-
Question 1
Incorrect
-
A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?
Your Answer: Resting potential restored by Na+/K+ ATPase
Correct Answer: Repolarisation due to efflux of potassium
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
Which of the following is true about endothelin?
Your Answer: It is a potent vasodilator
Correct Answer: Endothelin antagonists are useful in primary pulmonary hypertension
Explanation:Antagonists are used in primary pulmonary hypertension because endothelin induced constriction of the pulmonary blood vessels.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
During ward round, you have been presented with an ECG of a 50-year-old female who was admitted with blackouts and a heart rate of 43bpm. On the ECG you note that the QRS complex is narrow but is missing after every other P wave. What is this condition called?
Your Answer: 2:1 heart block
Explanation:The patient has a bradycardia with a narrow QRS complex, ruling out bundle branch blocks. It is not a first-degree heart block or a Wenckebach heart block. The correct diagnosis is a 2:1 heart block with 2 P waves to each QRS complex.
Understanding Heart Blocks: Types and Features
Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.
First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.
Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.
It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 68-year-old man presents to the emergency department after experiencing a syncopal episode. His ECG reveals a prolonged PR interval, with every other QRS complex being dropped. The QRS complex width is within normal limits.
From which area of the heart is the conduction delay most likely originating?Your Answer: Atrio-Ventricular node
Explanation:The PR interval is the duration between the depolarization of the atria and the depolarization of the ventricles. In this case, the man is experiencing a 2:1 block, which is a type of second-degree heart block. Since his PR interval is prolonged, the issue must be occurring in the pathway between the atria and ventricles. However, since his QRS complex is normal, it is likely that the problem is in the AV node rather than the bundles of His. If the issue were in the sino-atrial node, it would not cause a prolonged PR interval with dropped QRS complexes. Similarly, if there were a slowing of conduction in the ventricles, it would cause a wide QRS complex but not a prolonged PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
After a myocardial infarction (MI), a 65-year-old patient is initiated on a regimen of medications for secondary prevention. The regimen includes aspirin, clopidogrel, perindopril, bisoprolol, and simvastatin. However, the patient experiences poor tolerance to clopidogrel, leading to a prescription of ticagrelor instead.
Your Answer: Directly inhibits clotting factor Xa
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:Ticagrelor and clopidogrel have a similar mechanism of action in that they both inhibit ADP binding to platelet receptors, thereby preventing platelet aggregation. However, ticagrelor specifically targets the glycoprotein GPIIb/IIIa complex, while clopidogrel inhibits the P2Y12 receptor.
Aspirin, on the other hand, irreversibly binds to cyclooxygenase (COX), an enzyme that plays a key role in the production of thromboxane A2, a potent vasoconstrictor and platelet aggregator.
Direct oral anticoagulants (DOACs) like rivaroxaban work by directly inhibiting clotting factor Xa, which is necessary for the formation of thrombin and subsequent clotting. Unlike warfarin, DOACs require less monitoring.
Warfarin, on the other hand, inhibits the production of vitamin K-dependent clotting factors, including factors II, VII, IX, and X. It also inhibits some pro-thrombotic molecules, which initially increases the risk of thrombosis.
Dabigatran, another form of DOAC, is a thrombin inhibitor and currently the only one with a reversal agent available.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 50-year-old man comes to the clinic complaining of a painful left foot that he woke up with. Initially, he didn't want to bother the doctor, but now he's concerned because he can't feel his foot or move his toes. Upon examination, the left foot is cold to the touch and very pale. What is the probable diagnosis?
Your Answer: Intermittent claudication
Correct Answer: Acute limb ischaemia
Explanation:Acute Limb Ischaemia and Compartment Syndrome
Acute limb ischaemia is a condition that is characterized by six Ps: pain, pallor, pulselessness, perishingly cold, paresthesia, and paralysis. It is a medical emergency that requires immediate attention from a vascular surgeon. Delaying treatment for even a few hours can lead to amputation or death. On the other hand, acute compartment syndrome occurs when the pressure within a closed muscle compartment exceeds the perfusion pressure, resulting in muscle and nerve ischaemia. This condition usually follows a traumatic event, such as a fracture. However, in some cases, there may be no history of trauma.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A medical resident has been instructed by the geriatric consultant to review the medication chart of an elderly patient with a history of hypertension, heart failure, and biliary colic. The resident noticed a significant drop in systolic blood pressure upon standing and discontinued a medication that may have contributed to the postural hypotension. However, a few hours later, the patient's continuous cardiac monitoring showed tachycardia. Which medication cessation could have caused the tachycardia in this elderly patient?
