00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 70-year-old male presents to the Emergency Department with a 3-hour history of...

    Incorrect

    • A 70-year-old male presents to the Emergency Department with a 3-hour history of tearing chest pain. He has a past medical history of poorly controlled hypertension. His observations show:

      Respiratory rate of 20 breaths/min
      Pulse of 95 beats/min
      Temperature of 37.3ºC
      Blood pressure of 176/148 mmHg
      Oxygen saturations of 97% on room air

      Auscultation of the heart identifies a diastolic murmur, heard loudest over the 2nd intercostal space, right sternal border.

      What CT angiography findings would be expected in this patient's likely diagnosis?

      Your Answer: Ballooning of the aortic arch

      Correct Answer: False lumen of the ascending aorta

      Explanation:

      A false lumen in the descending aorta is a significant indication of aortic dissection on CT angiography. This condition is characterized by tearing chest pain, hypertension, and aortic regurgitation, which can be detected through a diastolic murmur over the 2nd intercostal space, right sternal border. The false lumen is formed due to a tear in the tunica intima of the aortic wall, which fills with a large volume of blood and is easily visible on angiographic CT.

      Ballooning of the aortic arch is an incorrect answer as it refers to an aneurysm, which is a condition where the artery walls weaken and abnormally bulge out or widen. Aneurysms are prone to rupture and can have varying effects depending on their location.

      Blurring of the posterior wall of the descending aorta is also an incorrect answer as it is a sign of a retroperitoneal, contained rupture of an aortic aneurysm. This condition may present with hypovolemic shock, hypotension, tachycardia, and tachypnea, leading to collapse.

      Total occlusion of the left anterior descending artery is another incorrect answer as it would likely result in ST-elevation myocardial infarction (STEMI). Although chest pain is a symptom of both conditions, the nature of the pain and investigation findings make aortic dissection more likely. It is important to note that coronary arteries can only be viewed through coronary angiography, which involves injecting contrast directly into the coronary arteries using a catheter, and not through CT angiography.

      Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.

      To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.

      The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.

    • This question is part of the following fields:

      • Cardiovascular System
      16.6
      Seconds
  • Question 2 - A 67-year-old man is brought to the emergency department with unilateral weakness and...

    Correct

    • A 67-year-old man is brought to the emergency department with unilateral weakness and loss of sensation. He is later diagnosed with an ischaemic stroke. After initial treatment, he is started on dipyridamole as part of his ongoing therapy.

      What is the mechanism of action of dipyridamole?

      Your Answer: Non-specific phosphodiesterase inhibitor

      Explanation:

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      13.4
      Seconds
  • Question 3 - A 72-year-old woman visits her physician for a regular examination. The physician observes...

    Incorrect

    • A 72-year-old woman visits her physician for a regular examination. The physician observes an elevation in pulse pressure, which is attributed to a decline in aortic compliance due to age-related alterations. What is an additional factor that can lead to an increase in pulse pressure?

      Your Answer: Impaired ventricular relaxation

      Correct Answer: Increased stroke volume

      Explanation:

      Stroke volume has a direct impact on pulse pressure, with an increase in stroke volume leading to an increase in pulse pressure. However, conditions such as aortic stenosis and heart failure can decrease stroke volume and therefore lower pulse pressure. Additionally, a decrease in blood volume can also reduce preload and subsequently lower pulse pressure.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      122
      Seconds
  • Question 4 - A 45-year-old male with no past medical history is recently diagnosed with hypertension....

    Correct

    • A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:

      Na 137 mmol/l
      K 4.7 mmol/l
      Cl 98 mmol/l
      Urea 12.2 mmol/l
      Creatinine 250 mg/l

      What is the most likely cause for the abnormal blood test results?

      Your Answer: Bilateral stenosis of renal arteries

      Explanation:

      Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      199.9
      Seconds
  • Question 5 - A 2-year-old child presents with cyanosis shortly after birth. The child has no...

    Correct

    • A 2-year-old child presents with cyanosis shortly after birth. The child has no family history of paediatric problems and the pregnancy was uneventful. Upon examination, the child is cyanotic, has a respiratory rate of 60 breaths per minute, and nasal flaring. An urgent echocardiogram reveals Ebstein's anomaly. Which valvular defect is commonly associated with this condition?

      Your Answer: Tricuspid regurgitation

      Explanation:

      Ebstein’s anomaly is a congenital heart defect that results in the right ventricle being smaller than normal and the right atrium being larger than normal, a condition known as ‘atrialisation’. Tricuspid regurgitation is often present as well.

      While aortic regurgitation is commonly associated with infective endocarditis, ascending aortic dissection, or connective tissue disorders like Marfan’s or Ehlers-Danlos, it is not typically seen in Ebstein’s anomaly. Similarly, aortic stenosis is usually caused by senile calcification rather than congenital heart disease.

      The mitral valve is located on the left side of the heart and is not affected by Ebstein’s anomaly. Mitral regurgitation, on the other hand, can be caused by conditions such as rheumatic heart disease or left ventricular dilatation.

      Pulmonary stenosis is typically associated with other congenital heart defects like Turner’s syndrome or Noonan’s syndrome, rather than Ebstein’s anomaly.

