00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 32-year-old woman who is 34 weeks pregnant with her first baby is...

    Incorrect

    • A 32-year-old woman who is 34 weeks pregnant with her first baby is worried about the possibility of her child having a congenital heart defect. She was born with patent ductus arteriosus (PDA) herself and wants to know what treatment options are available for this condition.

      What treatment will you recommend if her baby is diagnosed with PDA?

      Your Answer: Nothing, patent ductus arteriosus mostly close spontaneously

      Correct Answer: The baby receives indomethacin as a neonate

      Explanation:

      The preferred treatment for patent ductus arteriosus (PDA) in neonates is indomethacin or ibuprofen, administered after birth. While PDA is more common in premature infants, a family history of heart defects can increase the risk. Diagnosis typically occurs during postnatal baby checks, often due to the presence of a murmur or symptoms of heart failure. Doing nothing is not a recommended approach, as spontaneous closure is rare. Surgery may be necessary if medical management is unsuccessful. Prostaglandin E1 is not the best answer, as it is typically used in cases where PDA is associated with another congenital heart defect. Indomethacin or ibuprofen are not given to the mother during the antenatal period.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      11.8
      Seconds
  • Question 2 - A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency...

    Correct

    • A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?

      Your Answer: Uraemia

      Explanation:

      There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.

      ECG results do not indicate a recent heart attack.

      The patient’s age decreases the likelihood of malignancy.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      88.4
      Seconds
  • Question 3 - Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome,...

    Correct

    • Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome, who has experienced recurrent episodes of sudden palpitations. The procedure involves catheterization within the heart to evaluate the electrical activity and determine the conduction velocity of various parts of the conduction pathway.

      Which segment of this pathway exhibits the highest conduction velocity?

      Your Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the fastest conduction velocities in the heart, at approximately 4m/sec, due to different connexins in their gap junctions. They allow depolarisation throughout the ventricular muscle. Atrial muscle conducts at around 0.5m/sec, the atrioventricular node conducts at a slow rate, and the Bundle of His conducts at 2m/sec, but not as rapidly as the Purkinje fibres.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      14.6
      Seconds
  • Question 4 - A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with...

    Correct

    • A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.

      What alterations are expected to be observed in her arteries?

      Your Answer: Smooth muscle proliferation and migration from the tunica media to the intima

      Explanation:

      The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      3.5
      Seconds
  • Question 5 - A 36-year-old male comes to his GP complaining of chest pain that has...

    Incorrect

    • A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.

      Your Answer: Myocardial infarction

      Correct Answer: Acute pericarditis

      Explanation:

      Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.

      Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.

      A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.

      A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.

      A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      10.6
      Seconds
  • Question 6 - Which one of the following statements relating to the posterior cerebral artery is...

    Correct

    • Which one of the following statements relating to the posterior cerebral artery is false?

      Your Answer: It is connected to the circle of Willis via the superior cerebellar artery

      Explanation:

      The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.

      These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      3.3
      Seconds
  • Question 7 - A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is...

    Correct

    • A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is responsible for providing sensory innervation to the tonsillar fossa?

      Your Answer: Glossopharyngeal nerve

      Explanation:

      The tonsillar fossa is primarily innervated by the glossopharyngeal nerve, with a smaller contribution from the lesser palatine nerve. As a result, patients may experience ear pain (otalgia) after undergoing a tonsillectomy.

      Tonsil Anatomy and Tonsillitis

      The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.

    • This question is part of the following fields:

      • Cardiovascular System
      9.6
      Seconds
  • Question 8 - A 50-year-old man has a long femoral line inserted to measure CVP. The...

    Correct

    • A 50-year-old man has a long femoral line inserted to measure CVP. The catheter travels from the common iliac vein to the inferior vena cava. At what vertebral level does this occur?

      Your Answer: L5

      Explanation:

      At the level of L5, the common iliac veins join together to form the inferior vena cava (IVC).