Your Answer: Clopidogrel
Correct Answer: Atenolol
Explanation:Abruptly stopping atenolol, a beta blocker, can lead to ‘rebound tachycardia’. None of the other drugs listed have been associated with this condition. While ramipril, an ace-inhibitor, may have contributed to the patient’s postural hypotension, it is not known to cause tachycardia upon cessation. Furosemide, a loop diuretic, can worsen postural hypotension by causing volume depletion, but it is not known to cause tachycardia upon discontinuation. Aspirin and clopidogrel, both antiplatelet drugs, are unlikely to be stopped abruptly and are not associated with either ‘rebound tachycardia’ or postural hypotension.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 87-year-old male with chronic untreated hypertension arrives at the emergency department complaining of chest pain. Upon examination of his ECG, it is observed that there are tall QRS complexes throughout the entire ECG with elevated R-waves in the left-sided leads. What condition does this suggest?
Your Answer: NSTEMI
Correct Answer: Left ventricular hypertrophy (LVF)
Explanation:ST elevation is expected in the leads corresponding to the affected part of the heart in an STEMI, while ST depression, T wave inversion, or no change is expected in an NSTEMI or angina. Dilated cardiomyopathy does not have any classical ECG changes, and it is not commonly associated with hypertension as LVF. LVF, on the other hand, causes left ventricular hypertrophy due to prolonged hypertension, resulting in an increase in R-wave amplitude in leads 1, aVL, and V4-6, as well as an increase in S wave depth in leads III, aVR, and V1-3 on the right side.
ECG Indicators of Atrial and Ventricular Hypertrophy
Left ventricular hypertrophy is indicated on an ECG when the sum of the S wave in V1 and the R wave in V5 or V6 exceeds 40 mm. Meanwhile, right ventricular hypertrophy is characterized by a dominant R wave in V1 and a deep S wave in V6. In terms of atrial hypertrophy, left atrial enlargement is indicated by a bifid P wave in lead II with a duration of more than 120 ms, as well as a negative terminal portion in the P wave in V1. On the other hand, right atrial enlargement is characterized by tall P waves in both II and V1 that exceed 0.25 mV. These ECG indicators can help diagnose and monitor patients with atrial and ventricular hypertrophy.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 76-year-old male comes for his yearly checkup with the heart failure nurses. What is the leading cause of heart failure?
Your Answer: Rheumatic fever
Correct Answer: Ischaemic heart disease
Explanation:The leading cause of heart failure in the western world is ischaemic heart disease, followed by high blood pressure, cardiomyopathies, arrhythmias, and heart valve issues. While COPD can be linked to cor pulmonale, which is a type of right heart failure, it is still not as prevalent as ischaemic heart disease as a cause. This information is based on a population-based study titled Incidence and Aetiology of Heart Failure published in the European Heart Journal in 1999.
Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack. The procedure is successful with no complications. However, the patient develops new hoarseness of voice and loss of effective cough mechanism post-surgery. There are no notable findings upon examination of the oral cavity.
Which structure has been affected by the surgery?Your Answer: Cranial nerve XI
Correct Answer: Cranial nerve X
Explanation:Speech is innervated by the vagus (X) nerve, so any damage to this nerve can cause speech problems. Injuries to one side of the vagus nerve can result in hoarseness and vocal cord paralysis on the same side, while bilateral injuries can lead to aphonia and stridor. Other symptoms of vagal disease may include dysphagia, loss of cough reflex, gastroparesis, and cardiovascular effects. The facial nerve (VII) may also be affected during carotid surgery, causing muscle weakness in facial expression. However, the vestibulocochlear nerve (VIII) is not involved in speech and would not be damaged during carotid surgery. The accessory nerve (XI) does not innervate speech muscles and is rarely affected during carotid surgery, causing weakness in shoulder elevation instead. Hypoglossal (XII) palsy is a rare complication of carotid surgery that causes tongue deviation towards the side of the lesion, but not voice hoarseness.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Correct
-
A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty climbing stairs and sleeping, and finds it easier to sleep in his living room chair. He used to manage stairs fine a year ago, but now has to stop twice on the way up.
