00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which of the following structures suspends the spinal cord in the dural sheath?...

    Correct

    • Which of the following structures suspends the spinal cord in the dural sheath?

      Your Answer: Denticulate ligaments

      Explanation:

      The length of the spinal cord is around 45cm in males and 43cm in females. The denticulate ligament is an extension of the pia mater, which has sporadic lateral projections that connect the spinal cord to the dura mater.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      3.4
      Seconds
  • Question 2 - A 29-year-old Caucasian female presented to her primary care physician complaining of left...

    Correct

    • A 29-year-old Caucasian female presented to her primary care physician complaining of left eye pain that has been bothering her for the past week. She also reported experiencing tingling sensations in her upper limbs and two episodes of weakness in her right arm that lasted for a few days before resolving. She noted that the weakness and tingling were exacerbated after taking a hot bath. What is the origin of the cells primarily impacted in this woman's condition?

      Your Answer: Neural tube neuroepithelia

      Explanation:

      Multiple sclerosis is a neurodegenerative disorder caused by the loss of oligodendrocytes, which produce myelin in the central nervous system. These cells are derived from the neural tube neuroepithelial cells, not from mesenchymal cells, which develop into other tissue cells such as bone marrow, adipose tissue, and muscle cells. The neural crest cells give rise to the neurons of the peripheral nervous system and myelin-producing Schwann cells, while the mesoderm only gives rise to microglia during nervous system development. The notochord plays a role in inducing the overlying ectoderm to develop into the neuroectoderm and neural plate, and gives rise to the nucleus pulposus of the intervertebral disc. Ultimately, the oligodendrocytes are embryological derivatives of the neural tube neuroepithelia, which develop from the ectoderm overlying the notochord.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      5
      Seconds
  • Question 3 - John is a 35-year-old man who was discharged 3 days ago from hospital,...

    Correct

    • John is a 35-year-old man who was discharged 3 days ago from hospital, after sustaining an injury to his head. Observations and imaging were all normal and there was no neurological deficit on examination. Since then he has noticed difficulty in going upstairs. He says that he can't see where he is going and becomes very unsteady. His wife also told him that he has started to tilt his head to the right, which he was unaware of.

      On examination, his visual acuity is 6/6 but he has difficulty looking up and out with his right eye, no other abnormality is revealed.

      What is the most likely diagnosis?

      Your Answer: Trochlear nerve palsy

      Explanation:

      Consider 4th nerve palsy if your vision deteriorates while descending stairs.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      7.3
      Seconds
  • Question 4 - A 50-year-old man is brought to the emergency department after falling from a...

    Correct

    • A 50-year-old man is brought to the emergency department after falling from a ladder while replacing roof tiles. He has a reduced Glasgow coma scale (GCS) and has vomited 4 times. According to his partner, he was unconscious for about 5 minutes before waking up and becoming increasingly drowsy over the next few hours.

      A CT head scan reveals a skull fracture and a hyper-dense biconvex lesion. Which of the meningeal layers is responsible for the biconvex shape of the bleed?

      Your Answer: Dura mater

      Explanation:

      The outermost layer of the meninges is known as the dura mater. A hyperdense biconvex lesion on a CT head, combined with the patient’s medical history, strongly suggests the presence of an extradural haemorrhage. This type of haemorrhage occurs between the dura mater and the inner surface of the skull, and the biconvex shape is due to the dura mater’s strong attachment to the suture lines. The arachnoid mater is a thin meningeal layer that adheres to the internal surface of the dura mater, while the bone is not a meningeal layer but is fused with the outer layer of the dura through the inner layer of the periosteum of the skull. It’s important to note that the pia dura is not a layer of the meninges, and should not be confused with the pia mater or dura mater.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      2.9
      Seconds
  • Question 5 - A child is diagnosed with Klumpke's palsy after birth. What is the most...

    Correct

    • A child is diagnosed with Klumpke's palsy after birth. What is the most probable symptom that will be observed?

      Your Answer: Loss of flexors of the wrist

      Explanation:

      Klumpke’s paralysis is characterized by several features, including claw hand with extended MCP joints and flexed IP joints, loss of sensation over the medial aspect of the forearm and hand, Horner’s syndrome, and loss of flexors of the wrist. This condition is caused by a C8, T1 root lesion, which typically occurs during delivery when the arm is extended.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      3.9
      Seconds
  • Question 6 - A man in his early fifties presents to the GP with hearing loss...

    Correct

    • A man in his early fifties presents to the GP with hearing loss in his right ear. After conducting a Webber's and Rinne's test, the following results were obtained:

      - Webber's test: lateralizes to the left ear
      - Rinne's test (left ear): Air > Bone
      - Rinne's test (right ear): Air > Bone

      What is the probable cause of his hearing loss?

      Your Answer: Acoustic neuroma

      Explanation:

      Sensorineural hearing loss in the right ear is indicative of an acoustic neuroma, which is the only option listed as a cause for this type of hearing loss. Other options such as otitis media with effusion and otitis externa cause conductive hearing loss, while ossicular fracture is a rare cause of conductive hearing loss. Understanding the Weber and Rinne tests is important in interpreting these results accurately.

      Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.

      If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.

