-
Question 1
Incorrect
-
A 5-year-old girl with a history of unrepaired Tetralogy of Fallot has arrived at the emergency department with sudden cyanosis and difficulty breathing after crying. Additionally, the patient is administered oxygen, morphine, and propranolol, and is expected to recover well. Surgery to repair the condition is scheduled in the near future.
What is the term for this cyanotic episode that is commonly associated with Tetralogy of Fallot?Your Answer: Acute coronary syndrome
Correct Answer: Tet's spells
Explanation:The correct answer is Tet’s spells, which are episodic hypercyanotic events that can cause loss of consciousness in infants with Tetralogy of Fallot. This condition is characterized by four structural abnormalities in the heart, but Tet’s spells are a specific manifestation of the disease. Acute coronary syndrome and neonatal respiratory distress syndrome are not relevant to this patient’s presentation, while Eisenmenger’s syndrome is a chronic condition that does not fit the acute nature of Tet’s spells.
Understanding Tetralogy of Fallot
Tetralogy of Fallot (TOF) is a congenital heart disease that causes cyanosis, or a bluish tint to the skin, due to a lack of oxygen in the blood. It is the most common cause of cyanotic congenital heart disease. TOF is typically diagnosed in infants between 1-2 months old, but may not be detected until they are 6 months old.
TOF is caused by a malalignment of the aorticopulmonary septum, resulting in four characteristic features: a ventricular septal defect (VSD), right ventricular hypertrophy, pulmonary stenosis, and an overriding aorta. The severity of the right ventricular outflow tract obstruction determines the degree of cyanosis and clinical severity.
Other symptoms of TOF include episodic hypercyanotic tet spells, which can cause severe cyanosis and loss of consciousness. These spells occur when the right ventricular outflow tract is nearly occluded and are triggered by stress, pain, or fever. A right-to-left shunt may also occur. A chest x-ray may show a boot-shaped heart, and an ECG may show right ventricular hypertrophy.
Surgical repair is often necessary for TOF, and may be done in two parts. Beta-blockers may also be used to reduce infundibular spasm and help with cyanotic episodes. It is important to diagnose and manage TOF early to prevent complications and improve outcomes.
Overall, understanding the causes, symptoms, and management of TOF is crucial for healthcare professionals and caregivers to provide the best possible care for infants with this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
What is the average stroke volume in a resting 75 Kg man?
Your Answer: 150ml
Correct Answer: 70ml
Explanation:The range of stroke volumes is between 55 and 100 milliliters.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently undergoing treatment for heart failure and gastro-oesophageal reflux. Which medication that he is taking is the most probable cause of his gynaecomastia?
Your Answer: Spironolactone
Explanation:Medications Associated with Gynaecomastia
Gynaecomastia, the enlargement of male breast tissue, can be caused by various medications. Spironolactone, ciclosporin, cimetidine, and omeprazole are some of the drugs that have been associated with this condition. Ramipril has also been linked to gynaecomastia, but it is a rare occurrence.
Aside from these medications, other drugs that can cause gynaecomastia include digoxin, LHRH analogues, cimetidine, and finasteride. It is important to note that not all individuals who take these medications will develop gynaecomastia, and the risk may vary depending on the dosage and duration of treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 68-year-old man comes to his GP for a medication review. His medical record shows that he has vertebral artery stenosis, which greatly elevates his chances of experiencing a stroke in the posterior circulation.
Can you identify the location where the impacted arteries converge to create the basilar artery?Your Answer:
Correct Answer: Base of the pons
Explanation:The basilar artery is formed by the union of the vertebral arteries at the base of the pons, which is the most appropriate answer. If a patient has stenosis in their vertebral artery, it can increase the risk of a posterior circulation stroke by reducing perfusion to the brain or causing an arterial embolus.
The anterior aspect of the spinal cord is not the most appropriate answer as it is supplied by the anterior spinal arteries, which branch off the vertebral arteries and descend past the anterior aspect of the brainstem to supply the spinal cord’s anterior aspects.
The region anterior to the cavernous sinus is not the most appropriate answer. The internal carotid arteries pass anterior to the cavernous sinus before branching off to anastomose with the circle of Willis, mainly contributing to the anterior circulation of the brain.
The pontomesencephalic junction is not the most appropriate answer. The superior cerebellar arteries branch off from the distal basilar artery at the pontomesencephalic junction.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.
