00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 45-year-old patient visits his GP with complaints of fatigue and weight loss....

    Correct

    • A 45-year-old patient visits his GP with complaints of fatigue and weight loss. He reports pain in his right shoulder area and tingling sensations in his fourth and fifth fingers on the right hand. Upon diagnosis, it is revealed that he has an apical lung tumor that is pressing on the C8-T1 nerve roots of the brachial plexus. Which nerve in the upper limb is primarily affected?

      Your Answer: Ulnar nerve

      Explanation:

      The pressure applied by the tumour on the inferior roots of the brachial plexus (C8-T1) explains the pain in the shoulder region, as the ulnar nerve, which innervates the palmar surface of the fifth digit and medial part of the fourth digit, originates from these roots.

      The axillary nerve’s cutaneous branches supply the skin surrounding the inferior part of the deltoid muscle around the shoulder joint.

      The lateral cutaneous nerve of the forearm is the only sensory branch of the musculoskeletal nerve and innervates the lateral aspect of the forearm.

      Although the radial nerve has the most extensive cutaneous innervation of the nerves in the upper limb, it does not supply the palmar surface of the hand but rather its dorsal side.

      The median nerve supplies the lateral part of the palm and the palmar surface of the three most lateral fingers, and is partially comprised of the C8-T1 roots of the brachial plexus. Therefore, altered sensations of the thumb or index finger would be more typical of median nerve impairment than the fourth or fifth digits.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      22.2
      Seconds
  • Question 2 - A 67-year-old man visits his GP complaining of alterations in his vision. In...

    Incorrect

    • A 67-year-old man visits his GP complaining of alterations in his vision. In addition to decreased sharpness, he describes object distortion, difficulty discerning colors, and occasional flashes of light. He has a history of smoking (40-pack-year) and a high BMI. Based on these symptoms, what is the most probable diagnosis?

      Your Answer: Retinal detachment

      Correct Answer: Age-related macular degeneration

      Explanation:

      Age-related macular degeneration (AMD) is characterized by a decrease in visual acuity, altered perception of colors and shades, and photopsia (flashing lights). The risk of developing AMD is higher in individuals who are older and have a history of smoking.

      As a natural part of the aging process, presbyopia can cause difficulty with near vision. Smoking increases the likelihood of developing cataracts, which can result in poor visual acuity and reduced contrast sensitivity. However, symptoms such as distortion and flashing lights are not typically associated with cataracts. Similarly, retinal detachment is unlikely given the patient’s risk factors and lack of distortion and perception issues. Since there is no mention of diabetes mellitus in the patient’s history, diabetic retinopathy is not a plausible explanation.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      15
      Seconds
  • Question 3 - A 45-year-old man visits his GP complaining of weakness in his right hand...

    Incorrect

    • A 45-year-old man visits his GP complaining of weakness in his right hand that has been ongoing for 2 months. He reports difficulty gripping objects and writing with his right hand. He denies any changes in sensation. The patient has a history of rheumatoid arthritis.

      During the examination, there are no apparent signs of muscle wasting or fasciculation in the right hand. However, the patient is unable to form an 'OK sign' with his right thumb and index finger upon request.

      Which nerve is the most likely culprit?

      Your Answer: Palmar cutaneous nerve

      Correct Answer: Anterior interosseous nerve

      Explanation:

      The anterior interosseous nerve can be compressed between the heads of pronator teres, leading to an inability to perform a pincer grip with the thumb and index finger (known as the ‘OK sign’).

      The correct answer is the anterior interosseous nerve, which is a branch of the median nerve responsible for innervating pronator quadratus, flexor pollicis longus, and flexor digitorum profundus. Damage to this nerve, such as through compression by pronator teres, can result in the inability to perform a pincer grip. Patients with rheumatoid arthritis may be more susceptible to anterior interosseous nerve entrapment.

      The dorsal digital nerve is a sensory branch of the ulnar nerve and does not cause motor deficits.

      The palmar cutaneous nerve is a sensory branch of the median nerve that provides sensation to the palm of the hand.

      The posterior interosseus nerve supplies muscles in the posterior compartment of the forearm with C7 and C8 fibers. Lesions of this nerve cause pure-motor neuropathy, resulting in finger drop and radial wrist deviation during extension.

      Patients with ulnar nerve lesions can still perform a pincer grip with the thumb and index finger. Ulnar nerve lesions may cause paraesthesia in the fifth finger and hypothenar aspect of the palm.