      Understanding Ebstein’s Anomaly

      Ebstein’s anomaly is a type of congenital heart defect that is characterized by the tricuspid valve being inserted too low, resulting in a large atrium and a small ventricle. This condition is also known as the atrialization of the right ventricle. It is believed that exposure to lithium during pregnancy may cause this condition.

      Ebstein’s anomaly is often associated with other heart defects such as patent foramen ovale (PFO) or atrial septal defect (ASD), which can cause a shunt between the right and left atria. Additionally, patients with this condition may also have Wolff-Parkinson White syndrome.

      Clinical features of Ebstein’s anomaly include cyanosis, a prominent a wave in the distended jugular venous pulse, hepatomegaly, tricuspid regurgitation, and a pansystolic murmur that worsens during inspiration. Patients may also exhibit right bundle branch block, which can lead to widely split S1 and S2 heart sounds.

      In summary, Ebstein’s anomaly is a congenital heart defect that affects the tricuspid valve and can cause a range of symptoms and complications. Early diagnosis and treatment are essential for managing this condition and improving patient outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      2744.3
      Seconds
  • Question 6 - A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently...

    Incorrect

    • A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently undergoing treatment for heart failure and gastro-oesophageal reflux. Which medication that he is taking is the most probable cause of his gynaecomastia?

      Your Answer: Furosemide

      Correct Answer: Spironolactone

      Explanation:

      Medications Associated with Gynaecomastia

      Gynaecomastia, the enlargement of male breast tissue, can be caused by various medications. Spironolactone, ciclosporin, cimetidine, and omeprazole are some of the drugs that have been associated with this condition. Ramipril has also been linked to gynaecomastia, but it is a rare occurrence.

      Aside from these medications, other drugs that can cause gynaecomastia include digoxin, LHRH analogues, cimetidine, and finasteride. It is important to note that not all individuals who take these medications will develop gynaecomastia, and the risk may vary depending on the dosage and duration of treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      79
      Seconds
  • Question 7 - A 70-year-old man presents to the cardiology clinic with complaints of worsening shortness...

    Incorrect

    • A 70-year-old man presents to the cardiology clinic with complaints of worsening shortness of breath and leg swelling over the past 3 months. Upon examination, there is pitting edema to his thighs bilaterally with palpable sacral edema. Bibasal crackles are heard upon auscultation. What medication can be prescribed to improve the prognosis of the underlying condition?

      Your Answer: Furosemide

      Correct Answer: Ramipril

      Explanation:

      Ramipril is the correct medication for this patient with likely chronic heart failure. It is one of the few drugs that has been shown to improve the overall prognosis of heart failure, along with beta-blockers and aldosterone antagonists. Aspirin, digoxin, and furosemide are commonly used in the management of heart failure but do not offer prognostic benefit.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      7.9
      Seconds
  • Question 8 - What is the equivalent of cardiac preload? ...

    Correct

    • What is the equivalent of cardiac preload?

      Your Answer: End diastolic volume

      Explanation:

      Preload, also known as end diastolic volume, follows the Frank Starling principle where a slight increase results in an increase in cardiac output. However, if preload is significantly increased, such as exceeding 250ml, it can lead to a decrease in cardiac output.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      10.8
      Seconds
  • Question 9 - A 55-year-old man arrives at the emergency department complaining of central chest pain...

    Correct

    • A 55-year-old man arrives at the emergency department complaining of central chest pain that started 15 minutes ago. An ECG is conducted and reveals ST elevation in leads I, aVL, and V6. Which coronary artery is the most probable cause of obstruction?

      Your Answer: Left circumflex artery

      Explanation:

      The presence of ischaemic changes in leads I, aVL, and V5-6 suggests a possible issue with the left circumflex artery, which supplies blood to the lateral area of the heart. Complete blockage of this artery can lead to ST elevation, while partial blockage may result in non-ST elevation myocardial infarction. Other areas of the heart and their corresponding coronary arteries are listed in the table below.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      62.2
      Seconds
  • Question 10 - A 48-year-old man visits his local doctor complaining of chest pain that occurs...

    Correct

    • A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.

      His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.

      What is the mechanism by which nitrates work?

      Your Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation

      Explanation:

      The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      1398.8
      Seconds
  • Question 11 - A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack....

    Incorrect

    • A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack. The procedure is successful with no complications. However, the patient develops new hoarseness of voice and loss of effective cough mechanism post-surgery. There are no notable findings upon examination of the oral cavity.

      Which structure has been affected by the surgery?

      Your Answer: Cranial nerve VIII

      Correct Answer: Cranial nerve X

      Explanation:

      Speech is innervated by the vagus (X) nerve, so any damage to this nerve can cause speech problems. Injuries to one side of the vagus nerve can result in hoarseness and vocal cord paralysis on the same side, while bilateral injuries can lead to aphonia and stridor. Other symptoms of vagal disease may include dysphagia, loss of cough reflex, gastroparesis, and cardiovascular effects. The facial nerve (VII) may also be affected during carotid surgery, causing muscle weakness in facial expression. However, the vestibulocochlear nerve (VIII) is not involved in speech and would not be damaged during carotid surgery. The accessory nerve (XI) does not innervate speech muscles and is rarely affected during carotid surgery, causing weakness in shoulder elevation instead. Hypoglossal (XII) palsy is a rare complication of carotid surgery that causes tongue deviation towards the side of the lesion, but not voice hoarseness.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      176.6
      Seconds
  • Question 12 - A 55-year-old man is having a radical gastrectomy for stomach cancer. What structure...

