-
Question 1
Correct
-
A 73-year-old male visits the GP following a recent fall. He reports experiencing decreased sensation in his penis. During the clinical examination, you observe reduced sensation in his scrotum and the inner part of his buttocks. You suspect that the fall may have resulted in a sacral spinal cord injury.
What dermatomes are responsible for the loss of sensation in this case?Your Answer: S2, S3
Explanation:The patient is experiencing sensory loss in their genitalia due to damage to the S2 and S3 nerve roots, which has resulted in the loss of the corresponding dermatomes. The T4 and T5 dermatomes are located in the upper extremities, while the C3 and C4 dermatomes are also in the upper extremities. If the S1 nerve root were damaged, it would cause sensory loss in the lateral foot and small toe due to the loss of the S1 dermatome.
Understanding Dermatomes: Major Landmarks and Mnemonics
Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.
Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.
Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.
The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.
Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Correct
-
A 32-year-old woman who is breastfeeding her first child complains of discomfort in her right breast. Upon examination, there is erythema and a fluctuant area. Which organism is most likely to be found upon aspiration and culture of the fluid?
Your Answer: Staphylococcus aureus
Explanation:The most frequent cause of infection is Staphylococcus aureus, which typically enters through damage to the nipple areolar complex caused by the infant’s mouth.
Breast Abscess: Causes and Management
Breast abscess is a condition that commonly affects lactating women, with Staphylococcus aureus being the most common cause. The condition is characterized by the presence of a tender, fluctuant mass in the breast.
To manage breast abscess, healthcare providers may opt for either incision and drainage or needle aspiration, with the latter typically done using ultrasound. Antibiotics are also prescribed to help treat the infection.
Breast abscess can be a painful and uncomfortable condition for lactating women. However, with prompt and appropriate management, the condition can be effectively treated, allowing women to continue breastfeeding their babies without any complications.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 3
Incorrect
-
A 70-year-old male has been diagnosed with Alzheimer's disease, but there is no family history of the disease.
Which gene is the most probable to be affected in this individual?Your Answer: Presenilin 2 gene (PSEN2)
Correct Answer: APOE ε4 gene
Explanation:The risk of sporadic Alzheimer’s disease is primarily determined by APOE polymorphic alleles, with the ε4 allele carrying the highest risk. Familial Alzheimer’s disease is linked to the APP, PSEN1, and PSEN2 genes, while familial Parkinson’s disease is associated with the PARK genes.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A 4-year-old girl with a known diagnosis of cystic fibrosis presents to her pediatrician with a 2-day history of left-ear pain. Her mother reports that she has been frequently tugging at her left ear and had a fever this morning. Apart from this, she has been healthy. On examination, a red, bulging eardrum is observed. The pediatrician suspects bacterial otitis media. What is the probable causative organism responsible for this patient's symptoms?
Your Answer: Escherichia coli
Correct Answer: Haemophilus influenzae
Explanation:Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis are common bacterial organisms that can cause bacterial otitis media. Pseudomonas aeruginosa can also be a common cause in patients with cystic fibrosis.
The patient’s symptoms are typical of acute otitis media (AOM), which can cause ear pain, fever, and temporary hearing loss. AOM is more common in children due to their short, horizontal eustachian tubes that allow for easier movement of organisms from the upper respiratory tract to the middle ear.
AOM can be caused by either bacteria or viruses, and it can be difficult to distinguish between the two. However, features that may suggest a bacterial cause include the absence of upper respiratory tract infection symptoms and conditions that predispose to bacterial infections. In some cases, viral AOM can increase the risk of bacterial superinfection. Antibiotics may be prescribed for prolonged cases of AOM that do not appear to be resolving within a few days or in patients with immunosuppression.
Escherichia coli and Enterococcus faecalis are not the correct answers as they are not commonly associated with AOM. Haemophilus influenzae is more likely due to the proximity of the middle ear to the upper respiratory tract. Staphylococcus aureus is also an unlikely cause of bacterial AOM.
Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
An 80-year-old man is recuperating after undergoing a right total hip replacement. During a session with the physiotherapists, it is observed that his right foot is dragging on the ground while walking.
Upon conducting a neurological examination of his lower limbs, it is found that his left leg is completely normal. However, his right leg has 0/5 power of dorsiflexion and knee flexion, a reduced ankle and plantar reflex, and no sensation over the lateral calf, sole, and dorsum of the foot.
What is the nerve lesion that has occurred?Your Answer:
Correct Answer: Sciatic nerve
Explanation:Foot drop can be caused by a lesion to the sciatic nerve.