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      7.1
      Seconds
  • Question 9 - A patient in his 60s with dilated cardiomyopathy visits his primary care physician...

    Incorrect

    • A patient in his 60s with dilated cardiomyopathy visits his primary care physician complaining of heart failure symptoms. What is the reason behind his heart condition causing heart failure?

      Your Answer: Ventricular dilatation causes an increase in aortic pressure, increasing afterload

      Correct Answer: Ventricular dilatation increases afterload due to Laplace's law

      Explanation:

      Laplace’s law states that the pressure in a lumen is equal to the wall tension divided by the lumen radius. Heart failure occurs when the heart is unable to meet the body’s demands for cardiac output. While an increased end diastolic volume can initially increase cardiac output, if myocytes become too stretched, cardiac output will decrease. Insufficient blood supply to the myocardium can also cause heart failure, but this is not related to dilated cardiomyopathy. The Bainbridge reflex and baroreceptor reflex are the main controllers of heart rate, with the former responding to increased stretch in the atrium. Ventricular dilatation does not directly cause an increase in aortic pressure. Laplace’s law shows that as the ventricle dilates, tension must increase to maintain pressure, but at a certain point, myocytes will no longer be able to exert enough force, leading to heart failure. Additionally, as the ventricle dilates, afterload increases, which is the force the heart must contract against.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      2.9
      Seconds
  • Question 10 - A 67-year-old male arrives at the emergency department complaining of crushing chest pain,...

    Incorrect

    • A 67-year-old male arrives at the emergency department complaining of crushing chest pain, sweating, and palpitations. Upon examination, an ECG reveals ST elevation in leads V1-V4, indicating a myocardial infarction. Which coronary artery is most likely blocked?

      Your Answer: Right coronary artery

      Correct Answer: Anterior descending artery

      Explanation:

      Anteroseptal myocardial infarction is typically caused by blockage of the left anterior descending artery. This is supported by the patient’s symptoms and ST segment elevation in leads V1-V4, which correspond to the territory supplied by this artery. Other potential occlusions, such as the left circumflex artery, left marginal artery, posterior descending artery, or right coronary artery, would cause different changes in specific leads.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      4.2
      Seconds
  • Question 11 - A 65-year-old man visits the clinic for his regular blood work. The GP...

    Incorrect

    • A 65-year-old man visits the clinic for his regular blood work. The GP requests the medical student to perform venepuncture and obtain blood samples. The student seizes this chance to brush up on their knowledge of vascular anatomy. They plan to draw blood from the median cubital vein located in the antecubital fossa. While aware that the median cubital vein is linked to the cephalic vein, they cannot recall the name of the other vein it connects to. Can you identify the other vein?

      Your Answer: Radial vein

      Correct Answer: Basilic vein

      Explanation:

      The upper limb has both superficial and deep veins. Among the superficial veins are the cephalic, basilic, and median cubital veins. The median cubital vein, which connects the cephalic and basilic veins, is situated in the antecubital fossa and is the preferred site for venepuncture because it is easy to locate and access. However, deep veins like the brachial, ulnar, and radial veins are not suitable for venepuncture as they are located beneath the deep fascia.

      The Cephalic Vein: Path and Connections

      The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.

      After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.

      Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.

    • This question is part of the following fields:

      • Cardiovascular System
      84.9
      Seconds
  • Question 12 - A 72-year-old man visits the clinic with complaints of palpitations and dizziness that...

    Incorrect

    • A 72-year-old man visits the clinic with complaints of palpitations and dizziness that started a day ago. He has been experiencing weakness and fatigue for the past month. During the physical examination, you observe generalized hypotonia and hyporeflexia. After conducting an ECG, you notice indications of hypokalemia. What is an ECG manifestation of hypokalemia?