When asked about other symptoms, he reports feeling slightly wheezy and occasionally coughing up white sputum. He denies any weight loss. His medical history includes angina, non-diabetic hyperglycaemia, and hypertension. He has smoked 15 cigarettes per day since he was 25 and drinks around 5 pints of lager every Friday and Saturday night.
On examination, his oxygen saturations are 96%, respiratory rate 16/min at rest, heart rate 78/min, and blood pressure 141/88 mmHg. Bibasal crackles are heard on auscultation of his lungs.
What is the most likely diagnosis?Your Answer: Heart failure
Explanation:Orthopnoea is a distinguishing symptom that can help differentiate between heart failure and COPD in patients. While the symptoms may be non-specific, the presence of orthopnoea, or breathlessness when lying down, is a key indicator of heart failure rather than COPD.
Although the patient has a significant history of smoking, there are no other signs of lung cancer such as weight loss, persistent cough, or coughing up blood. However, it is recommended to conduct an urgent chest X-ray to rule out any serious underlying conditions.
In cases of occupational asthma, symptoms tend to worsen when exposed to triggers in the workplace and improve during time off. However, in this patient’s case, the symptoms have been gradually worsening over time.
Features of Chronic Heart Failure
Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.
Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.
In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
A 75-year-old man presents to the emergency department with acute chest pain that is radiating to his left shoulder. He has a medical history of a previous transient ischaemic attack three years ago and is currently taking aspirin 75mg OD.
Upon initial assessment, an ECG reveals ST-segment elevation in V1-V3. The patient undergoes percutaneous coronary intervention with a drug-eluting stent and is stable post-procedure. His treatment plan includes ramipril, ticagrelor, simvastatin, and atenolol.
What is the mechanism of action of the newly prescribed antiplatelet medication?Your Answer: Inhibit the binding of ADP to platelets
Explanation:Ticagrelor and clopidogrel have a similar mechanism of action in inhibiting ADP binding to platelet receptors, which prevents platelet aggregation. In patients with STEMI who undergo percutaneous coronary intervention with a drug-eluting stent, dual antiplatelet therapy, beta-blockers, ACE inhibitors, and anti-hyperlipidemic drugs are commonly used for secondary management.
Glycoprotein IIb/IIIa complex is a fibrinogen receptor found on platelets that, when activated, leads to platelet aggregation. Glycoprotein IIb/IIIa inhibitors, such as abciximab, bind to this receptor and prevent ligands like fibrinogen from accessing their binding site. Glycoprotein IIb/IIIa antagonists, like eptifibatide, compete with ligands for the receptor’s binding site, blocking the formation of thrombi.
Dipyridamole inhibits platelet cAMP-phosphodiesterase, leading to increased intra-platelet cAMP and decreased arachidonic acid release, resulting in reduced thromboxane A2 formation. It also inhibits adenosine reuptake by vascular endothelial cells and erythrocytes, leading to increased adenosine concentration, activation of adenyl cyclase, and increased cAMP production.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
Which of these statements relating to the external carotid is false?
Your Answer:
Correct Answer: It ends by bifurcating into the superficial temporal and ascending pharyngeal artery
Explanation:The external carotid artery ends by splitting into two branches – the superficial temporal and maxillary branches. It has a total of eight branches, with three located on its anterior surface – the thyroid, lingual, and facial arteries. The pharyngeal artery is a medial branch, while the posterior auricular and occipital arteries are located on the posterior surface.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
You are caring for a woman who has heart failure with reduced ejection fraction due to a previous myocardial infarction.
Starling's Law of the Heart states that:Your Answer:
Correct Answer: As preload progressively increases, stroke volume increases gradually then decreases suddenly
Explanation:Starling’s Law of the Heart states that as preload increases, stroke volume also increases gradually, up to a certain point. However, beyond this point, stroke volume decreases due to overloading of the cardiac muscle fibers. Therefore, the higher the cardiac preload, the greater the stroke volume, but only up to a certain limit.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 57-year-old man presents to the emergency department with acute, severe shortness of breath.