      The anterior interosseous nerve is a branch of the median nerve that supplies the deep muscles on the front of the forearm, excluding the ulnar half of the flexor digitorum profundus. It runs alongside the anterior interosseous artery along the anterior of the interosseous membrane of the forearm, between the flexor pollicis longus and flexor digitorum profundus. The nerve supplies the whole of the flexor pollicis longus and the radial half of the flexor digitorum profundus, and ends below in the pronator quadratus and wrist joint. The anterior interosseous nerve innervates 2.5 muscles, namely the flexor pollicis longus, pronator quadratus, and the radial half of the flexor digitorum profundus. These muscles are located in the deep level of the anterior compartment of the forearm.

    • This question is part of the following fields:

      • Neurological System
      17.2
      Seconds
  • Question 4 - A 75-year-old woman is involved in a car accident resulting in a complex...

    Incorrect

    • A 75-year-old woman is involved in a car accident resulting in a complex fracture of the distal part of her humerus and damage to the radial nerve. Which movement is likely to be the most affected?

      Your Answer:

      Correct Answer: Wrist extension

      Explanation:

      Elbow extension will remain unaffected as the triceps are not impacted. However, the most noticeable consequence will be the loss of wrist extension.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 5 - A 24-year-old dancer undergoes a thyroidectomy due to concerns about the appearance of...

    Incorrect

    • A 24-year-old dancer undergoes a thyroidectomy due to concerns about the appearance of her goitre. Following the surgery, she is informed that there was a laceration of the superior laryngeal nerve, which may affect her ability to produce higher pitches in her voice. She is referred for speech therapy.

      What counseling should be provided to this patient?

      Your Answer:

      Correct Answer: Nerve lacerations have a poor recovery, even with surgical nerve repair

      Explanation:

      The recovery of nerve lacerations is challenging due to the intricate nature of the neuronal system. However, there is a possibility of a better recovery if the injury is small, does not cause nerve stretching, requires a short nerve graft, and the patient is young and medically fit. It is worth noting that repaired nerves can regain sensory function similar to their pre-injury level.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 6 - At which stage does the aorta divide into the left and right common...

    Incorrect

    • At which stage does the aorta divide into the left and right common iliac arteries?

      Your Answer:

      Correct Answer: L4

      Explanation:

      The point of bifurcation of the aorta is typically at the level of L4, which is a consistent location and is frequently assessed in examinations.

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 30-year-old man suffers a severe middle cranial fossa basal skull fracture. After...

    Incorrect

    • A 30-year-old man suffers a severe middle cranial fossa basal skull fracture. After his recovery, it is observed that he has reduced tear secretion. What is the most probable cause of this, resulting from which of the following damages?

      Your Answer:

      Correct Answer: Greater petrosal nerve

      Explanation:

      The Lacrimation Reflex

      The lacrimation reflex is a response to conjunctival irritation or emotional events. When the conjunctiva is irritated, it sends signals via the ophthalmic nerve to the superior salivary center. From there, efferent signals pass via the greater petrosal nerve (parasympathetic preganglionic fibers) and the deep petrosal nerve (postganglionic sympathetic fibers) to the lacrimal apparatus. The parasympathetic fibers relay in the pterygopalatine ganglion, while the sympathetic fibers do not synapse.

      This reflex is important for maintaining the health of the eye by keeping it moist and protecting it from foreign particles. It is also responsible for the tears that are shed during emotional events, such as crying. The lacrimal gland, which produces tears, is innervated by the secretomotor parasympathetic fibers from the pterygopalatine ganglion. The nasolacrimal duct, which carries tears from the eye to the nose, opens anteriorly in the inferior meatus of the nose. Overall, the lacrimal system plays a crucial role in maintaining the health and function of the eye.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 8 - A 65-year-old male, with a history of rheumatoid arthritis, visits the doctor with...

    Incorrect

    • A 65-year-old male, with a history of rheumatoid arthritis, visits the doctor with complaints of left ankle pain and tingling sensation in his lower leg. The pain worsens after prolonged standing and improves with rest. Upon examination, the doctor observes swelling in the left ankle and foot. The doctor suspects tarsal tunnel syndrome, which may be compressing the patient's tibial nerve. Can you identify which muscles this nerve innervates?