When the sciatic nerve is damaged, it can result in various symptoms such as foot drop, loss of power below the knee, loss of knee flexion, loss of ankle jerk and plantar response. The sciatic nerve innervates the hamstring muscles in the posterior thigh and indirectly innervates other muscles via its two terminal branches: the tibial nerve and the common fibular nerve. The tibial nerve supplies the calf muscles and some intrinsic muscles of the foot, while the common fibular nerve supplies the muscles of the anterior and lateral leg, as well as the remaining intrinsic foot muscles. Although the sciatic nerve has no direct sensory inputs, it receives information from its two terminal branches, which supply the skin of various areas of the leg and foot.
Sciatic nerve lesions can occur due to various reasons, such as neck of femur fractures and total hip replacement trauma. However, it is important to note that a femoral nerve lesion would cause different symptoms, such as weakness in anterior thigh muscles, reduced hip flexion and knee extension, and loss of sensation to the anteromedial thigh and medial leg and foot. Similarly, lesions to the lower gluteal nerve or superior gluteal nerve would cause weakness in specific muscles and no sensory loss.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his primary care physician requests a serum cortisol test. In its unbound form, cortisol is responsible for the manifestations of Cushing's syndrome. What is the primary substance that binds to cortisol in the bloodstream, rendering it inactive?
Your Answer:
Correct Answer: Cortisol binding globulin
Explanation:Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
A 57-year-old male presents to the urology clinic with painless haematuria and requires an urgent assessment. He undergoes a flexible cystoscopy, during which the neck and trigone of the bladder are visualised. What structures make up the trigone of the bladder?
Your Answer:
Correct Answer: Two ureteric orifices and the internal urethral orifice
Explanation:The triangular area of the bladder is made up of muscles and is located above the urethra. It is formed by the openings of the two ureters and the internal urethral opening.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 3-year-old child visits the doctor's office with chickenpox. The mother is anxious as her older daughter, who had chickenpox at the age of 4, is preparing for the 11+ exam and she fears that she may catch the illness. The doctor assures the mother that the chances of her getting infected are low. Which type of cell is a part of 'adaptive immunity' and will play a role in preventing a recurrence of chickenpox?
Your Answer:
Correct Answer: B cells
Explanation:B cells produce antibodies, with the assistance of T helper cells that stimulate the production of targeted antibodies.
NK cells and neutrophils are part of the innate immune response. NK cells facilitate the elimination of pathogen-infected cells, while neutrophils can engulf pathogens and release cytokines.
The liver’s functional cells are known as hepatocytes.
The adaptive immune response involves several types of cells, including helper T cells, cytotoxic T cells, B cells, and plasma cells. Helper T cells are responsible for the cell-mediated immune response and recognize antigens presented by MHC class II molecules. They express CD4, CD3, TCR, and CD28 and are a major source of IL-2. Cytotoxic T cells also participate in the cell-mediated immune response and recognize antigens presented by MHC class I molecules. They induce apoptosis in virally infected and tumor cells and express CD8 and CD3. Both helper T cells and cytotoxic T cells mediate acute and chronic organ rejection.
B cells are the primary cells of the humoral immune response and act as antigen-presenting cells. They also mediate hyperacute organ rejection. Plasma cells are differentiated from B cells and produce large amounts of antibody specific to a particular antigen. Overall, these cells work together to mount a targeted and specific immune response to invading pathogens or abnormal cells.
-
This question is part of the following fields:
- General Principles
-
-
Question 9
Incorrect
-
Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of gradual worsening shortness of breath over the past two months. During the medical history, it was discovered that she has had Chronic Obstructive Pulmonary Disease (COPD) for 20 years.
Upon examination, there are no breath sounds at both lung bases and a stony dull note to percussion over the same areas. Based on this clinical scenario, what is the probable cause of her recent exacerbation of shortness of breath?Your Answer:
Correct Answer: Pleural transudate effusion secondary to cor pulmonale
Explanation:The most likely cause of a pleural transudate is heart failure. This is due to the congestion of blood into the systemic venous circulation, which can result from long-standing COPD and increase in pulmonary vascular resistance leading to right-sided heart failure or cor pulmonale. Other options such as infective exacerbation of COPD or pulmonary edema secondary to heart failure are less likely to explain the clinical signs. Pleural exudate effusion secondary to cor pulmonale is also not the most appropriate answer as it would cause a transudate pleural effusion, not an exudate.
