible to prevent excessive bleeding. Deliberately cutting them will not enhance surgical access.
Anatomy of the Sympathetic Nervous System
The sympathetic nervous system is responsible for the fight or flight response in the body. The preganglionic efferent neurons of this system are located in the lateral horn of the grey matter of the spinal cord in the thoraco-lumbar regions. These neurons leave the spinal cord at levels T1-L2 and pass to the sympathetic chain. The sympathetic chain lies on the vertebral column and runs from the base of the skull to the coccyx. It is connected to every spinal nerve through lateral branches, which then pass to structures that receive sympathetic innervation at the periphery.
The sympathetic ganglia are also an important part of this system. The superior cervical ganglion lies anterior to C2 and C3, while the middle cervical ganglion (if present) is located at C6. The stellate ganglion is found anterior to the transverse process of C7 and lies posterior to the subclavian artery, vertebral artery, and cervical pleura. The thoracic ganglia are segmentally arranged, and there are usually four lumbar ganglia.
Interruption of the head and neck supply of the sympathetic nerves can result in an ipsilateral Horners syndrome. For the treatment of hyperhidrosis, sympathetic denervation can be achieved by removing the second and third thoracic ganglia with their rami. However, removal of T1 is not performed as it can cause a Horners syndrome. In patients with vascular disease of the lower limbs, a lumbar sympathetomy may be performed either radiologically or surgically. The ganglia of L2 and below are disrupted, but if L1 is removed, ejaculation may be compromised, and little additional benefit is conferred as the preganglionic fibres do not arise below L2.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Correct
-
A 20-year-old patient comes to the clinic complaining of numbness in the dorsal web between the 1st and 2nd metacarpals. He reports sleeping with his arm hanging over the back of a chair all night.
What nerve is most likely compressed in this case?Your Answer: Radial
Explanation:When someone falls asleep with their arm hanging over a chair, it can compress the radial nerve and cause wrist drop, which is commonly referred to as ‘Saturday night palsy’. However, because there are overlapping branches from other nerves, the resulting anesthesia is usually limited to a small area supplied by the radial nerve. It’s important to note that the other answers provided are incorrect because they do not provide sensation to the dorsal web between the thumb and index finger. For example, the axillary nerve only supplies the ‘regimental badge’ of skin over the lower part of the deltoid muscle, while the median nerve supplies the skin over the thenar eminence and provides sensation to the dorsal fingertips and palmar aspect of the lateral 3½ fingers. The musculocutaneous nerve, on the other hand, only supplies the skin of the lateral forearm, and the anterior interosseous nerve is a branch of the median nerve that has no cutaneous sensory fibers.
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A 65-year-old woman with chronic kidney disease visits the renal clinic for a routine examination. Her blood work reveals hypocalcemia and elevated levels of parathyroid hormone.
What could be the probable reason for her abnormal blood test results?Your Answer: Decreased levels of 25-hydroxycholecalciferol (calcifediol, inactivated vitamin D)
Correct Answer: Decreased levels of 1,25-dihydroxycholecalciferol (calcitriol, activated vitamin D)
Explanation:Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
To which opioid receptor does morphine bind?
Your Answer: alpha
Correct Answer: mu
Explanation:This receptor is targeted by pethidine and other traditional opioids.
Understanding Opioids: Types, Receptors, and Clinical Uses
Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.
Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.
The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Correct
-
A 65-year-old man presents to the clinic for a follow-up after experiencing a stroke two weeks ago. His strength is 5/5 in all four limbs and his deep muscle reflexes are normal. He has no visual deficits, but he is having difficulty answering questions correctly and his speech is filled with newly invented words, although it is fluent. Additionally, he is unable to read correctly. Which blood vessel is most likely involved in his stroke?