    Incorrect

    • A 55-year-old man is having a radical gastrectomy for stomach cancer. What structure must be divided to access the coeliac axis during the procedure?

      Your Answer: Falciform ligament

      Correct Answer: Lesser omentum

      Explanation:

      The division of the lesser omentum is necessary during a radical gastrectomy as it constitutes one of the nodal stations that must be removed.

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      6919
      Seconds
  • Question 13 - Which ions are responsible for the plateau phase of the cardiac action potential...

    Incorrect

    • Which ions are responsible for the plateau phase of the cardiac action potential in stage 2?

      Your Answer: Sodium out, potassium in

      Correct Answer: Calcium in, potassium out

      Explanation:

      The Phases of Cardiac Action Potential

      The cardiac action potential is a complex process that involves four distinct phases. The first phase, known as phase 0 or the depolarisation phase, is initiated by the opening of fast Na channels, which allows an influx of Na ions into the cell. This influx of positively charged ions creates a positive current that rapidly depolarises the cell membrane.

      In the second phase, known as phase 1 or initial repolarisation, the fast Na channels close, causing a brief period of repolarisation. This is followed by phase 2 or the plateau phase, which is characterised by the opening of K and Ca channels. The influx of calcium ions into the cell is balanced by the efflux of potassium ions, resulting in a net neutral current.

      The final phase, phase 3 or repolarisation, is initiated by the closure of Ca channels, which causes a net negative current as K+ ions continue to leave the cell. It is important to note that the inward movement of sodium alone would not result in a plateau, as it represents a positive current. The normal action of the sodium-potassium pump involves the inward movement of potassium combined with the outward movement of sodium.

    • This question is part of the following fields:

      • Cardiovascular System
      8.9
      Seconds
  • Question 14 - A 3-week old girl is presented to the GP by her mother who...

    Incorrect

    • A 3-week old girl is presented to the GP by her mother who has noticed yellowish discharge from her umbilicus on a daily basis. The baby was born without any complications and is healthy otherwise.

      Which embryological structure is most likely responsible for this issue?

      Your Answer: Umbilical vein

      Correct Answer: Allantois

      Explanation:

      If the allantois persists, it can result in a patent urachus, which may manifest as urine leakage from the belly button.

      A patent urachus is a remnant of the allantois from embryonic development that links the bladder to the umbilicus, enabling urine to flow through and exit from the abdominal area.

      When the vitelline duct fails to close, it can lead to the formation of a Meckel’s diverticulum.

      The ductus venosus acts as a bypass for umbilical blood to avoid the liver in the fetus.

      The umbilical vessels serve as a conduit for blood to and from the fetus during gestation. They are not connected to the bladder and would not cause daily leakage.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      6.9
      Seconds
  • Question 15 - A 70-year-old female is brought to the Emergency department with a severe crushing...

    Correct

    • A 70-year-old female is brought to the Emergency department with a severe crushing chest pain that was alleviated by sublingual GTN. The medical team diagnoses her with acute coronary syndrome (ACS). What test can distinguish between unstable angina and non-ST elevation MI (NSTEMI), both of which are types of ACS?

      Your Answer: Troponin level

      Explanation:

      Acute Coronary Syndrome

      Acute coronary syndrome is a term used to describe a range of conditions that affect the heart, including unstable angina, non-ST elevation MI (NSTEMI), and ST elevation MI (STEMI). The detection of raised cardiac enzymes is the definitive test in distinguishing between NSTEMI and unstable angina. If the enzymes are raised, it indicates myocardial tissue infarction, which is present in NSTEMI but not in unstable angina. Clinical history and exercise ECG testing are also important in distinguishing between these conditions. It is important to understand the differences between these conditions in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Cardiovascular System
      17.4
      Seconds
  • Question 16 - Which one of the following nerves is not found in the posterior triangle...

    Incorrect

    • Which one of the following nerves is not found in the posterior triangle of the neck?

      Your Answer: Greater auricular nerve

      Correct Answer: Ansa cervicalis

      Explanation:

      The anterior triangle of the neck contains the ansa cervicalis.

      The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.

    • This question is part of the following fields:

      • Cardiovascular System
      12.8
      Seconds
  • Question 17 - An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision...

    Incorrect

    • An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision on the right side that started 30 minutes ago. Based on the history and examination, it is probable that she has experienced an ophthalmic artery stroke. Which branch of the Circle of Willis is likely affected?

      Your Answer: Anterior cerebral artery

      Correct Answer: Internal carotid artery

      Explanation:

      The ophthalmic artery originates from the internal carotid artery, which is part of the Circle of Willis, a circular network of arteries that supply the brain. The anterior cerebral arteries, which supply the frontal and parietal lobes, as well as the corpus callosum and cingulate cortex of the brain, also arise from the internal carotid artery. A stroke of the ophthalmic artery or its branch, the central retinal artery, can cause painless loss of vision. The basilar artery, which forms part of the posterior cerebral circulation, is formed from the convergence of the two vertebral arteries and gives rise to many arteries, but not the ophthalmic artery. The posterior cerebral artery, which supplies the occipital lobe, arises from the basilar artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      12
      Seconds
  • Question 18 - A 78-year-old woman with a history of heart failure visits the clinic complaining...