      Your Answer:

      Correct Answer: Flexor hallucis longus

      Explanation:

      The tibial nerve provides innervation to the flexor hallucis longus, which is responsible for flexing the big toe, as well as the flexor digitorum brevis, which flexes the four smaller toes. Meanwhile, the superficial peroneal nerve innervates the peroneus brevis, which aids in plantar flexion of the ankle joint, while the deep peroneal nerve innervates the extensor digitorum longus, which extends the four smaller toes and dorsiflexes the ankle joint. Additionally, the deep peroneal nerve innervates the tibialis anterior, which dorsiflexes the ankle joint and inverts the foot, while the superficial peroneal nerve innervates the peroneus longus, which everts the foot and assists in plantar flexion.

      The Tibial Nerve: Muscles Innervated and Termination

      The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.

      The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 9 - A 45-year-old man is brought to the ED by his spouse, who suspects...

    Incorrect

    • A 45-year-old man is brought to the ED by his spouse, who suspects he had a stroke. The man is exhibiting signs of slurred speech and disorientation to time and space, but there is no limb weakness.

      According to collateral history, the man has a history of epilepsy, although he has not had a seizure in several months. He does not smoke and did not consume any alcohol or drugs before coming to the ED. A CT scan is normal, and a focal seizure is suspected as the cause of his symptoms.

      Which part of the brain is likely affected?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      Localising features of a temporal lobe seizure include postictal dysphasia and lip smacking.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - A 76-year-old man is being discharged from the geriatric ward. He was admitted...

    Incorrect

    • A 76-year-old man is being discharged from the geriatric ward. He was admitted last week for the investigation of recurrent falls. He has a medical history of Parkinson's disease, atrial fibrillation and rheumatoid arthritis.

      The interdisciplinary team has decided to send him home this evening. The doctor in charge of organising his discharge goes through his drug chart to identify any drugs that may be making him more susceptible to having recurrent falls.

      What medication from his drug chart could be contributing to his increased risk of falls?

      Your Answer:

      Correct Answer: Selegiline (monoamine oxidase-B inhibitor)

      Explanation:

      The use of monoamine oxidase-B (MAO-B) inhibitors like selegiline may lead to postural hypotension, which can increase the risk of falls, particularly in older individuals. However, fludrocortisone can be utilized to manage postural hypotension that does not respond to conservative treatments, without an associated risk of falls.

      Understanding the Mechanism of Action of Parkinson’s Drugs

      Parkinson’s disease is a complex condition that requires specialized management. The first-line treatment for motor symptoms that affect a patient’s quality of life is levodopa, while dopamine agonists, levodopa, or monoamine oxidase B (MAO-B) inhibitors are recommended for those whose motor symptoms do not affect their quality of life. However, all drugs used to treat Parkinson’s can cause a wide variety of side effects, and it is important to be aware of these when making treatment decisions.

      Levodopa is nearly always combined with a decarboxylase inhibitor to prevent the peripheral metabolism of levodopa to dopamine outside of the brain and reduce side effects. Dopamine receptor agonists, such as bromocriptine, ropinirole, cabergoline, and apomorphine, are more likely than levodopa to cause hallucinations in older patients. MAO-B inhibitors, such as selegiline, inhibit the breakdown of dopamine secreted by the dopaminergic neurons. Amantadine’s mechanism is not fully understood, but it probably increases dopamine release and inhibits its uptake at dopaminergic synapses. COMT inhibitors, such as entacapone and tolcapone, are used in conjunction with levodopa in patients with established PD. Antimuscarinics, such as procyclidine, benzotropine, and trihexyphenidyl (benzhexol), block cholinergic receptors and are now used more to treat drug-induced parkinsonism rather than idiopathic Parkinson’s disease.

      It is important to note that all drugs used to treat Parkinson’s can cause adverse effects, and clinicians must be aware of these when making treatment decisions. Patients should also be warned about the potential for dopamine receptor agonists to cause impulse control disorders and excessive daytime somnolence. Understanding the mechanism of action of Parkinson’s drugs is crucial in managing the condition effectively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 11 - A 45-year-old male patient presents with choreiform movements that he is unable to...

    Incorrect

    • A 45-year-old male patient presents with choreiform movements that he is unable to control or cease. During the consultation, you inquire about his family history and discover that his father experienced similar symptoms at a slightly later age. Based on this information, what genetic phenomenon is likely to have taken place between the patient and his father?