What ion influx causes this rapid depolarisation?Your Answer:
Correct Answer: Na+
Explanation:Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?
Your Answer:
Correct Answer: Atrial fibrillation
Explanation:Understanding Ventricular Septal Defect
Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.
There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.
Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.
Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.
In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?
Your Answer:
Correct Answer: Transposition of the great arteries
Explanation:The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.
Understanding Transposition of the Great Arteries
Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.
The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty climbing stairs and sleeping, and finds it easier to sleep in his living room chair. He used to manage stairs fine a year ago, but now has to stop twice on the way up.
When asked about other symptoms, he reports feeling slightly wheezy and occasionally coughing up white sputum. He denies any weight loss. His medical history includes angina, non-diabetic hyperglycaemia, and hypertension. He has smoked 15 cigarettes per day since he was 25 and drinks around 5 pints of lager every Friday and Saturday night.
On examination, his oxygen saturations are 96%, respiratory rate 16/min at rest, heart rate 78/min, and blood pressure 141/88 mmHg. Bibasal crackles are heard on auscultation of his lungs.
What is the most likely diagnosis?Your Answer:
Correct Answer: Heart failure
Explanation:Orthopnoea is a distinguishing symptom that can help differentiate between heart failure and COPD in patients. While the symptoms may be non-specific, the presence of orthopnoea, or breathlessness when lying down, is a key indicator of heart failure rather than COPD.
Although the patient has a significant history of smoking, there are no other signs of lung cancer such as weight loss, persistent cough, or coughing up blood. However, it is recommended to conduct an urgent chest X-ray to rule out any serious underlying conditions.
In cases of occupational asthma, symptoms tend to worsen when exposed to triggers in the workplace and improve during time off. However, in this patient’s case, the symptoms have been gradually worsening over time.
Features of Chronic Heart Failure
Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.
Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.
In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?
Your Answer:
Correct Answer: Biventricular failure
Explanation:Diagnosis and Assessment of Biventricular Failure
This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.
Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 72-year-old patient presents to the Emergency Room with central crushing chest pain that radiates to their jaw and left arm. They have a medical history of hypertension, type 2 diabetes mellitus, and hypercholesterolemia. The patient receives percutaneous coronary intervention but unfortunately experiences ventricular fibrillation and passes away 3 days later. What is the probable histological discovery in their heart?
Your Answer:
Correct Answer: Extensive coagulative necrosis, neutrophils
Explanation:Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?
Your Answer:
Correct Answer: Endothelin-1 receptor antagonist
Explanation:Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.
Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.
The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.
Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 50-year-old man has a long femoral line inserted to measure CVP. The catheter travels from the common iliac vein to the inferior vena cava. At what vertebral level does this occur?
Your Answer:
Correct Answer: L5
Explanation:At the level of L5, the common iliac veins join together to form the inferior vena cava (IVC).
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 63-year-old man arrives at the emergency department with sudden and severe chest pain that began an hour ago. He experiences nausea and sweating, and the pain spreads to his left jaw and arm. The patient has a medical history of essential hypertension and type 2 diabetes mellitus. He is a current smoker with a 30 pack years history and drinks about 30 units of alcohol per week. He used to work as a lorry driver but is now retired. An electrocardiogram in the emergency department reveals ST segment elevations in leads II, III, and aVF, and a blood test shows elevated cardiac enzymes. The man undergoes a percutaneous coronary intervention and is admitted to the coronary care unit. After two weeks, he is discharged. What is the complication that this man is most likely to develop on day 7 after his arrival at the emergency department?
Your Answer:
Correct Answer: Cardiac tamponade
Explanation:The patient’s symptoms suggest that he may have experienced an ST elevation myocardial infarction in the inferior wall of his heart. There are various complications that can arise after a heart attack, and the timing of these complications can vary.
1. Ventricular arrhythmia is a common cause of death after a heart attack, but it typically occurs within the first 24 hours.
2. Ventricular septal defect, which is caused by a rupture in the interventricular septum, is most likely to occur 3-5 days after a heart attack.
3. This complication is autoimmune-mediated and usually occurs several weeks after a heart attack.
4. Cardiac tamponade can occur when bleeding into the pericardial sac impairs the heart’s contractile function. This complication is most likely to occur 5-14 days after a heart attack.