      Your Answer: Tall tented T waves

      Correct Answer: Prominent U waves

      Explanation:

      Hypokalaemia can be identified by the presence of U waves on an ECG. Other ECG signs of hypokalaemia include small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified by ECG signs such as a long PR interval and a sine wave pattern, as well as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. A prolonged PR interval may be found in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Abnormalities in serum potassium are often discovered incidentally, but symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis. If a patient presents with palpitations and light-headedness, along with a history of weakness and fatigue, and examination findings of hypotonia and hyporeflexia, hypokalaemia should be considered as a possible cause.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      5
      Seconds
  • Question 13 - A 70-year-old male presents to the Emergency Department with a 3-hour history of...

    Incorrect

    • A 70-year-old male presents to the Emergency Department with a 3-hour history of tearing chest pain. He has a past medical history of poorly controlled hypertension. His observations show:

      Respiratory rate of 20 breaths/min
      Pulse of 95 beats/min
      Temperature of 37.3ยบC
      Blood pressure of 176/148 mmHg
      Oxygen saturations of 97% on room air

      Auscultation of the heart identifies a diastolic murmur, heard loudest over the 2nd intercostal space, right sternal border.

      What CT angiography findings would be expected in this patient's likely diagnosis?

      Your Answer: Thrombus in the right pulmonary artery

      Correct Answer: False lumen of the ascending aorta

      Explanation:

      A false lumen in the descending aorta is a significant indication of aortic dissection on CT angiography. This condition is characterized by tearing chest pain, hypertension, and aortic regurgitation, which can be detected through a diastolic murmur over the 2nd intercostal space, right sternal border. The false lumen is formed due to a tear in the tunica intima of the aortic wall, which fills with a large volume of blood and is easily visible on angiographic CT.

      Ballooning of the aortic arch is an incorrect answer as it refers to an aneurysm, which is a condition where the artery walls weaken and abnormally bulge out or widen. Aneurysms are prone to rupture and can have varying effects depending on their location.

      Blurring of the posterior wall of the descending aorta is also an incorrect answer as it is a sign of a retroperitoneal, contained rupture of an aortic aneurysm. This condition may present with hypovolemic shock, hypotension, tachycardia, and tachypnea, leading to collapse.

      Total occlusion of the left anterior descending artery is another incorrect answer as it would likely result in ST-elevation myocardial infarction (STEMI). Although chest pain is a symptom of both conditions, the nature of the pain and investigation findings make aortic dissection more likely. It is important to note that coronary arteries can only be viewed through coronary angiography, which involves injecting contrast directly into the coronary arteries using a catheter, and not through CT angiography.

      Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.

      To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.

      The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.

    • This question is part of the following fields:

      • Cardiovascular System
      169.9
      Seconds
  • Question 14 - A woman with longstanding angina visits her doctor and reports persistent symptoms. The...

    Incorrect

    • A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?

      Your Answer: Bundles of His

      Correct Answer: Sinoatrial node

      Explanation:

      The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.

      Ivabradine: An Anti-Anginal Drug

      Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.

      However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.

      Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.

    • This question is part of the following fields:

      • Cardiovascular System
      3
      Seconds
  • Question 15 - A 25-year-old man is scheduled for a mitral valve repair to address mitral...

    Incorrect

    • A 25-year-old man is scheduled for a mitral valve repair to address mitral regurgitation. What characteristic is associated with the mitral valve?

      Your Answer: It is best auscultated in the left third interspace

      Correct Answer: Its closure is marked by the first heart sound

      Explanation:

      To hear the mitral valve clearly, it is recommended to listen over the cardiac apex, as its closure produces the initial heart sound. The valve comprises two cusps that are connected to the ventricle wall by papillary muscles through chordae tendinae.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      1.9
      Seconds
  • Question 16 - An individual who has been a lifelong smoker and is 68 years old...

    Incorrect

    • An individual who has been a lifelong smoker and is 68 years old arrives at the Emergency Department with a heart attack. During the explanation of his condition, a doctor mentions that the arteries supplying his heart have been narrowed and damaged. What substance is increased on endothelial cells after damage or oxidative stress, leading to the recruitment of monocytes to the vessel wall?