Understanding the Causes and Features of Pleural Effusion
Pleural effusion is a medical condition characterized by the accumulation of fluid in the pleural space, which is the area between the lungs and the chest wall. The causes of pleural effusion can be classified into two types: transudate and exudate. Transudate is characterized by a protein concentration of less than 30g/L and is commonly caused by heart failure, hypoalbuminemia, liver disease, and other conditions. On the other hand, exudate is characterized by a protein concentration of more than 30g/L and is commonly caused by infections, pneumonia, tuberculosis, and other conditions.
The symptoms of pleural effusion may include dyspnea, non-productive cough, and chest pain. Upon examination, patients may exhibit dullness to percussion, reduced breath sounds, and reduced chest expansion. It is important to identify the underlying cause of pleural effusion to determine the appropriate treatment plan. Early diagnosis and treatment can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A young man presents with polyuria, polydipsia and weight loss. He is subsequently diagnosed with type 1 diabetes mellitus. What is he at an increased risk of developing?
Your Answer:
Correct Answer: Addison's disease, Grave's disease, coeliac disease
Explanation:Type 1 diabetes is linked to other autoimmune disorders like Addison’s disease, Grave’s disease, and coeliac disease, due to its own autoimmune nature. The other choices are incorrect as they contain a non-autoimmune disorder.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Incorrect
-
A 31-year-old arrives at the Emergency Department by ambulance after being involved in a car accident. During the ABCDE assessment, it is discovered that the patient has suffered a penetrating injury at the T9 level.
Following an MRI of the spine and consultation with a neurologist, the patient is diagnosed with Brown-Sequard syndrome on the left side.
What symptoms can be expected from this patient's condition?Your Answer:
Correct Answer: Left-sided loss of motor, vibration and proprioception, with right-sided loss of pain and temperature sensation
Explanation:The spinothalamic tract crosses over at the same level where the nerve root enters the spinal cord, while the corticospinal tract, dorsal column medial lemniscus, and spinocerebellar tracts cross over at the medulla.
Brown-Sequard syndrome affects one entire side of the spinal cord, resulting in the loss of motor function, vibration, and proprioception on the left side, and loss of pain and temperature sensation on the right side.
In Brown-Sequard syndrome, the loss of motor function, vibration, and proprioception occurs on the same side due to the corticospinal tract and dorsal column medial meniscus crossing over at the medulla. The loss of pain and temperature sensation occurs on the opposite side due to the crossing over of the tract at the nerve root.
Anterior cord syndrome affects the descending corticospinal tract and ascending spinothalamic tract, leading to the loss of motor function, pain, and temperature sensation below the injury site. However, proprioception and vibration sensation remain unaffected as the dorsal columns are spared.
Central cord syndrome results in the loss of motor function on both sides, as well as some loss of vibration and proprioception.
Posterior cord syndrome affects the dorsal column medial lemniscus, leading to the loss of proprioception and vibration sensation on the same side. This condition can be caused by neck hyperflexion, disc compression, ischaemia, vitamin B12 deficiency, or multiple sclerosis.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 57-year-old woman with a history of polycystic kidney disease visits her doctor complaining of a drooping eyelid. Upon examination, her left eye displays unilateral ptosis and a downward and outward gaze, with a dilated left pupil. The patient is referred to the neuroradiology department for cerebral angiography, which reveals an aneurysm compressing the oculomotor nerve as it passes through two arteries. What are the names of these two arteries that the oculomotor nerve runs through?
Your Answer:
Correct Answer: Posterior cerebral and superior cerebellar arteries
Explanation:The oculomotor nerve commonly becomes compressed by aneurysms arising from the posterior cerebral and superior cerebellar arteries as it exits the midbrain, passing between these vessels.
When a patient presents with ptosis, pupillary dilation, and downward and outward gaze, this is classified as a ‘surgical’ cause of oculomotor nerve palsy. In contrast, ‘medical’ causes of oculomotor nerve palsy, such as diabetic neuropathy, typically spare the pupil (at least initially) because the parasympathetic fibers are located on the periphery of the oculomotor nerve trunk and are therefore the first to be affected by compression, resulting in a fixed and dilated pupil.
While a posterior communicating artery aneurysm is a classic cause of oculomotor nerve compression, it is not the correct answer to the above question.
All other combinations are incorrect.
Disorders of the Oculomotor System: Nerve Path and Palsy Features
The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.
The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.
The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
A 9-year-old girl visits her GP with blisters around her mouth. The doctor diagnoses her with non-bullous impetigo and expresses concern about the possibility of an intracranial infection spreading from her face to her cranial cavity through a connected venous structure. Which venous structure is the facial vein linked to that could result in this spread?