5. Mural thrombus, which can result from the formation of a true ventricular aneurysm, is most likely to occur at least two weeks after a heart attack. Ventricular pseudoaneurysm, on the other hand, can occur 3-14 days after a heart attack.Understanding Cardiac Tamponade
Cardiac tamponade is a medical condition where there is an accumulation of pericardial fluid under pressure. This condition is characterized by several classical features, including hypotension, raised JVP, and muffled heart sounds, which are collectively known as Beck’s triad. Other symptoms of cardiac tamponade include dyspnea, tachycardia, an absent Y descent on the JVP, pulsus paradoxus, and Kussmaul’s sign. An ECG can also show electrical alternans.
It is important to differentiate cardiac tamponade from constrictive pericarditis, which has different characteristic features such as an absent Y descent, X + Y present JVP, and the absence of pulsus paradoxus. Constrictive pericarditis is also characterized by pericardial calcification on CXR.
The management of cardiac tamponade involves urgent pericardiocentesis. It is crucial to recognize the symptoms of cardiac tamponade and seek medical attention immediately to prevent further complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?
Your Answer:
Correct Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils
Explanation:In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.
From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.
Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 75-year-old collapses at home and is rushed to the Emergency Room but dies despite resuscitation efforts. He had a myocardial infarction five weeks prior. What histological findings would be expected in his heart?
Your Answer:
Correct Answer: Contracted scar
Explanation:The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils are observed, which increase the risk of ventricular arrhythmia, heart failure, and cardiogenic shock. Between 1-3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are seen at the margins, and there is a high risk of complications such as free wall rupture (resulting in mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm. Finally, from 2 weeks to several months post-MI, a contracted scar is formed, which is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 60-year-old woman who was discharged from the hospital 3 days ago presents to the emergency department with complaints of chest tightness and severe shortness of breath. While being evaluated, the patient suddenly becomes unresponsive and experiences cardiac arrest. Despite receiving appropriate life-saving measures, there is no return of spontaneous circulation and the patient is declared dead. Upon autopsy, a slit-like tear is discovered in the anterior wall of the left ventricle.
What factors may have contributed to the cardiac finding observed in this patient?Your Answer:
Correct Answer: Coronary atherosclerosis
Explanation:Left Ventricular Free Wall Rupture Post-MI
Following a myocardial infarction (MI), the weakened myocardial wall may be unable to contain high left ventricular (LV) pressures, leading to mechanical complications such as left ventricular free wall rupture. This occurs 3-14 days post-MI and is characterized by macrophages and granulation tissue at the margins. Patients are also at high risk of papillary muscle rupture and left ventricular pseudoaneurysm. The patient’s autopsy finding of a slit-like tear in the anterior LV wall is consistent with this complication.
Coronary atherosclerosis is the most likely cause of the patient’s MI, as it is a common underlying condition. Prolonged alcohol consumption and recent viral infection can lead to dilated cardiomyopathy, while recurrent bacterial pharyngitis can cause inflammatory damage to both the myocardium and valvular endocardium. Repeated blood transfusion is not a known risk factor for left ventricular free wall rupture.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An 68-year-old woman is presented to the vascular clinic with a painful ulcer on the anterior aspect of her shin. She reports experiencing pain in the same leg at night and while sitting in a chair.
The patient has a medical history of diabetes for 11 years, hypertension for 12 years, and has been a smoker for over 50 years.
Upon examination, a pale ulcer with a 'punched out' appearance is observed. The patient declines further examination.
Based on the given clinical scenario, what is the most probable type of ulcer?Your Answer:
Correct Answer: Arterial ulcer
Explanation:The correct answer is arterial ulcer. These types of leg ulcers are typically pale, painful, and have a punched-out appearance. They are often associated with peripheral vascular disease, which is likely in this patient given her cardiovascular risk factors and claudication pain. The fact that she experiences pain while sitting down suggests critical ischemia. Venous ulcers, on the other hand, appear red and oozing with irregular margins and are usually associated with varicose veins, edema, or lipodermatosclerosis. Marjolin ulcers are a malignant transformation of chronic ulcers into squamous cell carcinoma, while neuropathic ulcers typically occur over pressure areas such as the sole of the foot and are associated with a sensory neuropathy. Although this patient has diabetes, the history and appearance of the ulcer are more consistent with an arterial ulcer.