      Your Answer: E-selectin

      Correct Answer: Vascular cell adhesion molecule-1

      Explanation:

      VCAM-1 is a protein expressed on endothelial cells in response to pro-atherosclerotic conditions. It binds to lymphocytes, monocytes, and eosinophils, causing adhesion to the endothelium. Its expression is upregulated by cytokines and is critical in the development of atherosclerosis.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      4.4
      Seconds
  • Question 17 - A 79-year-old man presents to a heart failure clinic with worsening peripheral oedema...

    Incorrect

    • A 79-year-old man presents to a heart failure clinic with worsening peripheral oedema and seeks advice on potential treatment options. The patient has a medical history of heart failure with reduced ejection fraction and chronic kidney disease. His current medication regimen includes ramipril, bisoprolol, atorvastatin, and furosemide.

      The patient's laboratory results show a sodium level of 139 mmol/L (135 - 145), potassium level of 3.6 mmol/L (3.5 - 5.0), bicarbonate level of 24 mmol/L (22 - 29), urea level of 7.4 mmol/L (2.0 - 7.0), creatinine level of 132 ยตmol/L (55 - 120), and an estimated glomerular filtration rate (eGFR) of 53 ml/min/1.73m2 (>60).

      What adjustments should be made to the patient's furosemide treatment?

      Your Answer: Stop immediately

      Correct Answer: Increase the dose

      Explanation:

      To ensure sufficient concentration of loop diuretics within the tubules, patients with poor renal function may require increased doses. This is because loop diuretics, such as furosemide, work by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which reduces the absorption of NaCl. As these diuretics work on the apical membrane, they must first be filtered into the tubules by the glomerulus before they can have an effect. Therefore, increasing the dose can help achieve the desired concentration within the tubules. The other options, such as changing to amlodipine, keeping the dose the same, or stopping immediately, are not appropriate in this scenario.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      4.3
      Seconds
  • Question 18 - A 65-year-old man presents to the Emergency Department with a 60-minute history of...

    Incorrect

    • A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?

      Your Answer: Impossible to tell

      Correct Answer: Left

      Explanation:

      To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.

      ECG Axis Deviation: Causes of Left and Right Deviation

      Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.

      Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.

      On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.

      It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      6.6
      Seconds
  • Question 19 - The following result is obtained on a 48-year-old male who is admitted with...

    Incorrect

    • The following result is obtained on a 48-year-old male who is admitted with acute onset chest pain:
      Serum Cholesterol 7.3 mmol/L (<5.2)
      He has a strong family history of ischaemic heart disease.
      What abnormalities might be expected upon examination of this man?

      Your Answer: Hepatomegaly

      Correct Answer: Tendon nodules

      Explanation:

      Familial Hypercholesterolaemia and its Manifestations

      Familial hypercholesterolaemia is a condition characterized by high levels of cholesterol in the blood. This condition is often indicated by the deposition of cholesterol in various parts of the body. The history of the patient suggests that they may be suffering from familial hypercholesterolaemia. The deposition of cholesterol can be observed around the corneal arcus, around the eye itself (xanthelasma), and in tendons such as achilles, knuckles or triceps tendons (tendon xanthomas).

      While dietary and lifestyle modifications are recommended, they are usually not enough to manage the condition. High dose lifelong statin therapy is often necessary to control the levels of cholesterol in the blood. It is important to seek medical attention and follow the recommended treatment plan to prevent further complications associated with familial hypercholesterolaemia. The National Institute for Health and Care Excellence (NICE) recommends the use of statin therapy in conjunction with lifestyle modifications for the management of familial hypercholesterolaemia.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 20 - Where are the arterial baroreceptors situated? ...

    Correct

    • Where are the arterial baroreceptors situated?

      Your Answer: Carotid sinus and aortic arch

      Explanation:

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      58.3
      Seconds
  • Question 21 - A 70-year-old female is brought to the Emergency department with a severe crushing...