      Your Answer:

      Correct Answer: Anticipation

      Explanation:

      Anticipation may be observed in Huntington’s disease due to its nature as a trinucleotide repeat disorder. The disease is caused by an autosomal dominant gene with CAG repeats in exon 1 of the Huntingtin gene. The number of CAG repeats is indicative of the severity of the disease, with individuals having 36 to 39 repeats potentially developing symptoms, while those with 40 or more repeats almost always develop the disorder. HD can occur in individuals with 36 to 120 CAG repeats.

      Anticipation is observed as the number of CAG repeats increases between generations. Offspring of individuals with 27 to 35 CAG repeats are at risk of developing HD, even though the parent does not suffer from the disease. Additionally, higher numbers of CAG repeats tend to cause HD to manifest at earlier ages, resulting in younger generations being affected by the disease.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 12 - A 32-year-old woman complains of faecal incontinence. She had a normal vaginal delivery...

    Incorrect

    • A 32-year-old woman complains of faecal incontinence. She had a normal vaginal delivery 8 years ago. Which nerve injury is the most probable cause of her symptoms?

      Your Answer:

      Correct Answer: Pudendal

      Explanation:

      The POOdendal nerve is responsible for keeping the poo up off the floor, and damage to this nerve is commonly linked to faecal incontinence. To address this issue, sacral neuromodulation is often used as a treatment. Additionally, constipation can be caused by injury to the hypogastric autonomic nerves.

      The Pudendal Nerve and its Functions

      The pudendal nerve is a nerve that originates from the S2, S3, and S4 nerve roots and exits the pelvis through the greater sciatic foramen. It then re-enters the perineum through the lesser sciatic foramen. This nerve provides innervation to the anal sphincters and external urethral sphincter, as well as cutaneous innervation to the perineum surrounding the anus and posterior vulva.

      Late onset pudendal neuropathy may occur due to traction and compression of the pudendal nerve by the foetus during late pregnancy. This condition may contribute to the development of faecal incontinence. Understanding the functions of the pudendal nerve is important in diagnosing and treating conditions related to the perineum and surrounding areas.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 13 - A 10-year-old boy is rushed to the emergency department following a seizure. According...

    Incorrect

    • A 10-year-old boy is rushed to the emergency department following a seizure. According to his mother, the twitching started in his right hand while he was having breakfast, then spread to his arm and face, and eventually affected his entire body. The seizure lasted for a few minutes, and afterward, he felt groggy and had no recollection of what happened.

      Which part of the boy's brain was impacted by the seizure?

      Your Answer:

      Correct Answer: Frontal lobe

      Explanation:

      The correct location for a seizure with progressive clonic movements travelling from a distal site (fingers) proximally, known as a Jacksonian march, is the frontal lobe. Seizures in the occipital lobe present with visual disturbances, while seizures in the parietal lobe result in sensory changes and seizures in the temporal lobe present with hallucinations and automatisms. Absence seizures are associated with the thalamus and are characterized by brief losses of consciousness without postictal fatigue or grogginess.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - A young man presents after multiple episodes of optic neuritis, during which he...

    Incorrect

    • A young man presents after multiple episodes of optic neuritis, during which he develops unilateral eye pain. Upon examination, he is found to have decreased visual acuity and colour saturation on his affected eye. His doctor suspects multiple sclerosis. What features would be expected on a T2-weighted MRI?

      Your Answer:

      Correct Answer: Multiple hyperintense lesions

      Explanation:

      MS is characterized by the spread of brain lesions over time and space.

      Dementia is often linked to cortical atrophy.

      If there is only one hyperintense lesion, it may indicate a haemorrhage rather than other conditions.

      A semilunar lesion on one side may indicate a subdural haemorrhage.

      Raised intracranial pressure, which can be caused by space-occupying lesions and haemorrhages, can be indicated by midline shift.

      Investigating Multiple Sclerosis

      Diagnosing multiple sclerosis (MS) requires the identification of lesions that are disseminated in both time and space. There are several methods used to investigate MS, including magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and visual evoked potentials (VEP).

      MRI is a commonly used tool to identify MS lesions. High signal T2 lesions and periventricular plaques are often observed, as well as Dawson fingers, which are hyperintense lesions perpendicular to the corpus callosum. CSF analysis can also aid in diagnosis, as it may reveal oligoclonal bands that are not present in serum and an increased intrathecal synthesis of IgG.