Venous leg ulcers are caused by venous hypertension and can be managed with compression banding. Marjolin’s ulcers are a type of squamous cell carcinoma that occur at sites of chronic inflammation. Arterial ulcers are painful and occur on the toes and heel, while neuropathic ulcers commonly occur over the plantar surface of the metatarsal head and hallux. Pyoderma gangrenosum is associated with inflammatory bowel disease and can present as erythematous nodules or pustules that ulcerate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 67-year-old woman visits her GP for a check-up after suffering from a significant anterior ST-elevation myocardial infarction (STEMI) 3 months ago. She has been feeling constantly fatigued and unwell and is worried that her heart may be causing these symptoms. Additionally, she has been experiencing sharp chest pain that worsens when she lies down and feels slightly breathless.
During the examination, the GP observes that her blood pressure drops by approximately 10mmHg when she inhales.
What is the probable reason for her symptoms and examination results?Your Answer:
Correct Answer: Dressler syndrome (DS)
Explanation:The most likely pathology in this case is Dressler syndrome (DS), which is a complication that can occur after a myocardial infarction (MI) from 2 weeks to several months post-MI. The patient’s symptoms of fatigue, malaise, pleuritic chest pain, and mild dyspnoea are consistent with DS. Additionally, the physical examination finding of decreased blood pressure (>10mmHg) on inspiration, known as ‘pulsus paradoxes’, is associated with DS.
Heart failure with reduced ejection fraction (HFrEF) is an incorrect option as it does not typically cause pleuritic chest pain or pulsus paradoxes. Medication-related causes are also unlikely as the combination of symptoms described in this stem would not be caused by post-MI medications alone. Post-MI depression is another incorrect option as it would not account for all the symptoms present.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
The vertebral artery passes through which of the following structures, except for what?
Your Answer:
Correct Answer: Intervertebral foramen
Explanation:The vertebral artery does not travel through the intervertebral foramen, but instead passes through the foramina found in the transverse processes of the cervical vertebrae.
Anatomy of the Vertebral Artery
The vertebral artery is a branch of the subclavian artery and can be divided into four parts. The first part runs to the foramen in the transverse process of C6 and is located anterior to the vertebral and internal jugular veins. On the left side, the thoracic duct is also an anterior relation. The second part runs through the foramina of the transverse processes of the upper six cervical vertebrae and is accompanied by a venous plexus and the inferior cervical sympathetic ganglion. The third part runs posteromedially on the lateral mass of the atlas and enters the sub occipital triangle. It then passes anterior to the edge of the posterior atlanto-occipital membrane to enter the vertebral canal. The fourth part passes through the spinal dura and arachnoid, running superiorly and anteriorly at the lateral aspect of the medulla oblongata. At the lower border of the pons, it unites to form the basilar artery.
The anatomy of the vertebral artery is important to understand as it plays a crucial role in supplying blood to the brainstem and cerebellum. Any damage or blockage to this artery can lead to serious neurological complications. Therefore, it is essential for healthcare professionals to have a thorough understanding of the anatomy and function of the vertebral artery.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 14-year-old male immigrant from India visits his primary care physician complaining of gradually worsening shortness of breath, particularly during physical exertion, and widespread joint pain. He had a severe untreated throat infection in the past, but his vaccination record is complete. During the physical examination, a high-pitched holosystolic murmur is heard at the apex with radiation to the axilla.
Hemoglobin: 135 g/L
Platelets: 150 * 10^9/L
White blood cells: 9.5 * 10^9/L
Anti-streptolysin O titers: >200 units/mL
What is the most probable histological finding in his heart?Your Answer:
Correct Answer: Aschoff bodies
Explanation:Rheumatic heart fever is characterized by the presence of Aschoff bodies, which are granulomatous nodules. The mitral valve is commonly affected in this condition, and an elevated ASO titre indicates exposure to group A streptococcus bacteria. Rheumatic heart disease is also associated with the presence of Anitschkow cells, which are enlarged macrophages with an ovoid, wavy, rod-like nucleus. Other types of bodies seen in different conditions include Councilman bodies in hepatitis C and yellow fever, Mallory bodies in alcoholism affecting hepatocytes, and Call-Exner bodies in granulosa cell tumours.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 3-week old girl is presented to the GP by her mother who has noticed yellowish discharge from her umbilicus on a daily basis. The baby was born without any complications and is healthy otherwise.
Which embryological structure is most likely responsible for this issue?Your Answer:
Correct Answer: Allantois
Explanation:If the allantois persists, it can result in a patent urachus, which may manifest as urine leakage from the belly button.