    Incorrect

    • A 78-year-old woman with a history of heart failure visits the clinic complaining of constipation that has lasted for 5 days. Upon further inquiry, she mentions feeling weaker than usual this week and experiencing regular muscle cramps. During the examination, you observe reduced tone and hyporeflexia in both her upper and lower limbs. You suspect that her symptoms may be caused by hypokalaemia, which could be related to the diuretics she takes to manage her heart failure. Which of the following diuretics is known to be associated with hypokalaemia?

      Your Answer: Spironolactone

      Correct Answer: Furosemide

      Explanation:

      Hypokalaemia is a potential side effect of loop diuretics such as furosemide. In contrast, potassium-sparing diuretics like spironolactone, triamterene, eplerenone, and amiloride are more likely to cause hyperkalaemia. The patient in the scenario is experiencing symptoms suggestive of hypokalaemia, including muscle weakness, cramps, and constipation. Hypokalaemia can also cause fatigue, myalgia, hyporeflexia, and in rare cases, paralysis.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      12.3
      Seconds
  • Question 19 - A 59-year-old man has been experiencing abdominal pain that worsens after eating, along...

    Incorrect

    • A 59-year-old man has been experiencing abdominal pain that worsens after eating, along with nausea and weight loss. Imaging suggests that he may have median arcuate ligament syndrome, which is compressing a branch of the abdominal aorta that supplies the foregut. As a result, he is scheduled for surgical decompression of this vessel. Can you name the three branches of this occluded aortic branch?

      Your Answer: Right gastric, hepatic, pancreatic

      Correct Answer: Left gastric, hepatic, splenic

      Explanation:

      The three branches of the coeliac trunk are the left gastric, hepatic, and splenic arteries, which can be remembered by the mnemonic Left Hand Side (LHS).

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      35.1
      Seconds
  • Question 20 - A 26-year-old man presents to the emergency department after experiencing a syncopal episode....

    Incorrect

    • A 26-year-old man presents to the emergency department after experiencing a syncopal episode. He is currently stable and reports no warning signs prior to the episode. He has had a few similar episodes in the past but did not seek medical attention. Upon further investigation, it is discovered that his father and uncle both died suddenly from heart attacks at ages 45 and 42, respectively. An ECG reveals coved ST segment elevation in V1 and V2 leads, followed by a negative T wave. What is the definitive treatment for this patient's condition?

      Your Answer: Amiodarone

      Correct Answer: Implantable cardioverter-defibrillator

      Explanation:

      The most effective management for Brugada syndrome is the implantation of a cardioverter-defibrillator, as per the NICE guidelines. This is the recommended treatment for patients with the condition, as evidenced by this man’s ECG findings, syncopal episodes, and family history of sudden cardiac deaths.

      While class I antiarrhythmic drugs like flecainide and procainamide may be used in clinical settings to diagnose Brugada syndrome, they should be avoided in patients with the condition as they can transiently induce the ECG features of the syndrome.

      Quinidine, another class I antiarrhythmic drug, has shown some benefits in preventing and treating tachyarrhythmias in small studies of patients with Brugada syndrome. However, it is not a definitive treatment and has not been shown to reduce the rate of sudden cardiac deaths in those with the condition.

      Amiodarone is typically used in life-threatening situations to stop ventricular tachyarrhythmias. However, due to its unfavorable side effect profile, it is not recommended for long-term use, especially in younger patients who may require it for decades.

      Understanding Brugada Syndrome

      Brugada syndrome is a type of inherited cardiovascular disease that can lead to sudden cardiac death. It is passed down in an autosomal dominant manner and is more prevalent in Asians, with an estimated occurrence of 1 in 5,000-10,000 individuals. The condition has a variety of genetic variants, but around 20-40% of cases are caused by a mutation in the SCN5A gene, which encodes the myocardial sodium ion channel protein.

      One of the key diagnostic features of Brugada syndrome is the presence of convex ST segment elevation greater than 2mm in more than one of the V1-V3 leads, followed by a negative T wave and partial right bundle branch block. These ECG changes may become more apparent after the administration of flecainide or ajmaline, which are the preferred diagnostic tests for suspected cases of Brugada syndrome.

      The management of Brugada syndrome typically involves the implantation of a cardioverter-defibrillator to prevent sudden cardiac death. It is important for individuals with Brugada syndrome to receive regular medical monitoring and genetic counseling to manage their condition effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      464.9
      Seconds
  • Question 21 - A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling...

    Incorrect

    • A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?

      Your Answer: Left bundle branch block

      Correct Answer: Accessory pathway

      Explanation:

      The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.

      Understanding Wolff-Parkinson White Syndrome

      Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.

      The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.

    • This question is part of the following fields:

      • Cardiovascular System
      22.8
      Seconds
  • Question 22 - A 39-year-old male arrives at the emergency department complaining of palpitations and is...

