-
Question 1
Correct
-
What is the primary function of riboflavin in the B vitamin group?
Your Answer: Mopping up free radicals
Explanation:The Role of Riboflavin in the Body
Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.
Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Incorrect
-
You are evaluating a geriatric patient in the emergency department who has fallen and needs a venous cannula for fluid resuscitation. To ensure maximum flow into the vein, you plan to apply the Hagen-Poiseuille equation to select an appropriate cannula size. Which of the following statements is true according to this law?
Your Answer: Flow is proportional to the radius of the cannula squared
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Correct
-
During which phase of aerobic respiration is FADH2 generated?
Your Answer: Krebs cycle
Explanation:The Krebs Cycle and the Role of FADH2
The Krebs cycle is a crucial part of aerobic respiration in cells. It involves a series of reactions that convert acetate, derived from carbohydrates, fats, and proteins, into carbon dioxide and energy in the form of ATP. Additionally, the Krebs cycle produces precursors for some amino acids and reducing agents like NADH and FADH2 that are involved in other metabolic pathways.
FAD is a redox cofactor that plays a vital role in the Krebs cycle. It receives two electrons from the sixth reaction of the cycle, where succinate dehydrogenase converts succinate into fumarate by removing two hydrogen atoms and attaching them onto FAD. This process results in FAD gaining two electrons and reducing into FADH2.
FADH2 then donates the electrons to the electron transport chain, which is another part of cellular respiration. This mechanism helps compensate for the relatively low amount of ATP produced by the Krebs cycle (2.5 molecules of ATP per turn) compared to the electron transport chain (26-28 molecules of ATP). Overall, the Krebs cycle and the role of FADH2 are essential for generating energy in cells.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Correct
-
A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?
Your Answer: 50%
Explanation:Huntington’s Disease
Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.
The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Incorrect
-
Which of the following would not increase the rate of diffusion of a substance across a lipid membrane such as the cell wall?
Your Answer: Temperature
Correct Answer: Thickness of the membrane
Explanation:Diffusion and Fick’s Law
Diffusion is a natural process that occurs when molecules move from an area of high concentration to an area of low concentration. This process is passive and random, meaning that it does not require any external energy input. Fick’s Law states that diffusion occurs more quickly across a large, permeable, and thin membrane. For example, in lung disease, the thickening of the alveolar epithelial barrier can lead to a poor carbon monoxide transfer coefficient because the thicker membrane slows down the diffusion process. the principles of diffusion and Fick’s Law can help us better understand how molecules move and interact in various biological and chemical processes. By optimizing the conditions for diffusion, we can improve the efficiency of many natural and artificial systems.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Incorrect
-
What occurs during metaphase II of meiosis?
Your Answer: Sister chromatids separate on the meiotic spindle
Correct Answer: The cell's chromosomes attach to the meiotic spindle to divide into chromatids
Explanation:The Process of Meiosis
Meiosis is a complex process that involves two major cycles. The first cycle, meiosis I, condenses the reproductive cell’s DNA into chromosomes that are then replicated, creating two pairs of each original chromosome. These pairs are then separated, and the cell divides with one chromosome in each daughter cell. The second cycle, meiosis II, splits the chromosomes into individual chromatids, which are then separated as in meiosis I. This separation is facilitated by a spindle, a set of parallel fibers that attach to the center of each chromosome and split into two, making the chromatids travel on the polar opposite sides of the cell. The cell then divides again, giving rise to four haploid daughter cells.
During meiosis II, the chromosomes align on the spindle in metaphase II. Tetrads separate during anaphase I and line up during metaphase I. Sister chromatids separate on the meiotic spindle during anaphase II. Finally, chromosomes uncoil and lengthen at the end of meiosis, in telophase II. This process is essential for the production of gametes and the continuation of sexual reproduction in many organisms.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Incorrect
-
Which process occurs mainly in the smooth endoplasmic reticulum?