During the clinical examination, an elevated JVP is noted, and bilateral basal crackles are heard on auscultation. An S3 gallop is also heard on auscultation of his heart.
The physician places him on high flow oxygen and positions him upright. You are asked to review the patient's medication chart and discontinue any medications that may be contraindicated in his current condition.
Which medication should you discontinue?Your Answer:
Correct Answer: Nicorandil
Explanation:Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.
Where is the site of this pathology?Your Answer:
Correct Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins
Explanation:Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.
Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 67-year old man with a history of cardiovascular disease and COPD visits his GP. During a routine blood test, the GP observes that the patient has mild hyponatraemia. Which medication could have played a role in causing his hyponatraemia?
Your Answer:
Correct Answer: Bendroflumethiazide
Explanation:Thiazide diuretics have been linked to the adverse effect of hyponatremia, while caution is advised when using β2-agonists like salbutamol in patients with hypokalemia due to their potential to decrease serum potassium. In cases of hyperkalemia, β2-agonists may be used as a temporary treatment option. Bendroflumethiazide, a thiazide diuretic, can cause electrolyte imbalances such as hypokalemia, hypomagnesemia, and hypochloremic alkalosis. On the other hand, ACE inhibitors like ramipril may lead to hyperkalemia, especially in patients with renal impairment, diabetes mellitus, or those taking potassium-sparing diuretics, potassium supplements, or potassium-containing salts. Atenolol, however, is not directly associated with electrolyte disturbances.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.
What alterations are expected to be observed in her arteries?Your Answer:
Correct Answer: Smooth muscle proliferation and migration from the tunica media to the intima
Explanation:The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.
Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During the surgery, an enlarged inferior parathyroid gland is identified with a vessel located adjacent to it laterally. Which vessel is most likely to be in this location?
Your Answer:
Correct Answer: Common carotid artery
Explanation:The inferior parathyroid is located laterally to the common carotid artery.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
As a medical student assisting a consultant cardiologist during a percutaneous coronary angiogram on a male patient, you are shown the patient's previous angiogram that reveals a severe occlusion in the left main stem coronary artery. The consultant then poses a question to you about atherosclerosis. Specifically, which modifiable risk factor is involved in the initial development of the atherosclerotic plaque due to its contribution to shear stress?
Your Answer:
Correct Answer: Hypertension
Explanation:The Role of Endothelial Damage in Atherosclerosis
The development of atherosclerosis requires endothelial damage to occur. Hypertension is the most likely risk factor to cause this damage, as it alters blood flow and increases shearing forces on the endothelium. Once damage occurs, pro-inflammatory mediators are released, leading to leucocyte adhesion and increased permeability in the vessel wall. Endothelial damage is particularly atherogenic due to the release of platelet-derived growth factor and thrombin, which stimulate platelet adhesion and activate the clotting cascade.
Diabetes mellitus, hypercholesterolaemia, and obesity increase LDL levels, which infiltrate the arterial intima and contribute to the formation of atheromatous plaques. However, before LDLs can infiltrate the vessel wall, they must bind to endothelial adhesion molecules, which are released after endothelial damage occurs. Therefore, hypertension-induced endothelial damage is required for the initial development of atherosclerosis.
Smoking is also a risk factor for atherosclerosis, but the mechanism is not well understood. It is believed that free radicals and aromatic compounds in tobacco smoke inhibit the production of nitric oxide, leading to endothelial damage. Overall, the role of endothelial damage in atherosclerosis can help identify effective prevention and treatment strategies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is prescribed aspirin, clopidogrel, nitrates, and morphine. Due to his high 6-month risk score, percutaneous coronary intervention is planned and he is given intravenous tirofiban. What is the mechanism of action of this medication?
Your Answer:
Correct Answer: Glycoprotein IIb/IIIa receptor antagonist
Explanation:Glycoprotein IIb/IIIa Receptor Antagonists
Glycoprotein IIb/IIIa receptor antagonists are a class of drugs that inhibit the function of the glycoprotein IIb/IIIa receptor, which is found on the surface of platelets. These drugs are used to prevent blood clots from forming in patients with acute coronary syndrome, unstable angina, or during percutaneous coronary intervention (PCI).