Your Answer:
Correct Answer: Cavernous sinus
Explanation:The facial vein is connected to the ophthalmic vein, which can lead to infections spreading to the cranial cavity. However, the dual venous sinus and other external venous systems do not directly connect to the intracerebral structure.
Understanding the Cavernous Sinus
The cavernous sinuses are a pair of structures located on the sphenoid bone, running from the superior orbital fissure to the petrous temporal bone. They are situated between the pituitary fossa and the sphenoid sinus on the medial side, and the temporal lobe on the lateral side. The cavernous sinuses contain several important structures, including the oculomotor, trochlear, ophthalmic, and maxillary nerves, as well as the internal carotid artery and sympathetic plexus, and the abducens nerve.
The lateral wall components of the cavernous sinuses include the oculomotor, trochlear, ophthalmic, and maxillary nerves, while the contents of the sinus run from medial to lateral and include the internal carotid artery and sympathetic plexus, and the abducens nerve. The blood supply to the cavernous sinuses comes from the ophthalmic vein, superficial cortical veins, and basilar plexus of veins posteriorly. The cavernous sinuses drain into the internal jugular vein via the superior and inferior petrosal sinuses.
In summary, the cavernous sinuses are important structures located on the sphenoid bone that contain several vital nerves and blood vessels. Understanding their location and contents is crucial for medical professionals in diagnosing and treating various conditions that may affect these structures.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 22-year-old individual is brought to the medical team on call due to fever, neck stiffness, and altered Glasgow coma scale. The medical team suspects acute bacterial meningitis.
What would be the most suitable antibiotic option for this patient?Your Answer:
Correct Answer: Cefotaxime
Explanation:Empirical Antibiotic Treatment for Acute Bacterial Meningitis
Patients aged 16-50 years presenting with acute bacterial meningitis are most likely infected with Neisseria meningitidis or Streptococcus pneumoniae. The most appropriate empirical antibiotic choice for this age group is cefotaxime alone. However, if the patient has been outside the UK recently or has had multiple courses of antibiotics in the last 3 months, vancomycin may be added due to the increase in penicillin-resistant pneumococci worldwide.
For infants over 3 months old up to adults of 50 years old, cefotaxime is the preferred antibiotic. If the patient is under 3 months or over 50 years old, amoxicillin is added to cover for Listeria monocytogenes meningitis, although this is rare. Ceftriaxone can be used instead of cefotaxime.
Once the results of culture and sensitivity are available, the antibiotic choice can be modified for optimal treatment. Benzylpenicillin is usually first line, but it is not an option in this case. It is important to choose the appropriate antibiotic treatment to ensure the best possible outcome for the patient.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.
What is the reason for the facial muscle twitching observed during the examination?Your Answer:
Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia
Explanation:Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.
Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.
Understanding Hypoparathyroidism
Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.
Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
Which of the following physiological changes does not take place after a tracheostomy?
Your Answer:
Correct Answer: Work of breathing is increased.
Explanation:HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 14-year-old boy comes to his doctor complaining of swollen testicles. He mentions being hit by a baseball during a game. The boy feels fine and has not experienced any vomiting.
During the examination, the physician notices a slight swelling in his testicles. The boy also has decreased sensation in the skin of his scrotum's front.
Which nerve provides sensory innervation to the skin in the front of the scrotum?Your Answer:
Correct Answer: Genital branch of the genitofemoral nerve
Explanation:The anterior scrotal skin receives sensory sensation from the genital branch of the genitofemoral nerve. The ilioinguinal and genitofemoral nerves (genital branch) innervate the front of the scrotum, while the perineal branches of the pudendal nerves innervate the back. The dorsal branch of the pudendal nerve provides sensory innervation to the erectile tissue of the penis/clitoris and the skin over the foreskin, glans, and penis/foreskin’s dorsolateral aspect. The posterior scrotal nerves supply sensory innervation to the skin on the back of the scrotum. The cavernous nerves are responsible for facilitating penile erection and are postganglionic parasympathetic nerves.
The Genitofemoral Nerve: Anatomy and Function
The genitofemoral nerve is responsible for supplying a small area of the upper medial thigh. It arises from the first and second lumbar nerves and passes through the psoas major muscle before emerging from its medial border. The nerve then descends on the surface of the psoas major, under the cover of the peritoneum, and divides into genital and femoral branches.