Your Answer: Inferior division of the left middle cerebral artery
Explanation:The correct answer is that Wernicke’s area is supplied by the inferior division of the left middle cerebral artery. This type of stroke can result in Wernicke’s aphasia, which is characterized by poor comprehension but normal fluency of speech. Wernicke’s area is located in the temporal gyrus and is specifically supplied by the inferior division of the left middle cerebral artery.
The other options provided are incorrect. A stroke in the basilar artery can result in the locked-in syndrome, which causes paralysis of the entire body except for eye movement. A stroke in the left anterior cerebral artery can cause behavioral changes, contralateral weakness, and contralateral sensory deficits. A stroke in the right posterior cerebral artery can cause visual deficits.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast removed from her lower limb. During the examination, it is observed that her right foot is in a plantar flexed position, indicating foot drop.
The physician proceeds to assess the sensation in Sarah's lower limb and feet and discovers a reduction in the area innervated by the deep fibular nerve.
What specific region of Sarah's lower limb or foot is likely to be impacted by this condition?Your Answer: Dorsum of the foot
Correct Answer: Webspace between the first and second toes
Explanation:The webbing between the first and second toes is innervated by the deep fibular nerve. The saphenous nerve, which arises from the femoral nerve, provides cutaneous innervation to the medial aspect of the leg. The sural nerve, which arises from the common fibular and tibial nerves, innervates the lateral foot. The majority of innervation to the dorsum of the foot comes from the superficial fibular nerve.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
The following statements about the femoral nerve are all true except for one. Which statement is incorrect?
Your Answer: It is derived from L2, L3 and L4 nerve roots
Correct Answer: It supplies adductor longus
Explanation:The obturator nerve supplies the adductor longus.
The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.
To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 25-year-old man is intoxicated and falls, resulting in a transected median nerve by a shard of glass at the proximal border of the flexor retinaculum. Fortunately, his tendons remain unharmed. Which of the following features is unlikely to be present?
Your Answer: Loss of power of opponens pollicis
Correct Answer: Loss of sensation on the dorsal aspect of the thenar eminence
Explanation:If the median nerve is damaged before reaching the flexor retinaculum, it can lead to the loss of certain muscles, including the abductor pollicis brevis, flexor pollicis brevis, opponens pollicis, and the first and second lumbricals. When the patient is asked to slowly close their hand, there may be a delay in the movement of the index and middle fingers due to the impaired lumbrical muscle function. However, there are only minor sensory changes and no impact on the dorsal aspect of the thenar eminence. The abductor pollicis longus muscle, which is innervated by the posterior interosseous nerve, will still contribute to thumb abduction, but it may be weaker than before the injury.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
You are evaluating a different patient's visual acuity (VA) using a Snellen chart. This patient's uncorrected visual acuity (UCVA) is superior to 'normal vision' in the right eye (OD) and only half as good as 'normal vision' in the left eye (OS).
Please provide the appropriate visual acuity format for this patient using the following format:
OD x/y a/b OSYour Answer: OD 6/6 6/4 OS
Correct Answer: OD 6/4 6/12 OS
Explanation:Evaluating visual acuity is a crucial aspect of an eye exam, with a VA of 6/4 indicating superior vision compared to the norm. To determine the best corrected visual acuity, a pinhole test can be utilized.
Typically, a VA of 6/6 is considered standard vision. The numerator denotes the distance (in meters) between the individual and the test chart in optimal lighting conditions. The denominator signifies the distance required for someone with 6/6 vision to view the same line.
By minimizing optic aberrations and temporarily eliminating refractive errors, the pinhole test can provide the most optimal visual acuity achievable with glasses when viewed in good lighting.
A gradual decline in vision is a prevalent issue among the elderly population, leading them to seek guidance from healthcare providers. This condition can be attributed to various causes, including cataracts and age-related macular degeneration. Both of these conditions can cause a gradual loss of vision over time, making it difficult for individuals to perform daily activities such as reading, driving, and recognizing faces. As a result, it is essential for individuals experiencing a decline in vision to seek medical attention promptly to receive appropriate treatment and prevent further deterioration.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)