Examples of glycoprotein IIb/IIIa receptor antagonists include abciximab, eptifibatide, and tirofiban. These drugs work by blocking the binding of fibrinogen to the glycoprotein IIb/IIIa receptor, which prevents platelet aggregation and the formation of blood clots.
Glycoprotein IIb/IIIa receptor antagonists are typically administered intravenously and are used in combination with other antiplatelet agents, such as aspirin and clopidogrel. While these drugs are effective at preventing blood clots, they can also increase the risk of bleeding. Therefore, careful monitoring of patients is necessary to ensure that the benefits of these drugs outweigh the risks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 26-year-old Afro-Caribbean woman comes to the Emergency Department complaining of dyspnoea and fatigue that has been going on for 2 days. She reports experiencing similar episodes repeatedly over the past few years. She has no other medical history.
During the examination, you observe sporadic erythematous lesions on her shins and detect a pansystolic murmur. You request a chest x-ray, which reveals bilateral hilar lymphadenopathy and an enlarged heart.
What additional symptom is linked to this ailment?Your Answer:
Correct Answer: Reduced ventricular ejection fraction
Explanation:Patients with reduced ejection fraction heart failure (HF-rEF) usually experience systolic dysfunction, which refers to the impaired ability of the myocardium to contract during systole.
Types of Heart Failure
Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 67-year-old man complains of leg cramping that occurs while walking and quickly subsides with rest. During examination, you observe hair loss in his lower limbs and a weak dorsalis pedis and absent posterior tibial pulse. Your treatment plan involves administering naftidrofuryl. What is the mechanism of action of naftidrofuryl?
Your Answer:
Correct Answer: 5-HT2 receptor antagonist
Explanation:Naftidrofuryl, a 5-HT2 receptor antagonist, can be used to treat peripheral vascular disease (PVD) and alleviate symptoms such as intermittent claudication. This medication works by causing vasodilation, which increases blood flow to areas of the body affected by PVD. On the other hand, drugs like doxazosin, an alpha 1 blocker, do not have a role in treating PVD. Beta blockers, which can worsen intermittent claudication by inducing vasoconstriction, are also not recommended for PVD treatment.
Managing Peripheral Arterial Disease
Peripheral arterial disease (PAD) is closely associated with smoking, and patients who still smoke should be provided with assistance to quit. Comorbidities such as hypertension, diabetes mellitus, and obesity should also be treated. All patients with established cardiovascular disease, including PAD, should be taking a statin, with atorvastatin 80 mg currently recommended. In 2010, NICE recommended clopidogrel as the first-line treatment for PAD patients over aspirin.
Exercise training has been shown to have significant benefits, and NICE recommends a supervised exercise program for all PAD patients before other interventions. Severe PAD or critical limb ischaemia may be treated with endovascular or surgical revascularization, with endovascular techniques typically used for short segment stenosis, aortic iliac disease, and high-risk patients. Surgical techniques are typically used for long segment lesions, multifocal lesions, lesions of the common femoral artery, and purely infrapopliteal disease. Amputation should be reserved for patients with critical limb ischaemia who are not suitable for other interventions such as angioplasty or bypass surgery.
Drugs licensed for use in PAD include naftidrofuryl oxalate, a vasodilator sometimes used for patients with a poor quality of life, and cilostazol, a phosphodiesterase III inhibitor with both antiplatelet and vasodilator effects, which is not recommended by NICE.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 68-year-old woman has a left ankle ulcer that has been present for nine months. She had a DVT in her right leg five years ago. Upon examination, there is a 6 cm diameter slough-based ulcer on the medial malleolus without cellulitis. What investigation is required before applying compression bandaging?
Your Answer:
Correct Answer: Ankle-brachial pressure index
Explanation:Venous Ulceration and the Importance of Identifying Arterial Disease
Venous ulcerations are a common type of ulcer that affects the lower extremities. The underlying cause of venous congestion, which can promote ulceration, is venous insufficiency. The treatment for venous ulceration involves controlling oedema, treating any infection, and compression. However, compressive dressings or devices should not be applied if the arterial circulation is impaired. Therefore, it is crucial to identify any arterial disease, and the ankle-brachial pressure index is a simple way of doing this. If indicated, one may progress to a lower limb arteriogram.