The genital branch of the genitofemoral nerve passes through the inguinal canal within the spermatic cord to supply the skin overlying the scrotum’s skin and fascia. On the other hand, the femoral branch enters the thigh posterior to the inguinal ligament, lateral to the femoral artery. It supplies an area of skin and fascia over the femoral triangle.
Injuries to the genitofemoral nerve may occur during abdominal or pelvic surgery or inguinal hernia repairs. Understanding the anatomy and function of this nerve is crucial in preventing such injuries and ensuring proper treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 36-year-old male with a history of prolonged NSAID use and gastroesophageal reflux disease presents to the acute surgical unit complaining of abdominal pain and hematemesis. During an endoscopy to investigate a suspected upper gastrointestinal bleed, a gastric ulcer is discovered on the posterior aspect of the stomach body that has eroded through an artery. Which specific artery is most likely to have been affected?
Your Answer:
Correct Answer: Splenic artery
Explanation:Acute upper gastrointestinal bleeding is a common and significant medical issue that can be caused by various conditions, with oesophageal varices and peptic ulcer disease being the most common. The main symptoms include haematemesis (vomiting of blood), melena (passage of altered blood per rectum), and a raised urea level due to the protein meal of the blood. The diagnosis can be determined by identifying the specific features associated with a particular condition, such as stigmata of chronic liver disease for oesophageal varices or abdominal pain for peptic ulcer disease.
The differential diagnosis for acute upper gastrointestinal bleeding includes oesophageal, gastric, and duodenal causes. Oesophageal varices may present with a large volume of fresh blood, while gastric ulcers may cause low volume bleeds that present as iron deficiency anaemia. Duodenal ulcers are usually posteriorly sited and may erode the gastroduodenal artery. Aorto-enteric fistula is a rare but important cause of major haemorrhage associated with high mortality in patients with previous abdominal aortic aneurysm surgery.
The management of acute upper gastrointestinal bleeding involves risk assessment using the Glasgow-Blatchford score, which helps clinicians decide whether patients can be managed as outpatients or not. Resuscitation involves ABC, wide-bore intravenous access, and platelet transfusion if actively bleeding platelet count is less than 50 x 10*9/litre. Endoscopy should be offered immediately after resuscitation in patients with a severe bleed, and all patients should have endoscopy within 24 hours. Treatment options include repeat endoscopy, interventional radiology, and surgery for non-variceal bleeding, while terlipressin and prophylactic antibiotics should be given to patients with variceal bleeding. Band ligation should be used for oesophageal varices, and injections of N-butyl-2-cyanoacrylate for patients with gastric varices. Transjugular intrahepatic portosystemic shunts (TIPS) should be offered if bleeding from varices is not controlled with the above measures.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 19
Incorrect
-
A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia, and lacrimation. His pupils constrict in response to light.
What is the neurotransmitter responsible for this pupillary response?Your Answer:
Correct Answer: Acetylcholine
Explanation:The primary neurotransmitter used by the parasympathetic nervous system is acetylcholine (ACh). This pathway is responsible for activities such as lacrimation and pupil constriction, which are also mediated by ACh.
On the other hand, the sympathetic pathway uses epinephrine as its neurotransmitter, which is involved in pupil dilation. Norepinephrine is also a neurotransmitter of the sympathetic pathway.
In the brain, gamma-aminobutyric acid acts as an inhibitory neurotransmitter.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 55-year-old man presents to your clinic with numbness and paraesthesia in his right thumb and index finger. His hands seem enlarged and you observe significant gaps between his teeth. Which hormone is expected to be elevated?
Your Answer:
Correct Answer: Growth hormone
Explanation:Excessive growth hormone can cause prognathism, spade-like hands, and tall stature. Patients may experience discomfort due to ill-fitting hats or shoes, as well as joint pain, headaches, and visual issues. It is important to note that gigantism occurs when there is an excess of growth hormone secretion before growth plate fusion, while acromegaly occurs when there is an excess of secretion after growth plate fusion.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A team of investigators aims to examine an outbreak of acute gastroenteritis in a nearby neighborhood. Roughly 150 individuals experienced severe bloody diarrhea, and there was one reported death. The researchers suspect that the outbreak is linked to the consumption of contaminated food served at local eateries.