    Incorrect

    • A 39-year-old male arrives at the emergency department complaining of palpitations and is diagnosed with monomorphic ventricular tachycardia. What electrolyte is responsible for maintaining the resting potential of ventricular myocytes?

      Your Answer: Sodium

      Correct Answer: Potassium

      Explanation:

      The resting potential of cardiac myocytes is maintained by potassium, while depolarization is initiated by a sudden influx of sodium ions and repolarization is caused by the outflow of potassium. The extended duration of a cardiac action potential, in contrast to skeletal muscle, is due to a gradual influx of calcium.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      5.2
      Seconds
  • Question 23 - In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly...

    Incorrect

    • In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.

      What ion influx causes this rapid depolarisation?

      Your Answer: K+

      Correct Answer: Na+

      Explanation:

      Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      7.8
      Seconds
  • Question 24 - As a medical student on placement in the pathology lab, I observed the...

    Incorrect

    • As a medical student on placement in the pathology lab, I observed the pathologist examining a section of a blood vessel. I wondered, what distinguishes the tunica media from the tunica adventitia?

      Your Answer: Internal elastic lamina

      Correct Answer: External elastic lamina

      Explanation:

      Artery Histology: Layers of Blood Vessel Walls

      The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      12.9
      Seconds
  • Question 25 - What is the mechanism of action of dipyridamole when prescribed alongside aspirin for...

    Incorrect

    • What is the mechanism of action of dipyridamole when prescribed alongside aspirin for a 70-year-old man who has had an ischaemic stroke?

      Your Answer: Inhibits ADP binding to its platelet receptor

      Correct Answer: Phosphodiesterase inhibitor

      Explanation:

      Although Dipyridamole is commonly referred to as a non-specific phosphodiesterase inhibitor, it has been found to have a strong effect on PDE5 (similar to sildenafil) and PDE6. Additionally, it reduces the uptake of adenosine by cells.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      12.6
      Seconds
  • Question 26 - A 14-year-old girl presents to the general practitioner with fever, malaise, involuntary movements...

    Incorrect

    • A 14-year-old girl presents to the general practitioner with fever, malaise, involuntary movements of the neck and arms and erythema marginatum. She was previously unwell with tonsillitis six weeks ago. She is taken to the hospital and after a series of investigations is diagnosed with rheumatic fever.

      What is the underlying pathology of this condition?

      Your Answer: Autoimmune demyelination of the central nervous system

      Correct Answer: Molecular mimicry of the bacterial M protein

      Explanation:

      The development of rheumatic fever is caused by molecular mimicry of the bacterial M protein. This results in the patient experiencing constitutional symptoms such as fever and malaise, involuntary movements of the neck and arms known as Sydenham chorea, and a distinctive rash called erythema marginatum. The antibodies produced against the M protein cross-react with myosin and smooth muscle in arteries, leading to the characteristic features of rheumatic fever. Autoimmune demyelination of peripheral nerves, autoimmune demyelination of the central nervous system, and autoimmune destruction of postsynaptic acetylcholine receptors are all incorrect as they are the pathophysiology of other conditions such as Guillain Barre syndrome, multiple sclerosis, and myasthenia gravis, respectively.

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      9.5
      Seconds
  • Question 27 - An 68-year-old woman is presented to the vascular clinic with a painful ulcer...

    Incorrect

    • An 68-year-old woman is presented to the vascular clinic with a painful ulcer on the anterior aspect of her shin. She reports experiencing pain in the same leg at night and while sitting in a chair.

      The patient has a medical history of diabetes for 11 years, hypertension for 12 years, and has been a smoker for over 50 years.

      Upon examination, a pale ulcer with a 'punched out' appearance is observed. The patient declines further examination.

      Based on the given clinical scenario, what is the most probable type of ulcer?

      Your Answer: Venous ulcer

      Correct Answer: Arterial ulcer

      Explanation:

      The correct answer is arterial ulcer. These types of leg ulcers are typically pale, painful, and have a punched-out appearance. They are often associated with peripheral vascular disease, which is likely in this patient given her cardiovascular risk factors and claudication pain. The fact that she experiences pain while sitting down suggests critical ischemia. Venous ulcers, on the other hand, appear red and oozing with irregular margins and are usually associated with varicose veins, edema, or lipodermatosclerosis. Marjolin ulcers are a malignant transformation of chronic ulcers into squamous cell carcinoma, while neuropathic ulcers typically occur over pressure areas such as the sole of the foot and are associated with a sensory neuropathy. Although this patient has diabetes, the history and appearance of the ulcer are more consistent with an arterial ulcer.

      Venous leg ulcers are caused by venous hypertension and can be managed with compression banding. Marjolin’s ulcers are a type of squamous cell carcinoma that occur at sites of chronic inflammation. Arterial ulcers are painful and occur on the toes and heel, while neuropathic ulcers commonly occur over the plantar surface of the metatarsal head and hallux. Pyoderma gangrenosum is associated with inflammatory bowel disease and can present as erythematous nodules or pustules that ulcerate.

    • This question is part of the following fields:

      • Cardiovascular System
      7.9
      Seconds
  • Question 28 - At what age is a ventricular septal defect typically diagnosed, and what cardiovascular...

    Incorrect

    • At what age is a ventricular septal defect typically diagnosed, and what cardiovascular structure is responsible for its development due to embryological failure?