      VEP testing can also be used to diagnose MS. This test measures the electrical activity in the visual pathway and can reveal a delayed but well-preserved waveform in MS patients.

      Overall, a combination of these methods is often used to diagnose MS and demonstrate the dissemination of lesions in time and space.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 15 - A 60-year-old man visits an after-hours medical facility in the late evening with...

    Incorrect

    • A 60-year-old man visits an after-hours medical facility in the late evening with a complaint of a severe headache that is focused around his left eye. He mentions experiencing haloes in his vision and difficulty seeing clearly. The patient has a medical history of hypertension and diabetes. During the examination, the sclera appears red, and the cornea is hazy with a dilated pupil.

      What condition is the most probable diagnosis?

      Your Answer:

      Correct Answer: Acute closed-angle glaucoma

      Explanation:

      The patient’s symptoms are consistent with acute closed-angle glaucoma, which is an urgent ophthalmological emergency. They are experiencing a headache with unilateral eye pain, reduced vision, visual haloes, a red and congested eye with a cloudy cornea, and a dilated, unresponsive pupil. These symptoms may be triggered by darkness or dilating eye drops. Treatment should involve laying the patient flat to relieve angle pressure, administering pilocarpine eye drops to constrict the pupil, acetazolamide orally to reduce aqueous humour production, and providing analgesia. Referral to secondary care is necessary.

      It is important to differentiate this condition from other potential causes of the patient’s symptoms. Central retinal vein occlusion, for example, would cause sudden painless loss of vision and severe retinal haemorrhages on fundoscopy. Migraines typically involve a visual or somatosensory aura followed by a unilateral throbbing headache, nausea, vomiting, and photophobia. Subarachnoid haemorrhages present with a sudden, severe headache, rather than a gradually worsening one accompanied by eye signs. Temporal arteritis may cause pain when chewing, difficulty brushing hair, and thickened temporal arteries visible on examination. However, the presence of a dilated, fixed pupil with conjunctival injection should steer the clinician away from a diagnosis of migraine.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 16 - A 78-year-old, frail man is admitted to the geriatric ward and appears to...

    Incorrect

    • A 78-year-old, frail man is admitted to the geriatric ward and appears to be in poor health. He has been having difficulty cooperating with the nursing staff and physiotherapists, which is concerning the ward consultant. Prolonged bed-stay could increase his risk of pressure ulcers and nerve compression.

      During the examination, the consultant observes that the patient has lost plantar flexion, toe flexion, and weak foot inversion. The consultant suspects that the tibial nerve has been injured due to compression at its roots.

      Which nerve roots are likely to be affected in this patient?

      Your Answer:

      Correct Answer: L4-S3

      Explanation:

      The tibial nerve originates from the spinal nerve roots of L4-S3, while the femoral nerve is derived from L2-L4. The lateral cutaneous nerve of the thigh is derived from L2-L3, and the genitofemoral nerve is derived from L1-L2. Additionally, the spinal nerve roots of L1-L4 contribute to the innervation of various regions of the lower extremities.

      The Tibial Nerve: Muscles Innervated and Termination

      The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.

      The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 17 - A 50-year-old male visits the doctor with concerns about altered sensation in his...

    Incorrect

    • A 50-year-old male visits the doctor with concerns about altered sensation in his legs. Upon examination, the doctor observes diminished vibration sensation in his legs, brisk knee reflexes, and absent ankle jerks. The doctor suspects that the patient may be suffering from subacute combined degeneration of the spinal cord.

      What vitamin deficiency is commonly associated with this condition?

      Your Answer:

      Correct Answer: Vitamin B12

      Explanation:

      Subacute combined degeneration of the spinal cord, which typically presents with upper motor neuron signs in the legs, is caused by a deficiency in vitamin B12. Meanwhile, a deficiency in vitamin B1 (thiamine) leads to Wernicke’s encephalopathy, characterized by nystagmus, ophthalmoplegia, and ataxia. Peripheral neuropathy is a common result of vitamin B6 (pyridoxine) deficiency, while angular cheilitis is associated with a lack of vitamin B2 (riboflavin).

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 18 - A 36-year-old male arrives at the emergency department with a sudden thunderclap headache...