What study design would be the most suitable to test this theory?Your Answer:
Correct Answer: Case-control study
Explanation:The most suitable study design for investigating an infectious outbreak is a case-control study. This design allows for the exploration of the association between exposure and disease, even when the number of affected individuals is small. It also enables the quick identification of the source of the outbreak. To conduct a case-control study, a case definition is established, and affected individuals are questioned about their recent exposures. Unaffected individuals are chosen as controls to reflect the exposure experience of the general population. If cases are more likely to have been exposed than controls, an association between exposure and disease can be established. Correlational studies seek to understand the relationships between naturally occurring variables, while clinical trials involving the consumption of food prepared at local restaurants would be neither appropriate nor ethical. Cross-sectional studies are useful for determining prevalence, while longitudinal studies involve repeat measurements of the same variables over an extended period.
There are different types of studies that researchers can use to investigate various phenomena. One of the most rigorous types of study is the randomised controlled trial, where participants are randomly assigned to either an intervention or control group. However, practical or ethical issues may limit the use of this type of study. Another type of study is the cohort study, which is observational and prospective. Researchers select two or more groups based on their exposure to a particular agent and follow them up to see how many develop a disease or other outcome. The usual outcome measure is the relative risk. Examples of cohort studies include the Framingham Heart Study.
On the other hand, case-control studies are observational and retrospective. Researchers identify patients with a particular condition (cases) and match them with controls. Data is then collected on past exposure to a possible causal agent for the condition. The usual outcome measure is the odds ratio. Case-control studies are inexpensive and produce quick results, making them useful for studying rare conditions. However, they are prone to confounding. Lastly, cross-sectional surveys provide a snapshot of a population and are sometimes called prevalence studies. They provide weak evidence of cause and effect.
-
This question is part of the following fields:
- General Principles
-
-
Question 22
Incorrect
-
Which hormone is primarily responsible for sodium-potassium exchange in the salivary ducts?
Your Answer:
Correct Answer: Aldosterone
Explanation:The regulation of ion exchange in salivary glands is attributed to aldosterone. This hormone targets a pump that facilitates the exchange of sodium and potassium ions. Aldosterone is classified as a mineralocorticoid hormone and is produced in the zona glomerulosa of the adrenal gland.
The parotid gland is located in front of and below the ear, overlying the mandibular ramus. Its salivary duct crosses the masseter muscle, pierces the buccinator muscle, and drains adjacent to the second upper molar tooth. The gland is traversed by several structures, including the facial nerve, external carotid artery, retromandibular vein, and auriculotemporal nerve. The gland is related to the masseter muscle, medial pterygoid muscle, superficial temporal and maxillary artery, facial nerve, stylomandibular ligament, posterior belly of the digastric muscle, sternocleidomastoid muscle, stylohyoid muscle, internal carotid artery, mastoid process, and styloid process. The gland is supplied by branches of the external carotid artery and drained by the retromandibular vein. Its lymphatic drainage is to the deep cervical nodes. The gland is innervated by the parasympathetic-secretomotor, sympathetic-superior cervical ganglion, and sensory-greater auricular nerve. Parasympathetic stimulation produces a water-rich, serous saliva, while sympathetic stimulation leads to the production of a low volume, enzyme-rich saliva.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 23
Incorrect
-
What is the main factor that motivates inspiration?
Your Answer:
Correct Answer: Decreased intrapulmonary pressure
Explanation:The Mechanics of Breathing
Breathing is a complex process that involves the contraction and relaxation of various muscles in the thorax and abdomen. During inspiration, the diaphragm and external intercostal muscles contract, causing the ribs to move forward and up. This increases the volume of the thorax, which in turn reduces the pressure inside the lungs. As a result, air is drawn into the lungs from the atmosphere.
In some cases, such as in asthmatics, additional inspiratory effort may be required. This is where the accessory muscles of respiration, such as the scalene muscles, come into play. These muscles contract to help increase the volume of the thorax and draw in more air.
On the other hand, expiration is usually a passive process. The diaphragm and external intercostal muscles relax, causing the ribs to move downward and inward. This decreases the volume of the thorax, which increases the pressure inside the lungs. As a result, air is expelled from the lungs and out into the atmosphere.