      Your Answer:

      Correct Answer: Endocardial cushions

      Explanation:

      The heart’s development starts at approximately day 18 in the embryo, originating from a group of cells in the cardiogenic area of the mesoderm. The underlying endoderm signals the formation of the cardiogenic cords, which fuse together to create the primitive heart tube.

      Around day 22, the primitive heart tube develops into five regions: the truncus arteriosus, bulbus cordis, primitive ventricle, primitive atrium, and sinus venosus. These regions eventually become the ascending aorta and pulmonary trunk, right and left ventricles, anterior atrial walls and appendages, and coronary sinus and sino-atrial node, respectively.

      Over the next week, the heart undergoes morphogenesis, twisting and looping from a vertical tube into a premature heart with atrial and ventricular orientation present by day 28. The endocardial cushions, thickenings of mesoderm in the inner lining of the heart walls, appear and grow towards each other, dividing the atrioventricular canal into left and right sides. Improper development of the endocardial cushions can result in a ventricular septal defect.

      By the end of the fifth week, the four heart chamber positions are complete, and the atrioventricular and semilunar valves form between the fifth and ninth weeks.

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin...

    Incorrect

    • You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?

      Your Answer:

      Correct Answer: Transposition of the great arteries

      Explanation:

      The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 54-year-old man is undergoing the insertion of a long venous line through...

    Incorrect

    • A 54-year-old man is undergoing the insertion of a long venous line through the femoral vein into the right atrium to measure CVP. The catheter is being passed through the IVC. At what level does this vessel enter the thorax?

      Your Answer:

      Correct Answer: T8

      Explanation:

      The diaphragm is penetrated by the IVC at T8.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 31 - An individual who has been a lifelong smoker and is 68 years old...

    Incorrect

    • An individual who has been a lifelong smoker and is 68 years old arrives at the Emergency Department with a heart attack. During the explanation of his condition, a doctor mentions that the arteries supplying his heart have been narrowed and damaged. What substance is increased on endothelial cells after damage or oxidative stress, leading to the recruitment of monocytes to the vessel wall?

      Your Answer:

      Correct Answer: Vascular cell adhesion molecule-1

      Explanation:

      VCAM-1 is a protein expressed on endothelial cells in response to pro-atherosclerotic conditions. It binds to lymphocytes, monocytes, and eosinophils, causing adhesion to the endothelium. Its expression is upregulated by cytokines and is critical in the development of atherosclerosis.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 32 - Which of the following complications is the least commonly associated with ventricular septal...

    Incorrect

    • Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?

      Your Answer:

      Correct Answer: Atrial fibrillation

      Explanation:

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 33 - A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a...

    Incorrect

    • A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a blood test reveals an abnormality and an ECG shows new U waves, which were not present on a previous ECG. What electrolyte imbalance could be responsible for these symptoms and ECG changes?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      The correct answer is hypokalaemia, which can be a side effect of furosemide. This condition is characterized by U waves on ECG, as well as small or absent T waves, prolonged PR interval, ST depression, and/or long QT. Hypercalcaemia, on the other hand, can cause shortening of the QT interval and J waves in severe cases. Hyperkalaemia is associated with tall-tented T waves, loss of P waves, broad QRS complexes, sinusoidal wave pattern, and/or ventricular fibrillation, and can be caused by various factors such as acute or chronic kidney disease, medications, diabetic ketoacidosis, and Addison’s disease. Hypernatraemia, which can be caused by dehydration or diabetes insipidus, does not typically result in ECG changes.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 34 - A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur...

    Incorrect

    • A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?

      Your Answer:

      Correct Answer: Tricuspid valve

      Explanation:

      The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 35 - A 29-year-old man is brought to the emergency surgical theatre with multiple stab...

    Incorrect

    • A 29-year-old man is brought to the emergency surgical theatre with multiple stab wounds to his abdomen and is hypotensive despite resuscitative measures. During a laparotomy, a profusely bleeding vessel is found at a certain level of the lumbar vertebrae. The vessel is identified as the testicular artery and is ligated to stop the bleeding. At which vertebral level was the artery identified?

      Your Answer:

      Correct Answer: L2

      Explanation:

      The testicular arteries originate from the abdominal aorta at the level of the second lumbar vertebrae (L2).

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 36 - A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During...

    Incorrect

    • A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During the surgery, an enlarged inferior parathyroid gland is identified with a vessel located adjacent to it laterally. Which vessel is most likely to be in this location?

      Your Answer:

      Correct Answer: Common carotid artery

      Explanation:

      The inferior parathyroid is located laterally to the common carotid artery.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 37 - A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation,...

    Incorrect

    • A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?

      Your Answer:

      Correct Answer: T12

      Explanation:

      The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 38 - A 79-year-old man visits his doctor complaining of chest pain that occurs during...

    Incorrect

    • A 79-year-old man visits his doctor complaining of chest pain that occurs during physical activity and subsides after rest for the past three months. The doctor diagnoses him with angina and prescribes medications. Due to contraindications, beta blockers and calcium channel blockers are not suitable for this patient, so the doctor starts him on ranolazine. What is the main mechanism of action of ranolazine?