    Incorrect

    • A 36-year-old male arrives at the emergency department with a sudden thunderclap headache in the occipital area and photophobia. The CT scan of the head reveals hyper-attenuation around the circle of Willis, within the subarachnoid space. What is the probable diagnosis, and which meningeal layer is the hemorrhage located between, apart from the arachnoid mater?

      Your Answer:

      Correct Answer: Pia mater

      Explanation:

      The correct answer is the pia mater, which is the innermost layer of the meninges. A sudden onset headache at the back of the head, described as thunderclap in nature, is a classic symptom of a subarachnoid hemorrhage. This type of bleeding occurs in the subarachnoid space, which is located between the arachnoid mater and the pia mater. The pia mater is directly attached to the brain and spinal cord.

      The answer bone is incorrect because the bleed occurs between the pia mater and arachnoid mater, not in the bone. Bone is not a meningeal layer.

      The answer brain is also incorrect because the bleed occurs above the pia mater and below the arachnoid mater, in the subarachnoid space. The brain is located below the pia mater and is not directly involved in the bleed. The brain is also not a meningeal layer.

      The answer dura mater is incorrect because it is the thick outermost layer of the meninges, not the innermost layer where the bleed occurs.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - A 29-year-old Caucasian female presented to her primary care physician complaining of left...

    Incorrect

    • A 29-year-old Caucasian female presented to her primary care physician complaining of left eye pain that has been bothering her for the past week. She also reported experiencing tingling sensations in her upper limbs and two episodes of weakness in her right arm that lasted for a few days before resolving. She noted that the weakness and tingling were exacerbated after taking a hot bath. What is the origin of the cells primarily impacted in this woman's condition?

      Your Answer:

      Correct Answer: Neural tube neuroepithelia

      Explanation:

      Multiple sclerosis is a neurodegenerative disorder caused by the loss of oligodendrocytes, which produce myelin in the central nervous system. These cells are derived from the neural tube neuroepithelial cells, not from mesenchymal cells, which develop into other tissue cells such as bone marrow, adipose tissue, and muscle cells. The neural crest cells give rise to the neurons of the peripheral nervous system and myelin-producing Schwann cells, while the mesoderm only gives rise to microglia during nervous system development. The notochord plays a role in inducing the overlying ectoderm to develop into the neuroectoderm and neural plate, and gives rise to the nucleus pulposus of the intervertebral disc. Ultimately, the oligodendrocytes are embryological derivatives of the neural tube neuroepithelia, which develop from the ectoderm overlying the notochord.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - A 72-year-old male presents to the emergency department with severe, central abdominal pain...

    Incorrect

    • A 72-year-old male presents to the emergency department with severe, central abdominal pain that is radiating to his back. He has vomited twice and on examination you find he has hypotension and tachycardia. He is a current smoker with a past medical history of hypertension and hypercholesterolaemia. You suspect a visceral artery aneurysm and urgently request a CT scan to confirm. The CT scan reveals an aneurysm in the superior mesenteric artery.

      From which level of the vertebrae does this artery originate from the aorta?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The common iliac veins come together at

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - A 20-year-old man is rushed to the emergency department following his ejection from...

    Incorrect

    • A 20-year-old man is rushed to the emergency department following his ejection from a car during a road accident.

      During the examination, the patient responds to simple questions with incomprehensible sounds and opens his eyes in response to pain. There is also an abnormal wrist flexion when a sternal rub is applied, and a positive Battle's sign is observed.

      A CT scan of the head is ordered, which reveals a fracture of the petrous temporal bone.

      Which nerve is most likely to be affected by the patient's injury?

      Your Answer:

      Correct Answer: Facial nerve

      Explanation:

      The facial nerve passes through the internal acoustic meatus, which is correct. This nerve provides motor innervation to the muscles of facial expression, parasympathetic innervation to salivary and lacrimal glands, and special sensory innervation of taste in the anterior 2/3 of the tongue via the chorda tympani. The patient in question has a Glasgow Coma Score of 7, indicating nonspecific neurotrauma from a recent road traffic accident. It is unlikely that damage to the internal acoustic meatus would affect the glossopharyngeal or hypoglossal nerves, which pass through different structures. Damage to the oculomotor nerve, which passes through the superior orbital fissure, may cause ptosis and a dilated ‘down-and-out’ pupil.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 22 - A 20-year-old man is admitted to the emergency department after being stabbed in...