It is important to note that there is no clinical sign of infection, and although a bacterial swab would help to rule out pathogens within the ulcer, arterial insufficiency is the more important issue. If there is a clinical suspicion of DVT, then duplex (or rarely a venogram) is indicated to decide on the indication for anticoagulation. By identifying arterial disease, healthcare professionals can ensure that appropriate treatment is provided and avoid potential complications from compressive dressings or devices.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
An 80-year-old man visits his GP with complaints of worsening shortness of breath, dry cough, and fatigue over the past 6 weeks. The patient reports having to stop multiple times during his daily walk to catch his breath and sleeping with an extra pillow at night to aid his breathing. He has a medical history of hypertension and a smoking history of 30 pack-years. His current medications include ramipril, amlodipine, and atorvastatin.
During the examination, the GP observes end-inspiratory crackles at both lung bases. The patient's oxygen saturation is 94% on room air, his pulse is regular at 110 /min, and his respiratory rate is 24 /min.
What is the most probable underlying diagnosis?Your Answer:
Correct Answer: Chronic heart failure
Explanation:Orthopnoea is a useful indicator to distinguish between heart failure and COPD.
The Framingham diagnostic criteria for heart failure include major criteria such as acute pulmonary oedema and cardiomegaly, as well as minor criteria like ankle oedema and dyspnoea on exertion. Other minor criteria include hepatomegaly, nocturnal cough, pleural effusion, tachycardia (>120 /min), neck vein distension, and a third heart sound.
In this case, the patient exhibits orthopnoea (needing an extra pillow to alleviate breathlessness), rales (crackles heard during inhalation), and dyspnoea on exertion, all of which are indicative of heart failure.
While COPD can present with similar symptoms such as coughing, fatigue, shortness of breath, and desaturation, the presence of orthopnoea helps to differentiate between the two conditions.
Pulmonary fibrosis, on the other hand, does not typically present with orthopnoea.
Features of Chronic Heart Failure
Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.
Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.
In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 22-year-old male student is brought to the Emergency Department via ambulance. He is unconscious, hypotensive, and tachycardic. According to his friend, he started feeling unwell after being stung by a bee in the park. The medical team suspects anaphylactic shock and begins resuscitation. While anaphylactic shock causes widespread vasodilation, which mediator is responsible for arteriole constriction?
Your Answer:
Correct Answer: Endothelin
Explanation:Arteriolar constriction is facilitated by various mediators such as noradrenaline from the sympathetic nervous system, circulating catecholamines, angiotensin-2, and locally released endothelin peptide by endothelial cells. Endothelin primarily acts on ET(A) receptors to cause constriction, but it can also cause dilation by acting on ET(B) receptors.
On the other hand, the parasympathetic nervous system, nitric oxide, and prostacyclin are all responsible for facilitating arteriolar dilation, rather than constriction.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 50-year-old man is brought to the acute medical ward with red flag sepsis, possibly originating from the urinary tract. Upon arrival, his blood pressure is recorded as 90/60mmHg, and he exhibits cool, mottled skin peripherally. To increase his preload and stroke volume, a fluid bolus is administered. What other physiological parameter is likely to be observed?
Your Answer:
Correct Answer: Increased pulse pressure
Explanation:When stroke volume increases, pulse pressure also increases. This is important to consider in the management of shock, where intravenous fluids can increase preload and stroke volume. Factors that affect stroke volume include preload, cardiac contractility, and afterload. Pulse pressure can be calculated by subtracting diastolic blood pressure from systolic blood pressure.
Decreased cardiac output is not a result of increased stroke volume, as cardiac output is calculated by multiplying stroke volume by heart rate. An increase in stroke volume would actually lead to an increase in cardiac output.
Similarly, decreased mean arterial pressure is not a result of increased stroke volume, as mean arterial pressure is calculated by multiplying cardiac output by total peripheral resistance. An increase in stroke volume would lead to an increase in mean arterial pressure.