Overall, the mechanics of breathing are a delicate balance between the contraction and relaxation of various muscles in the thorax and abdomen. By how these muscles work together, we can better appreciate the amazing complexity of the human body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 24
Incorrect
-
A 55-year-old male presents to the emergency department with a high fever and fatigue. He does not have any history to offer. On examination, he is noted to have splinter haemorrhages and conjunctival pallor. His observations show him to be pyrexial at 39°C. A pansystolic murmur is audible throughout the praecordium, and an echocardiogram reveals vegetations. He is diagnosed with infective endocarditis and initiated on a triple antibiotic therapy of gentamicin, vancomycin and amoxicillin. The following U&E results are noted at admission:
Na+ 140 mmol/L (135 - 145)
K+ 4.0 mmol/L (3.5 - 5.0)
Bicarbonate 25 mmol/L (22 - 29)
Urea 4.0 mmol/L (2.0 - 7.0)
Creatinine 75 µmol/L (55 - 120)
However, following three days of inpatient treatment, the patient becomes anuric. A repeat set of U&Es reveal the following:
Na+ 145 mmol/L (135 - 145)
K+ 5.0 mmol/L (3.5 - 5.0)
Bicarbonate 25 mmol/L (22 - 29)
Urea 12.0 mmol/L (2.0 - 7.0)
Creatinine 150 µmol/L (55 - 120)
What is the likely mechanism of gentamicin causing this patient’s kidney injury?Your Answer:
Correct Answer: Renal cell apoptosis
Explanation:AKI can be attributed to gentamicin due to its ability to induce apoptosis in renal cells. Therefore, patients who are prescribed gentamicin should undergo frequent monitoring of their renal function and drug concentration levels. While there are other potential causes of acute kidney injury, none of them are linked to aminoglycoside antibiotics.
Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia
Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.
To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.
Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Incorrect
-
A young woman with a history of intravenous drug use presents to the emergency department with cellulitis of her arm. Upon admission, a blood culture is obtained and reveals the growth of a Gram-positive coccus that forms clusters. What molecular tests would be most beneficial in identifying this bacterium?
Your Answer:
Correct Answer: Coagulase
Explanation:Staphylococcus species can be sub-grouped based on the presence of coagulase. The presence of coagulase determines the two most common groups of staphylococci. Staphylococcus aureus is a coagulase positive staphylococcus, while Staphylococcus epidermis is the most common coagulase negative staphylococcus.
Understanding Staphylococci: Common Bacteria with Different Types
Staphylococci are a type of bacteria that are commonly found in the human body. They are gram-positive cocci and are facultative anaerobes that produce catalase. While they are usually harmless, they can also cause invasive diseases. There are two main types of Staphylococci that are important to know: Staphylococcus aureus and Staphylococcus epidermidis.
Staphylococcus aureus is coagulase-positive and is known to cause skin infections such as cellulitis, abscesses, osteomyelitis, and toxic shock syndrome. On the other hand, Staphylococcus epidermidis is coagulase-negative and is often the cause of central line infections and infective endocarditis.
It is important to understand the different types of Staphylococci and their potential to cause disease in order to properly diagnose and treat infections. By identifying the type of Staphylococci present, healthcare professionals can determine the appropriate course of treatment and prevent the spread of infection.
-
This question is part of the following fields:
- General Principles
-
-
Question 26
Incorrect
-
Which virus is linked to Kaposi's sarcoma?
Your Answer:
Correct Answer: Human herpes virus 8
Explanation:Understanding Oncoviruses and Their Associated Cancers
Oncoviruses are viruses that have the potential to cause cancer. These viruses can be detected through blood tests and prevented through vaccination. There are several types of oncoviruses, each associated with a specific type of cancer.
The Epstein-Barr virus, for example, is linked to Burkitt’s lymphoma, Hodgkin’s lymphoma, post-transplant lymphoma, and nasopharyngeal carcinoma. Human papillomavirus 16/18 is associated with cervical cancer, anal cancer, penile cancer, vulval cancer, and oropharyngeal cancer. Human herpes virus 8 is linked to Kaposi’s sarcoma, while hepatitis B and C viruses are associated with hepatocellular carcinoma. Finally, human T-lymphotropic virus 1 is linked to tropical spastic paraparesis and adult T cell leukemia.
It is important to understand the link between oncoviruses and cancer so that appropriate measures can be taken to prevent and treat these diseases. Vaccination against certain oncoviruses, such as HPV, can significantly reduce the risk of developing associated cancers. Regular screening and early detection can also improve outcomes for those who do develop cancer as a result of an oncovirus.
-
This question is part of the following fields:
- General Principles
-
-
Question 27
Incorrect
-
When setting up a screening program, which of the following is not a crucial criterion according to Wilson and Junger?
Your Answer:
Correct Answer: The condition should be potentially curable
Explanation:Screening for a particular condition should meet certain criteria, known as the Wilson and Junger criteria. Firstly, the condition being screened for should be a significant public health concern. Secondly, there should be an effective treatment available for those who are diagnosed with the disease. Thirdly, facilities for diagnosis and treatment should be accessible. Fourthly, there should be a recognizable early stage of the disease. Fifthly, the natural progression of the disease should be well understood. Sixthly, there should be a suitable test or examination available. Seventhly, the test or examination should be acceptable to the population being screened. Eighthly, there should be a clear policy on who should be treated. Ninthly, the cost of screening and subsequent treatment should be economically balanced. Finally, screening should be an ongoing process rather than a one-time event.