    Incorrect

    • A 20-year-old man is admitted to the emergency department after being stabbed in the back. The knife has penetrated his spinal column at a perpendicular angle, causing damage to the termination of his spinal cord.

      Which spinal level has been affected by the knife's penetration?

      Your Answer:

      Correct Answer: L1

      Explanation:

      In adults, the level of L1 is where the spinal cord usually ends.

      Lumbar Puncture Procedure

      Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s terminates at L1.

      During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.

      Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A 14-year-old boy arrives at the emergency department with his mother. He has...

    Incorrect

    • A 14-year-old boy arrives at the emergency department with his mother. He has been experiencing severe headaches upon waking for the past two mornings. The pain subsides when he gets out of bed, but he has been feeling nauseated and has vomited three times this morning. There is no history of trauma. Upon ophthalmoscopy, bilateral papilloedema is observed. A CT head scan reveals a mass invading the fourth ventricle. Although the mass is reducing the diameter of the median aperture, it does not completely block it. What is the space into which cerebrospinal fluid (CSF) flows from the fourth ventricle through the median aperture (foramen of Magendie)?

      Your Answer:

      Correct Answer: Cisterna magna

      Explanation:

      The correct answer is the cisterna magna, which is a subarachnoid cistern located between the cerebellum and medulla. The fourth ventricle receives CSF from the third ventricle via the cerebral aqueduct (of Sylvius) and CSF can leave the fourth ventricle through one of four openings, including the median aperture (foramen of Magendie) that drains CSF into the cisterna magna. CSF is circulated throughout the subarachnoid space, but it is not present in the extradural or subdural spaces. The third ventricle communicates with the lateral ventricles anteriorly via the interventricular foramina and with the fourth ventricle posteriorly via the cerebral aqueduct (of Sylvius). The superior sagittal sinus is a large venous sinus that allows the absorption of CSF. A patient with symptoms and signs suggestive of raised ICP may have various causes, including mass lesions and neoplasms.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 24 - A 85-year-old man is brought to the emergency department after collapsing at home....

    Incorrect

    • A 85-year-old man is brought to the emergency department after collapsing at home. He has a history of hypertension and poorly controlled type 2 diabetes. During examination, he complains of right-sided facial pain and left-sided arm pain, and mentions that the room appears to be spinning. The patient also has reduced temperature sensation on the right side of his face and the left side of his body, an ataxic gait, and vomits during the examination. Which artery is the most likely to be affected?

      Your Answer:

      Correct Answer: Posterior inferior cerebellar artery

      Explanation:

      The correct diagnosis for a patient presenting with sudden onset vertigo and vomiting, dysphagia, ipsilateral facial pain and temperature loss, contralateral limb pain and temperature loss, and ataxia is posterior inferior cerebellar artery. This constellation of symptoms is consistent with lateral medullary syndrome, also known as Wallenberg syndrome, which is caused by ischemia of the lateral medulla. This condition is associated with involvement of the trigeminal nucleus, lateral spinothalamic tract, cerebellum, and nucleus ambiguus, resulting in the aforementioned symptoms.

      The anterior spinal artery, basilar artery, middle cerebral artery, and posterior cerebral artery are not associated with lateral medullary syndrome and would present with different symptoms.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 25 - A 61-year-old man is being evaluated during the ward round in the ICU....

    Incorrect

    • A 61-year-old man is being evaluated during the ward round in the ICU. The patient was admitted through the emergency department with his wife who reported that he had lost consciousness.

      During the examination, the patient is able to move his eyes spontaneously and can perform different eye movements as instructed. However, the patient seems incapable of responding verbally and has 0/5 power in all four limbs.

      Which artery occlusion is probable to result in this clinical presentation?

      Your Answer:

      Correct Answer: Basilar artery

      Explanation:

      Locked-in syndrome is a rare condition that can be caused by a stroke, particularly of the basilar artery. This can result in quadriplegia and bulbar palsy, while cognition and eye movements may remain intact. Other potential causes of locked-in syndrome include trauma, brain tumours, infection, and demyelination.

      If the anterior cerebral artery is affected by a stroke, the patient may experience contralateral hemiparesis and sensory loss, with the lower extremity being more severely affected than the upper extremity. Additional symptoms may include behavioural abnormalities and incontinence.

      A stroke affecting the middle cerebral artery can cause contralateral hemiparesis and sensory loss, with the face and arm being more severely affected than the lower extremity. Speech and visual deficits are also common.