      Your Answer:

      Correct Answer: Inhibition of persistent or late inward sodium current

      Explanation:

      Ranolazine is a medication that works by inhibiting persistent or late sodium current in various voltage-gated sodium channels in heart muscle. This results in a decrease in intracellular calcium levels, which in turn reduces tension in the heart muscle and lowers its oxygen demand.

      Other medications used to treat angina include ivabradine, which inhibits funny channels, trimetazidine, which inhibits fatty acid metabolism, nitrates, which increase nitric oxide, and several drugs that reduce heart rate, such as beta blockers and calcium channel blockers.

      It is important to note that ranolazine is not typically the first medication prescribed for angina. The drug management of angina may vary depending on the individual patient’s needs and medical history.

      Angina pectoris can be managed through lifestyle changes, medication, percutaneous coronary intervention, and surgery. In 2011, NICE released guidelines for the management of stable angina. Medication is an important aspect of treatment, and all patients should receive aspirin and a statin unless there are contraindications. Sublingual glyceryl trinitrate can be used to abort angina attacks. NICE recommends using either a beta-blocker or a calcium channel blocker as first-line treatment, depending on the patient’s comorbidities, contraindications, and preferences. If a calcium channel blocker is used as monotherapy, a rate-limiting one such as verapamil or diltiazem should be used. If used in combination with a beta-blocker, a longer-acting dihydropyridine calcium channel blocker like amlodipine or modified-release nifedipine should be used. Beta-blockers should not be prescribed concurrently with verapamil due to the risk of complete heart block. If initial treatment is ineffective, medication should be increased to the maximum tolerated dose. If a patient is still symptomatic after monotherapy with a beta-blocker, a calcium channel blocker can be added, and vice versa. If a patient cannot tolerate the addition of a calcium channel blocker or a beta-blocker, long-acting nitrate, ivabradine, nicorandil, or ranolazine can be considered. If a patient is taking both a beta-blocker and a calcium-channel blocker, a third drug should only be added while awaiting assessment for PCI or CABG.

      Nitrate tolerance is a common issue for patients who take nitrates, leading to reduced efficacy. NICE advises patients who take standard-release isosorbide mononitrate to use an asymmetric dosing interval to maintain a daily nitrate-free time of 10-14 hours to minimize the development of nitrate tolerance. However, this effect is not seen in patients who take once-daily modified-release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 39 - A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at...

    Incorrect

    • A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.

      What is the ultimate stage in the development of this stenosis?

      Your Answer:

      Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 40 - A 23-year-old male university student presents to the emergency department with lightheadedness and...

    Incorrect

    • A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.

      He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.

      On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.

      An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².

      His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.

      Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.

      Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.

      Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 41 - A 54-year-old man is admitted to the coronary care unit after being hospitalized...

    Incorrect

    • A 54-year-old man is admitted to the coronary care unit after being hospitalized three weeks ago for an ST-elevation myocardial infarction. He reports chest pain again and is concerned it may be another infarction. The pain is described as sharp and worsens with breathing. The cardiology resident notes a fever and hears a rubbing sound and pansystolic murmur on auscultation, which were previously present. A 12-lead ECG shows no new ischemic changes. The patient has a history of diabetes, hypertension, and heavy smoking since his teenage years. What is the most likely cause of his current condition?

      Your Answer:

      Correct Answer: Autoimmune-mediated

      Explanation:

      Dressler’s syndrome is an autoimmune-mediated pericarditis that occurs 2-6 weeks after a myocardial infarction (MI). This patient, who has been admitted to the coronary care unit following an MI, is experiencing chest pain that is pleuritic in nature, along with fever and a friction rub sound upon examination. Given the timing of the symptoms at three weeks post-MI, Dressler’s syndrome is the most likely diagnosis. This condition results from an autoimmune-mediated inflammatory reaction to antigens following an MI, leading to inflammation of the pericardial sac and pericardial effusion. If left untreated, it can increase the risk of ventricular rupture. Treatment typically involves high-dose aspirin and corticosteroids if necessary.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 42 - A 50-year-old man is having a lymph node biopsy taken from the posterior...

    Incorrect

    • A 50-year-old man is having a lymph node biopsy taken from the posterior triangle of his neck. What structure creates the posterior boundary of this area?

      Your Answer:

      Correct Answer: Trapezius muscle

      Explanation:

      The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 43 - Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and...

    Incorrect

    • Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?

      Your Answer:

      Correct Answer: 2 cm from the vertical height above the sternal angle

      Explanation:

      The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45º angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.

      Understanding the Jugular Venous Pulse

      The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.

      The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.

      Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 44 - A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness...

    Incorrect

    • A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness of breath during physical activity over the past 6 months. She has no significant medical history and is not taking any medications.

      During the examination, the lungs are clear upon auscultation, but a loud P2 heart sound is detected. An X-ray of the chest reveals enlarged shadows of the pulmonary artery.

      What could be the underlying cause of this condition?

      Your Answer:

      Correct Answer: Endothelin

      Explanation:

      The cause of pulmonary vasoconstriction in primary pulmonary hypertension is endothelin, which is why antagonists are used to treat the condition. This is supported by the symptoms and diagnostic findings in a woman between the ages of 20 and 50. Other options such as bradykinin, iloprost, and nitric oxide are not vasoconstrictors and do not play a role in the development of pulmonary hypertension.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 45 - A 82-year-old male is admitted to the Emergency Room with complaints of severe...