Your Answer: Lysosome production
Correct Answer: Steroid synthesis
Explanation:The Functions of Endoplasmic Reticulum and Lysosomes
The endoplasmic reticulum (ER) is a complex network of membranes that is divided into two types: rough and smooth. The rough ER is characterized by the presence of ribosomes on its cytosolic side, which makes it an important site for protein production, modification, and transport. On the other hand, the smooth ER is involved in cholesterol and steroid handling, as well as calcium storage in some cells. This type of ER is particularly prominent in cells that produce large amounts of steroid hormones, such as those found in the adrenal cortex.
Lysosomes, on the other hand, are organelles that are responsible for breaking down and recycling cellular waste. They are formed by the Golgi apparatus, which is another complex network of membranes found in eukaryotic cells. Lysosomes contain a variety of enzymes that are capable of breaking down different types of molecules, including proteins, lipids, and carbohydrates.
In summary, the ER and lysosomes are two important organelles in eukaryotic cells that play different roles in cellular metabolism. While the ER is involved in protein production, modification, and transport, the lysosomes are responsible for breaking down and recycling cellular waste.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
What factor causes a shift of the oxygen dissociation curve to the left?
Your Answer: Increased 2,3-BPG
Correct Answer: Increased pH
Explanation:The Oxygen Dissociation Curve and its Effects on Oxygen Saturation
The oxygen dissociation curve is a graph that compares the oxygen saturation of hemoglobin (Hb) at different partial pressures of oxygen. When more oxygen is needed by the tissues, the curve shifts to the right. This means that at the same partial pressure of oxygen, less oxygen is bound to Hb, allowing it to be released to the tissues. This effect is caused by increased levels of CO2 and temperature, which assist in the transfer of oxygen to more metabolically active tissues. Additionally, increased levels of 2,3-DPG also aid in this process.
On the other hand, a left shift in the curve reflects conditions where there is less need for oxygen in the tissues, such as in the lungs. This allows for increased binding of oxygen to Hb, allowing it to be taken up before transport to the tissues that require it. Overall, the oxygen dissociation curve plays a crucial role in regulating oxygen saturation in the body and ensuring that oxygen is delivered to the tissues that need it most.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Incorrect
-
What are the vitamins that are soluble in fat?
Your Answer: Vitamins D, E and K
Correct Answer: Vitamins A, D, E and K
Explanation:Absorption of Fat-Soluble Vitamins
Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.
However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 10
Correct
-
What significance do linoleic and alpha-linolenic acids hold?
Your Answer: They are essential fatty acids
Explanation:The Importance of Essential Fatty Acids in the Diet
Essential fatty acids, such as linoleic and alpha-linolenic acids, are crucial components of a healthy diet. Although they are only required in small amounts, they play several important roles in the body. These fatty acids are necessary for the synthesis of phospholipids, which are essential components of cell membranes. They also help regulate cholesterol transport and synthesis, and serve as precursors for omega-3 fatty acids and arachidonic acid. Additionally, essential fatty acids are important for the synthesis of prostaglandins, leukotrienes, and thromboxanes.
A lack of adequate essential fatty acids in the diet can have negative consequences, particularly for brain growth in infancy. It can also lead to alopecia, dermatitis, and fatty liver. Therefore, it is important to ensure that the diet includes sources of these essential fatty acids, such as certain types of fish, nuts, and seeds. By doing so, individuals can support their overall health and well-being.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
What occurs in eukaryotic prometaphase?
Your Answer: Chromatin condenses into chromosomes
Correct Answer: The nuclear membrane and the nucleoli disintegrate and kinetochores appear
Explanation:The Significance of Prometaphase in Cell Division
Prometaphase is a crucial phase in cell division that marks the transition from prophase to metaphase. Although it is often considered as a part of these two phases, it has distinct events that make it an individual phase. During prometaphase, the nuclear membrane disintegrates, and the nucleoli are no longer visible. Additionally, each chromosome forms two kinetochores near the centromere, which serve as attachment points for spindle fibers. These fibers connect to the opposite poles of the cell, forming travelling lines that will separate the sister chromatids during anaphase.
Prophase is characterized by chromatin condensation, while DNA and centrosome duplication occur during interphase. Chromosome alignment takes place during metaphase, and the sister chromatids separate during anaphase. Prometaphase, therefore, plays a crucial role in preparing the chromosomes for separation during anaphase. Its distinct events make it an essential phase in cell division, and its proper execution is necessary for successful cell division.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 12
Incorrect
-
What is the apoptotic event that occurs just before the formation of an apoptosome?