Lastly, increased heart rate is not a direct result of increased stroke volume, as heart rate is calculated by dividing cardiac output by stroke volume. An increase in stroke volume would actually lead to a decrease in heart rate.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 55-year-old male with hypertension visits his GP complaining of a persistent dry cough. He reports that this started two weeks ago after he was prescribed ramipril. What alternative medication class might the GP consider switching him to?
Your Answer:
Correct Answer: Angiotensin receptor blockers
Explanation:A dry cough is a common and bothersome side effect of ACE inhibitors like ramipril. However, angiotensin receptor blockers work by blocking angiotensin II receptors and have similar adverse effects to ACE inhibitors, but without the cough. According to guidelines, ACE inhibitors are the first line of treatment for white patients under 55 years old. If they are ineffective, angiotensin receptor blockers should be used instead. Beta-blockers, diuretics, calcium channel blockers, and alpha blockers are reserved for later use.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 67-year-old patient with chronic kidney disease is diagnosed with antithrombin III deficiency after presenting to the emergency department with left leg pain and swelling. A doppler-ultrasound scan confirms the presence of deep venous thrombosis (DVT). The patient is prescribed dabigatran. What is the mechanism of action of dabigatran?
Your Answer:
Correct Answer: Direct thrombin inhibitor
Explanation:Dabigatran inhibits thrombin directly, while heparin activates antithrombin III. Clopidogrel is a P2Y12 inhibitor, Abciximab is a glycoprotein IIb/IIIa inhibitor, and Rivaroxaban is a direct factor X inhibitor.
Dabigatran: An Oral Anticoagulant with Two Main Indications
Dabigatran is an oral anticoagulant that directly inhibits thrombin, making it an alternative to warfarin. Unlike warfarin, dabigatran does not require regular monitoring. It is currently used for two main indications. Firstly, it is an option for prophylaxis of venous thromboembolism following hip or knee replacement surgery. Secondly, it is licensed for prevention of stroke in patients with non-valvular atrial fibrillation who have one or more risk factors present. The major adverse effect of dabigatran is haemorrhage, and doses should be reduced in chronic kidney disease. Dabigatran should not be prescribed if the creatinine clearance is less than 30 ml/min. In cases where rapid reversal of the anticoagulant effects of dabigatran is necessary, idarucizumab can be used. However, the RE-ALIGN study showed significantly higher bleeding and thrombotic events in patients with recent mechanical heart valve replacement using dabigatran compared with warfarin. As a result, dabigatran is now contraindicated in patients with prosthetic heart valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
An 68-year-old woman is presented to the vascular clinic with a painful ulcer on the anterior aspect of her shin. She reports experiencing pain in the same leg at night and while sitting in a chair.
The patient has a medical history of diabetes for 11 years, hypertension for 12 years, and has been a smoker for over 50 years.
Upon examination, a pale ulcer with a 'punched out' appearance is observed. The patient declines further examination.
Based on the given clinical scenario, what is the most probable type of ulcer?Your Answer:
Correct Answer: Arterial ulcer
Explanation:The correct answer is arterial ulcer. These types of leg ulcers are typically pale, painful, and have a punched-out appearance. They are often associated with peripheral vascular disease, which is likely in this patient given her cardiovascular risk factors and claudication pain. The fact that she experiences pain while sitting down suggests critical ischemia. Venous ulcers, on the other hand, appear red and oozing with irregular margins and are usually associated with varicose veins, edema, or lipodermatosclerosis. Marjolin ulcers are a malignant transformation of chronic ulcers into squamous cell carcinoma, while neuropathic ulcers typically occur over pressure areas such as the sole of the foot and are associated with a sensory neuropathy. Although this patient has diabetes, the history and appearance of the ulcer are more consistent with an arterial ulcer.
Venous leg ulcers are caused by venous hypertension and can be managed with compression banding. Marjolin’s ulcers are a type of squamous cell carcinoma that occur at sites of chronic inflammation. Arterial ulcers are painful and occur on the toes and heel, while neuropathic ulcers commonly occur over the plantar surface of the metatarsal head and hallux. Pyoderma gangrenosum is associated with inflammatory bowel disease and can present as erythematous nodules or pustules that ulcerate.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)