A patent urachus is a remnant of the allantois from embryonic development that links the bladder to the umbilicus, enabling urine to flow through and exit from the abdominal area.
When the vitelline duct fails to close, it can lead to the formation of a Meckel’s diverticulum.
The ductus venosus acts as a bypass for umbilical blood to avoid the liver in the fetus.
The umbilical vessels serve as a conduit for blood to and from the fetus during gestation. They are not connected to the bladder and would not cause daily leakage.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer:
Correct Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A patient with a history of aortic stenosis presents with anaemia. Is there a rare association with aortic stenosis that could explain the anaemia in this patient? This is particularly relevant for elderly patients.
Your Answer:
Correct Answer: Angiodysplasia
Explanation:Aortic Stenosis and Angiodysplasia: A Possible Association
There have been numerous reports suggesting a possible link between aortic stenosis and angiodysplasia, which can result in blood loss and anemia. The exact mechanism behind this association is not yet fully understood. However, it is worth noting that replacing the stenotic valve often leads to the resolution of gastrointestinal blood loss. This finding highlights the importance of early detection and management of aortic stenosis, as it may prevent the development of angiodysplasia and its associated complications. Further research is needed to fully elucidate the relationship between these two conditions and to identify potential therapeutic targets.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 55-year-old woman with resistant hypertension is currently on ramipril and amlodipine. The GP wants to add a diuretic that primarily acts on the distal convoluted tubule. What diuretic should be considered?
Your Answer:
Correct Answer: Bendroflumethiazide (thiazide diuretic)
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 55-year-old woman with hypertension comes in for a routine check-up with her GP. She mentions feeling fatigued for the past few days and has been taking antihypertensive medication for almost a year, but cannot recall the name. Her ECG appears normal.
Hb 142 g/L Male: (135-180)
Female: (115 - 160)
Platelets 180 * 109/L (150 - 400)
WBC 7.5 * 109/L (4.0 - 11.0)
Na+ 133 mmol/L (135 - 145)
K+ 3.8 mmol/L (3.5 - 5.0)
Urea 5.5 mmol/L (2.0 - 7.0)
Creatinine 98 µmol/L (55 - 120)
What medication might she be taking?Your Answer:
Correct Answer: Hydrochlorothiazide
Explanation:Thiazide diuretics have been known to cause hyponatremia, as seen in the clinical scenario and blood tests. The question aims to test knowledge of antihypertensive medications that may lead to hyponatremia.
The correct answer is Hydrochlorothiazide, as ACE inhibitors, angiotensin receptor blockers, and calcium channel blockers may also cause hyponatremia. Beta-blockers, such as Atenolol, typically do not cause hyponatremia. Similarly, central agonists like Clonidine and alpha-blockers like Doxazosin are not known to cause hyponatremia.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer:
Correct Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
Which of the following structures is in danger of direct harm after a femoral condyle fracture dislocation in an older adult?
Your Answer:
Correct Answer: Popliteal artery
Explanation:The fracture segment can be pulled backwards by the contraction of the gastrocnemius heads, which may result in damage or compression of the popliteal artery that runs adjacent to the bone.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and difficulty breathing. The diagnosis is heart failure. Which of the following is the cause of the inadequate response of his stroke volume?
Your Answer:
Correct Answer: Preload
Explanation:The response of stroke volume in a normal heart to changes in preload is governed by Starling’s Law. This means that an increase in end diastolic volume in the left ventricle should result in a higher stroke volume, as the cardiac myocytes stretch. However, this effect has a limit, as seen in cases of heart failure where excessive stretch of the cardiac myocytes prevents this response.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.
During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.
What other symptom is this patient likely to encounter?Your Answer:
Correct Answer: Difficulty swallowing
Explanation:The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.
The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 68-year-old man is prescribed clopidogrel to manage his peripheral artery disease-related claudication pain. What is the mechanism of action of this medication?
Your Answer:
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:Clopidogrel prevents clot formation by blocking the binding of ADP to platelet receptors. Factor Xa inhibitors like rivaroxaban directly inhibit factor Xa and are used to prevent and treat venous thromboembolism and atherothrombotic events. Dabigatran, a direct thrombin inhibitor, is used for prophylaxis and treatment of venous thromboembolism. Heparin/LMWH increase the effect of antithrombin and can be used to treat acute peripheral arterial occlusion, prevent and treat deep vein thrombosis and pulmonary embolism.
Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease
Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.
Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)