    • This question is part of the following fields:

      • Neurological System
      5
      Seconds
  • Question 7 - A 75-year-old male arrives at the Emergency Department with sudden onset facial weakness...

    Correct

    • A 75-year-old male arrives at the Emergency Department with sudden onset facial weakness and concerns of a stroke. However, upon further questioning, the patient denies any risk factors for cardiovascular disease. During the examination, the patient displays unilateral weakness on the right side of their face and reports experiencing pain in their right ear. Further investigation reveals a widespread vesicular rash on the patient's right ear.

      What is the causative organism responsible for this syndrome?

      Your Answer: Varicella zoster virus

      Explanation:

      Ramsey-Hunt syndrome (VII nerve palsy) is caused by the varicella zoster virus.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      2.1
      Seconds
  • Question 8 - A woman falls onto her neck and examination elicits signs of lateral medullary...

    Incorrect

    • A woman falls onto her neck and examination elicits signs of lateral medullary syndrome. Which description provides the correct findings?

      Your Answer: Ipsilateral loss of light tough proprioception and contra lateral loss of pain and temperature

      Correct Answer: Ipsilateral loss of pain and temperature in the face with dysphagia and ataxia and contra lateral loss in the body

      Explanation:

      The lateral medullary syndrome is characterized by damage to the structures in the lateral medulla, which is supplied by the posterior inferior cerebellar artery. This can result in various examination findings, including ataxia from damage to the inferior cerebellar peduncle, dysphagia from damage to the nucleus ambiguus, and ipsilateral loss of pain and temperature from the face due to damage to the spinal trigeminal nucleus. Additionally, there may be contralateral loss of pain and temperature in the body from damage to the lateral spinothalamic tract.

      In contrast, Brown-Sequard syndrome, which results from cord hemisection, is characterized by ipsilateral loss of light touch proprioception and contralateral loss of pain and temperature. Pontine stroke may present with hypertonia and contralateral neglect, while the triad of gait disturbance, urinary incontinence, and dementia is seen in normal pressure hydrocephalus. Medial medullary syndrome may present with ipsilateral tongue deviation, contralateral limb weakness, and contralateral loss of proprioception.

      Understanding Lateral Medullary Syndrome

      Lateral medullary syndrome, also referred to as Wallenberg’s syndrome, is a condition that arises when the posterior inferior cerebellar artery becomes blocked. This condition is characterized by a range of symptoms that affect both the cerebellum and brainstem. Cerebellar features of the syndrome include ataxia and nystagmus, while brainstem features include dysphagia, facial numbness, and cranial nerve palsy such as Horner’s. Additionally, patients may experience contralateral limb sensory loss. Understanding the symptoms of lateral medullary syndrome is crucial for prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      8.8
      Seconds
  • Question 9 - As a medical student on wards in the endocrinology department, you come across...

    Correct

    • As a medical student on wards in the endocrinology department, you come across a patient suffering from syndrome of inappropriate antidiuretic hormone secretion. During the ward round, the consultant leading the team decides to test your knowledge and asks about the normal release of antidiuretic hormone (ADH) in the brain.

      Can you explain the pathway that leads to the release of this hormone causing the patient's condition?

      Your Answer: ADH is released from the posterior pituitary gland via neural cells which extend from the hypothalamus

      Explanation:

      The posterior pituitary gland is formed by neural cells’ axons that extend directly from the hypothalamus.

      In contrast to the anterior pituitary gland, which has separate hormone-secreting cells controlled by hormonal stimulation, the posterior pituitary gland only contains neural cells that extend from the hypothalamus. Therefore, the hormones (ADH and oxytocin) released from the posterior pituitary gland are released from the axons of cells extending from the hypothalamus.

      All anterior pituitary hormone release is controlled through hormonal stimulation from the hypothalamus.

      The adrenal medulla directly releases epinephrine, norepinephrine, and small amounts of dopamine from sympathetic neural cells.

      The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.

    • This question is part of the following fields:

      • Neurological System
      6.4
      Seconds
  • Question 10 - A 68-year-old male comes to the emergency department complaining of double vision. He...

    Correct

    • A 68-year-old male comes to the emergency department complaining of double vision. He has a history of diabetes. During the examination, it is observed that his left eye is pointing downwards and outwards, and he is unable to move it. What is the probable cause of this?

      Your Answer: Oculomotor nerve palsy

      Explanation:

      The eye can move in three different planes – vertical, horizontal, and torsional. Torsion can be further divided into intorsion and extorsion. The six extraocular muscles are responsible for these movements. The medial rectus adducts, while the lateral rectus abducts. The superior rectus primarily elevates and controls intorsion, while the inferior rectus primarily depresses and controls extorsion.

      The superior and inferior oblique muscles are responsible for torsion movements. The superior oblique controls intorsion and depression, while the inferior oblique controls extorsion.

      Most of the extraocular muscles are innervated by the oculomotor nerve, except for the superior oblique (innervated by the trochlear nerve) and the lateral rectus (innervated by the abducens nerve).

      When considering the options for a question, we can exclude the optic nerve and long ciliary nerve as they are not involved in eye movement. Trochlear nerve palsy would result in impaired intorsion, while abducens nerve palsy would result in impaired abduction. However, a down and out eye is typically associated with oculomotor nerve palsy.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      3.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (9/10) 90%
Passmed