      Strokes affecting the posterior cerebral artery often result in visual deficits, as the occipital lobe is responsible for vision. This can manifest as contralateral homonymous hemianopia.

      Cerebellar infarcts, such as those affecting the superior cerebellar artery, can be difficult to diagnose as they often present with non-specific symptoms like nausea/vomiting, headache, and dizziness.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 26 - A builder in his 40s falls off a ladder while laying roof tiles...

    Incorrect

    • A builder in his 40s falls off a ladder while laying roof tiles and suffers a burst fracture of L3. The MRI scan reveals complete nerve transection at this level due to the injury. What clinical sign will be absent in the beginning?

      Your Answer:

      Correct Answer: Extensor plantar response

      Explanation:

      In cases of lower motor neuron lesions, there is a reduction in various features such as muscle strength, muscle size, reflexes, and the occurrence of muscle fasciculation.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 27 - A 27-year-old man is brought to the emergency department by paramedics following a...

    Incorrect

    • A 27-year-old man is brought to the emergency department by paramedics following a gunshot wound sustained during a violent altercation. Despite being conscious, he is experiencing severe pain and is unable to respond to any inquiries.

      Upon initial evaluation, his airway is unobstructed, he is breathing normally, and there are no indications of cardiovascular distress.

      During an examination of his lower extremities, a bullet wound is discovered 2 cm below his popliteal fossa. The emergency physician suspects that the tibial nerve, which runs just beneath the popliteal fossa, has been damaged.

      Which of the following clinical findings is most likely to be observed in this patient?

      Your Answer:

      Correct Answer: Loss of plantar flexion, loss of flexion of toes and weakened inversion

      Explanation:

      When the tibial nerve is damaged, it can cause a variety of symptoms such as the loss of plantar flexion, weakened inversion, and the inability to flex the toes. This type of injury is uncommon and can occur due to direct trauma, entrapment in a narrow space, or prolonged compression. It’s important to note that while the tibialis anterior muscle can still invert the foot, the overall strength of foot inversion is reduced. Other options that do not accurately describe the clinical signs of tibial nerve damage are incorrect.

      The Tibial Nerve: Muscles Innervated and Termination

      The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.

      The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 28 - Which one of the following structures is not at the level of the...

    Incorrect

    • Which one of the following structures is not at the level of the infrapyloric plane?

      Your Answer:

      Correct Answer: Cardioesophageal junction

      Explanation:

      The cardioesophageal junction is located at the level of T11, which is a frequently tested anatomical knowledge. The oesophagus spans from the lower border of the cricoid cartilage at C6 to the cardioesophageal junction at T11. It is important to note that in newborns, the oesophagus extends from C4 or C5 to T9.

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - A 68-year-old man is brought into the emergency department by his wife after...

    Incorrect

    • A 68-year-old man is brought into the emergency department by his wife after she found him complaining of a headache, drowsiness, and difficulty walking. He is currently on warfarin therapy for deep vein thrombosis. The man states that he has had several falls in the past month or so, and has recently become more confused. A magnetic resonance imaging (MRI) scan is ordered for the man.

      Where would you suspect blood to collect in this case?

      Your Answer:

      Correct Answer: Between the arachnoid mater and the dura mater

      Explanation:

      The arachnoid mater is the middle layer of the meninges. The described condition is a subdural haemorrhage or haematoma, which is a collection of blood between the arachnoid mater and the dura mater. It is often caused by chronic mild trauma and is common in the elderly and those on anticoagulant therapy. MRI scans show a concave pool of blood. There is no potential space between the pia mater and the arachnoid mater for blood to fill.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 30 - Which of the following indicates a verbal response score of 1 on the...

    Incorrect

    • Which of the following indicates a verbal response score of 1 on the Glasgow Coma Scale?

      Your Answer:

      Correct Answer: No response

      Explanation:

      The Glasgow coma scale is a widely used tool to assess the severity of brain injuries. It is scored between 3 and 15, with 3 being the worst and 15 the best. The scale comprises three parameters: best eye response, best verbal response, and best motor response. The verbal response is scored from 1 to 5, with 1 indicating no response and 5 indicating orientation.

      A score of 13 or higher on the Glasgow coma scale indicates a mild brain injury, while a score of 9 to 12 indicates a moderate injury. A score of 8 or less indicates a severe brain injury.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (1/3) 33%
Passmed