Your Answer: Activation of caspase-9
Correct Answer: Release of cytochrome c from mitochondria
Explanation:Apoptosis and the Role of the Apoptosome
Apoptosis, also known as programmed cell death, is a natural process that occurs in all multicellular organisms. It involves a series of changes in cell morphology, including membrane blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation. The formation of the apoptosome is a crucial part of the apoptosis cascade. It is a large protein structure that is triggered by the release of cytochrome c from the mitochondria in response to various stimuli, such as DNA damage, infections, or developmental signals.
The apoptosome is formed when cytochrome c binds to Apaf-1, a cytosolic protein, in a 1:1 ratio. This triggers the recruitment and activation of the initiator pro-caspase-9, which then activates effector caspases, a family of apoptotic proteases, to initiate the apoptotic cascade. It is important to note that the activation of caspase-9 occurs only after the formation of the apoptosome.
In summary, apoptosis is a natural process that occurs in multicellular organisms, and the apoptosome plays a crucial role in triggering the apoptotic cascade. the mechanisms behind apoptosis and the formation of the apoptosome can provide insights into various diseases and developmental processes.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 13
Incorrect
-
At what stage of meiosis does the process of homologous recombination occur?
Your Answer: Metaphase II
Correct Answer: Prophase I
Explanation:Homologous Recombination: A Mechanism for DNA Repair and Genetic Variation
Homologous recombination is a process that allows for the exchange of nucleotide sequences between two similar or identical DNA molecules. This occurs during meiosis, specifically during the second phase of prophase I, where sister chromatids swap sequences. The primary purpose of homologous recombination is to accurately repair harmful double-strand DNA breaks. This process results in new combinations of DNA sequences that provide genetic variation in daughter cells and, ultimately, the organism’s offspring.
In prokaryotic organisms such as bacteria and viruses, homologous recombination occurs during horizontal gene transfer. This process involves the exchange of genetic material between different strains and species. Homologous recombination plays a crucial role in the evolution of these organisms by allowing for the acquisition of new traits and adaptations.
Overall, homologous recombination is a vital mechanism for DNA repair and genetic variation. It ensures the accuracy of DNA replication and contributes to the diversity of life on Earth.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 14
Incorrect
-
While taking a patient's medical history, you discover that their family has a strong history of a certain disease. Autosomal dominant diseases are often caused by defects in structural genes and typically present in early adulthood, affecting both males and females equally. Which of the following diseases does not follow an autosomal dominant pattern of inheritance?
Your Answer: Von Hippel-Lindau disease
Correct Answer: Haemochromatosis
Explanation:Abnormal Binding Proteins and Iron Deposition: A Genetic Disorder
Abnormal binding proteins can lead to the deposition of iron in the body, resulting in various health complications. This genetic disorder is inherited in an autosomal recessive manner. The deposition of iron can cause cardiomyopathy, cirrhosis, pancreatic failure due to fibrosis, and skin pigmentation.
In general, disorders that affect metabolism or DNA replication on a cellular or genetic level tend to be autosomal recessive. On the other hand, genetic disorders that affect the structure of the body on a larger level are usually autosomal dominant. While there may be exceptions to these rules, they can serve as a helpful guide for exam preparation. Proper of this genetic disorder can aid in its diagnosis and management.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Incorrect
-
Which statement regarding microtubules is accurate in relation to Chédiak-Higashi syndrome?
Your Answer: They have a fixed length
Correct Answer: They are arranged in a 9+2 formation in cilia
Explanation:Microtubules and Chédiak-Higashi Syndrome
Microtubules are made up of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to change the length. They are found in structures such as flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. These structures are important for cell movement and division. Chemotherapy agents, such as taxanes, target microtubules and are used in breast cancer treatment.