-
This question is part of the following fields:
- General Principles
-
-
Question 28
Incorrect
-
A medical resident has been instructed by the geriatric consultant to review the medication chart of an elderly patient with a history of hypertension, heart failure, and biliary colic. The resident noticed a significant drop in systolic blood pressure upon standing and discontinued a medication that may have contributed to the postural hypotension. However, a few hours later, the patient's continuous cardiac monitoring showed tachycardia. Which medication cessation could have caused the tachycardia in this elderly patient?
Your Answer:
Correct Answer: Atenolol
Explanation:Abruptly stopping atenolol, a beta blocker, can lead to ‘rebound tachycardia’. None of the other drugs listed have been associated with this condition. While ramipril, an ace-inhibitor, may have contributed to the patient’s postural hypotension, it is not known to cause tachycardia upon cessation. Furosemide, a loop diuretic, can worsen postural hypotension by causing volume depletion, but it is not known to cause tachycardia upon discontinuation. Aspirin and clopidogrel, both antiplatelet drugs, are unlikely to be stopped abruptly and are not associated with either ‘rebound tachycardia’ or postural hypotension.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 50-year-old man visits the clinic with a complaint of gradual hearing loss over the past nine months. He works in construction and initially attributed it to the use of loud power tools, despite always wearing ear protection. He also reports experiencing a high-pitched ringing in his ears for the same duration. Recently, he has been experiencing episodes of dizziness where he feels like the room is spinning. Otoscopy reveals no abnormalities. During the Rinne and Weber tests, the Rinne test is positive bilaterally, and the sound is louder on the left. What conclusions can be drawn from these findings?
Your Answer:
Correct Answer: Sensorineural hearing loss on the right.
Explanation:The patient in the question has a sensorineural hearing loss on the right side. The Rinne and Weber tests were used to determine the type and affected side of the hearing loss. The Rinne test was positive bilaterally, indicating normal hearing or a sensorineural deficit on one or both sides. The Weber test was heard better on the left, indicating a conductive hearing loss on the left or a sensorineural hearing loss on the right. As a conductive hearing loss was ruled out with the Rinne test, the patient must have a right-sided sensorineural deficit. This is suggestive of a vestibular schwannoma, a benign tumor of the vestibulocochlear nerve, which can cause gradual unilateral hearing loss, tinnitus, and vertigo.
Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.
If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 10-year-old girl is brought in by her father as she is having an acute exacerbation of her asthma. While you are giving her a salbutamol nebuliser, you notice signs that make you suspicious of abuse. What is the most common form of child abuse?
Your Answer:
Correct Answer: Neglect
Explanation:Understanding Child Abuse and the Legal Framework for Child Protection
Child abuse is a serious issue that can take many forms, including neglect, emotional abuse, physical abuse, and sexual abuse. Neglect occurs when a child’s basic needs, such as food, shelter, and medical care, are not met. Emotional abuse involves behaviors that harm a child’s self-esteem, such as constant criticism or belittling. Physical abuse involves any intentional harm to a child’s body, such as hitting or shaking. Sexual abuse involves any sexual activity with a child, including touching, penetration, or exposure to sexual content.
To protect children from abuse, the legal framework in the UK is governed by the Children’s Act of 1989 and 2004. These laws outline the responsibilities of local authorities, courts, and other agencies in safeguarding children from harm. The Children’s Act of 1989 established the principle that the welfare of the child is paramount and that children have the right to be protected from harm. The Act also created the role of the Independent Reviewing Officer (IRO), who is responsible for ensuring that the child’s welfare is being safeguarded.
The Children’s Act of 2004 built on the 1989 Act and introduced new measures to improve child protection. These included the creation of the Children and Family Court Advisory and Support Service (CAFCASS), which provides advice to courts on the welfare of children, and the establishment of Local Safeguarding Children Boards (LSCBs), which bring together local agencies to coordinate their efforts to protect children.
In summary, child abuse is a serious issue that can take many forms, and the legal framework in the UK is governed by the Children’s Act of 1989 and 2004. These laws aim to protect children from harm and outline the responsibilities of local authorities, courts, and other agencies in safeguarding children’s welfare.
-
This question is part of the following fields:
- General Principles
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)