    Incorrect

    • A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?

      Your Answer:

      Correct Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils

      Explanation:

      In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.

      Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.

      From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.

      Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 46 - A 67-year-old man is admitted for a below knee amputation. He is taking...

    Incorrect

    • A 67-year-old man is admitted for a below knee amputation. He is taking digoxin. The patient presents with an irregularly irregular pulse. What would be your expectation when examining the jugular venous pressure?

      Your Answer:

      Correct Answer: Absent a waves

      Explanation:

      The pressure in the jugular vein.

      Understanding Jugular Venous Pressure

      Jugular venous pressure (JVP) is a useful tool for assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information about the heart’s function. A non-pulsatile JVP may indicate superior vena caval obstruction, while Kussmaul’s sign describes a paradoxical rise in JVP during inspiration seen in constrictive pericarditis.

      The ‘a’ wave of the jugular vein waveform represents atrial contraction. A large ‘a’ wave may indicate conditions such as tricuspid stenosis, pulmonary stenosis, or pulmonary hypertension. However, an absent ‘a’ wave is common in atrial fibrillation.

      Cannon ‘a’ waves are caused by atrial contractions against a closed tricuspid valve. They are seen in conditions such as complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve. Giant ‘v’ waves may indicate tricuspid regurgitation.

      Finally, the ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve. Understanding the jugular venous pressure waveform can provide valuable insights into the heart’s function and help diagnose underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 47 - Mrs. Smith is a 75-year-old woman who presents to the emergency department with...

    Incorrect

    • Mrs. Smith is a 75-year-old woman who presents to the emergency department with progressive shortness of breath over the past 5 days. Last night she woke up suddenly because she couldn't catch her breath and developed a dry cough. Her breathing improved when she sat upright on the edge of her bed. She denies any chest pain, leg pain or fainting spells.

      Her past medical history includes a myocardial infarction 5 years ago for which she underwent a coronary artery bypass graft, hypertension and type 2 diabetes. She has been smoking for 30 years and doesn't drink any alcohol.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Left-sided heart failure

      Explanation:

      The likely diagnosis for a patient experiencing paroxysmal nocturnal dyspnoea is left-sided heart failure. This symptom, which involves sudden waking at night due to shortness of breath, is a common feature of heart failure, particularly on the left side. Aortic dissection, myocardial infarction, and pulmonary embolism are unlikely diagnoses as they present with different symptoms. Right-sided heart failure is also an unlikely diagnosis as it presents with different features such as raised JVP, ankle oedema, and hepatomegaly.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 48 - A 30-year-old male arrives at the emergency department complaining of sudden dizziness and...

    Incorrect

    • A 30-year-old male arrives at the emergency department complaining of sudden dizziness and palpitations. His medical history reveals that he had infectious diarrhea a week ago and was prescribed a 10-day course of erythromycin. Upon examination, an ECG confirms fast atrial fibrillation. The physician decides to use amiodarone to convert the patient into sinus rhythm. What is one potential risk associated with the use of amiodarone in this patient?

      Your Answer:

      Correct Answer: Ventricular arrhythmias

      Explanation:

      The risk of ventricular arrhythmias is increased when amiodarone and erythromycin are used together due to their ability to prolong the QT interval. Manufacturers advise against using multiple drugs that prolong QT interval to avoid this risk. WPW syndrome is a congenital condition that involves abnormal conductive cardiac tissue and can lead to reentrant tachycardia circuit in association with SVT. Amiodarone can cause a slate-grey appearance of the skin, while drugs like rifampicin can cause orange discoloration of body fluids. COPD is associated with multifocal atrial tachycardia.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 49 - A 68-year-old man arrives at the emergency department complaining of intense abdominal pain...

    Incorrect

    • A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?

      Your Answer:

      Correct Answer: L4

      Explanation:

      The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 50 - An elderly man in his late 60s is admitted to the cardiology ward...

    Incorrect

    • An elderly man in his late 60s is admitted to the cardiology ward due to worsening shortness of breath. He has a medical history of hypertension and ischaemic heart disease. During examination, bibasal crackles and pitting oedema to the knees bilaterally are observed. Blood tests are conducted, and the results show a brain natriuretic peptide level of 4990 pg/mL (< 400). What is the most probable physiological change that occurs in response to this finding?

      Your Answer:

      Correct Answer: Decreased afterload

      Explanation:

      BNP has several actions, including vasodilation which can decrease cardiac afterload, diuretic and natriuretic effects, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. In the case of heart failure, BNP is primarily secreted by the ventricular myocardium to compensate for symptoms by promoting diuresis, natriuresis, vasodilation, and suppression of sympathetic tone and renin-angiotensin-aldosterone activity. Vasodilation of the peripheral vascular system leads to a decrease in afterload, reducing the force that the left ventricle has to contract against and lowering the risk of left ventricular failure progression. BNP also suppresses sympathetic tone and the RAAS, which would exacerbate heart failure symptoms, and contributes to natriuresis, aiding diuresis and improving dyspnea.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (7/27) 26%
Passmed