Chédiak-Higashi syndrome is a rare inherited immunodeficiency disorder caused by mutations in the LYST gene. This condition is characterized by neutrophil inclusions, albinism, recurrent infections, and peripheral neuropathy. The neutrophil inclusions are thought to be caused by abnormal microtubule function, which affects the immune system’s ability to fight infections. While there is no cure for Chédiak-Higashi syndrome, treatment focuses on managing symptoms and preventing infections.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 16
Incorrect
-
A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.
What is the likelihood of any of their offspring being affected by cystic fibrosis?Your Answer: 25%
Correct Answer: 2.50%
Explanation:Cystic Fibrosis Inheritance
Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.
If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.
In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 17
Correct
-
A man in his forties comes in with chest pain resembling a heart attack and is diagnosed with a myocardial infarction. During his hospitalization, it is discovered that he has familial hypercholesterolemia but his triglyceride levels are normal. What is the underlying biochemical abnormality?
Your Answer: Defective LDL receptors
Explanation:Lipid Metabolism and Transport in the Body
The breakdown of triglycerides in the small intestine is facilitated by pancreatic lipase. These triglycerides are then transported to the liver and other parts of the body through chylomicrons.
Very low-density lipoprotein (VLDL) is responsible for carrying triglycerides from the liver to peripheral tissues. When there is an overproduction of VLDL in the liver, it can lead to high levels of triglycerides in the body.
Pure hypercholesterolaemia is a condition that arises due to a defect in the process of cholesterol uptake into cells. This process relies on apolipoprotein B-100 binding to LDL receptors and facilitating endocytosis. When this process is disrupted, it can lead to high levels of cholesterol in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 18
Correct
-
What is the most common method of assessing nutritional status in adults?
Your Answer: Body mass index
Explanation:The Body Mass Index as a Measure of Nutritional Status
The measurement and assessment of nutritional status can be challenging, and there is no single test that can provide a complete picture. However, the body mass index (BMI) is a commonly used measurement in clinical practice. The BMI is calculated by dividing a person’s weight in kilograms by their height in meters squared. This measure is used to assess adiposity and nutritional status, and it is simple and quick to calculate and interpret.
Although the BMI is a convenient measure, it has limitations for assessing obesity in individual patients. It is best used to track trends in an individual patient’s BMI over time. In some cases, the BMI may overestimate fat mass in patients who are very tall or have a high proportion of lean tissue due to an active lifestyle. Additionally, the BMI may not be accurate for athletes and children.
Other measurements, such as skin fold thickness and weight, can also be useful, but the BMI is generally considered the better option. The ponderal index is used specifically for children. It is important to note that albumin is not a reliable marker of nutritional status, as it can also be affected by inflammation.
Overall, the BMI is a widely used measure of nutritional status and is recommended by the World Health Organization. However, it is important to consider its limitations and use it in conjunction with other measurements to obtain a more complete picture of a patient’s nutritional status.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 19
Correct
-
A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?
Your Answer: Hydrogen ion (proton)
Explanation:How MRI Scanners Use Hydrogen Ions to Create Images
MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.
While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.
Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 20
Incorrect
-
What are the primary constituents of the cytoskeleton in eukaryotic cells?
Your Answer: Microfilaments and alpha/beta microtubules
Correct Answer: Microfilaments, intermediate filaments and microtubules
Explanation:The Eukaryotic Cytoskeleton: A Structural Support System
The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.
Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 21
Correct
-
What is the term for the process described below in laboratory testing?
Enzymes are immobilised on a solid surface, such as a bead or well, and allowed to come into contact with the sample. After washing, another enzyme is added with a label allowing quantitation of the analyte.Your Answer: Enzyme-linked immunosorbent assay
Explanation:ELISA: A Common Immunoassay in Medical Diagnostic Testing
An enzyme-linked immunosorbent assay (ELISA) is a type of immunoassay that is widely used in medical diagnostic testing. This method uses antibodies to identify and/or quantify the analyte being tested. The ELISA process involves several steps, including coating a plate with the antigen, adding the patient’s sample, washing the plate to remove any unbound material, adding an enzyme-linked antibody, washing the plate again, and adding a substrate to produce a measurable signal.
Over time, many modifications have been made to the ELISA, making it a versatile tool in the laboratory for measuring various analytes. Some of the substances that can be measured using immunoassays include thyroid hormone, testosterone, oestrogen, troponin, and vitamin D. The ELISA has been around for a long time and is still widely used today due to its accuracy, sensitivity, and specificity.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 22
Correct
-
What are the defining features of an amino acid?
Your Answer: It has the formula H2N - CHR - COOH where R is the variable group
Explanation:The Versatility of Amino Acids and its Applications in Electrophoresis
Amino acids are the building blocks of proteins and are composed of a basic structure of H2N – CHR – COOH, where R represents the variable group that distinguishes one amino acid from another. The simplest amino acid is glycine, where the R group is just H. Amino acids are capable of forming complex and useful molecules due to their dipolar or amphoteric nature, which makes them simultaneously acidic and basic. In solution, they form zwitterions, which can act as either an acid or a base depending on the pH of the solution. This versatility of amino acids is what allows for the process of electrophoresis, which separates proteins based on their charge in a solution. By using solutions of different pH, different proteins can be assessed, making it a useful tool in the diagnosis of bone marrow malignancies like myeloma.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 23
Correct
-
A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?
Your Answer: All daughters will be carriers; no sons will be affected
Explanation:The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.
On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.
Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.
Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 24
Correct
-
What type of molecule does haemoglobin belong to?
Your Answer: Quaternary protein structure
Explanation:The Structure and Functions of Proteins
Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.
Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.
In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 25
Incorrect
-
What function does vitamin E serve in the body?
Your Answer: Vision
Correct Answer: Antioxidant
Explanation:Vitamin E and its Functions
Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.
Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 26
Incorrect
-
What are the potential clinical consequences of a lack of vitamin E?
Your Answer: Bleeding gums
Correct Answer: Ataxia
Explanation:Vitamin E Deficiency
Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.
The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.
Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 27
Correct
-
A 50-year-old female patient with varicose veins presents to the vascular clinic for evaluation.
During the assessment, a test is conducted to determine the location of incompetence. The patient is instructed to lie down, and the veins are emptied by elevating her legs off the couch. The examiner then identifies the site of the sapheno-femoral junction and applies pressure with their fingers. The patient is then asked to stand up to evaluate vein filling.
What is the name of this test?Your Answer: Trendelenburg's test
Explanation:Assessing Varicose Vein Site of Incompetence
The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction site, while in the tourniquet test, a tourniquet is placed just below the junction level.
If the veins fill quickly upon standing, it indicates that the sapheno-femoral junction is not the source of the incompetence. These tests are essential in determining the location of the varicose vein site of incompetence, which is crucial in planning the appropriate treatment. By identifying the site of incompetence, physicians can perform targeted interventions to improve venous function and alleviate symptoms. Therefore, the Trendelenburg and tourniquet tests are valuable tools in the diagnosis and management of varicose veins.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 28
Incorrect
-
You encounter a patient in the Emergency department who has been in a severe car accident. You need to insert a venous cannula for aggressive fluid resuscitation. Applying the Hagen-Poiseuille equation, you select a cannula with appropriate dimensions for maximum flow into the vein.
As per this law, which of the following statements is correct?Your Answer: Flow is not affected by the viscosity of the fluid
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 29
Correct
-
Over the last five years, the total number of patients admitted and deaths in the East and North Hertfordshire NHS Trust have been recorded. In the year 2010/2011, there were 95,071 patients admitted and 1,912 deaths. What is the crude mortality ratio for this group in that year (per 100 admissions)?
Your Answer: 2
Explanation:In this scenario, the crude mortality ratio is established by comparing the number of deaths occurring within the hospital in a given year to the total number of admissions, disregarding age or gender-specific mortality rates. For instance, with 1,912 deaths out of 95,071 admissions, the ratio computes to 0.02, or 2.0% when calculated per 100 admissions (1,912/95,071 = 0.02/100= 2.0%. When recalculated per 1,000 admissions, the crude admission rate would be 20 per 1,000.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 30
Incorrect
-
What is the final product of glycolysis besides ATP?
Your Answer:
Correct Answer: Pyruvate
Explanation:Glycolysis: The Energy-Producing Reaction
Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.
Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.
Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)