    Correct

    • A 70-year-old female is brought to the Emergency department with a severe crushing chest pain that was alleviated by sublingual GTN. The medical team diagnoses her with acute coronary syndrome (ACS). What test can distinguish between unstable angina and non-ST elevation MI (NSTEMI), both of which are types of ACS?

      Your Answer: Troponin level

      Explanation:

      Acute Coronary Syndrome

      Acute coronary syndrome is a term used to describe a range of conditions that affect the heart, including unstable angina, non-ST elevation MI (NSTEMI), and ST elevation MI (STEMI). The detection of raised cardiac enzymes is the definitive test in distinguishing between NSTEMI and unstable angina. If the enzymes are raised, it indicates myocardial tissue infarction, which is present in NSTEMI but not in unstable angina. Clinical history and exercise ECG testing are also important in distinguishing between these conditions. It is important to understand the differences between these conditions in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Cardiovascular System
      4.1
      Seconds
  • Question 22 - A 55-year-old male complains of central chest pain. During examination, a mitral regurgitation...

    Incorrect

    • A 55-year-old male complains of central chest pain. During examination, a mitral regurgitation murmur is detected. An ECG reveals ST elevation in leads V1 to V6, but no ST elevation is observed in leads II, III, and aVF. What is the diagnosis?

      Your Answer: Inferior myocardial infarct

      Correct Answer: Anterior myocardial infarct

      Explanation:

      An anterior MI is the most probable diagnosis, given the absence of ST changes in the inferior leads. Aortic dissection is therefore less probable.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      2.8
      Seconds
  • Question 23 - A 56-year-old man visits his GP complaining of congestive heart failure, angina, and...

    Correct

    • A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.

      What condition is most likely causing these symptoms?

      Your Answer: Aortic stenosis

      Explanation:

      Symptoms and Diagnosis of Heart Valve Disorders

      Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.

      Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      4.7
      Seconds
  • Question 24 - A 22-year-old male arrives at the emergency department complaining of palpitations and feeling...

    Incorrect

    • A 22-year-old male arrives at the emergency department complaining of palpitations and feeling lightheaded. The electrocardiogram reveals supraventricular tachycardia, and the registrar administers adenosine to try and correct the abnormal rhythm.

      What is the mechanism of action of adenosine?

      Your Answer: Alpha receptor antagonist

      Correct Answer: A1 receptor agonist

      Explanation:

      Adenosine is an agonist of the A1 receptor in the AV node, which inhibits adenylyl cyclase and reduces cAMP levels. This leads to hyperpolarisation by increasing potassium outflow, effectively preventing supraventricular tachycardia from continuing. It is important to note that adenosine is not an alpha receptor antagonist, beta-2 receptor agonist, or beta receptor antagonist.

      Adenosine is commonly used to stop supraventricular tachycardias. Its effects are boosted by dipyridamole, an antiplatelet agent, but blocked by theophyllines. However, asthmatics should avoid it due to the risk of bronchospasm. Adenosine works by causing a temporary heart block in the AV node. It activates the A1 receptor in the atrioventricular node, which inhibits adenylyl cyclase, reducing cAMP and causing hyperpolarization by increasing outward potassium flux. Adenosine has a very short half-life of about 8-10 seconds and should be infused through a large-caliber cannula.

      Adenosine can cause chest pain, bronchospasm, and transient flushing. It can also enhance conduction down accessory pathways, leading to an increased ventricular rate in conditions such as WPW syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      2.5
      Seconds
  • Question 25 - A 26-year-old man collapses during a game of cricket. He has previously experienced...

    Incorrect

    • A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?

      Your Answer: Autosomal recessive

      Correct Answer: Autosomal dominant

      Explanation:

      The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the ฮฒ-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      3.6
      Seconds
  • Question 26 - An 80-year-old man arrives at the emergency department complaining of chest pain, sweating,...

    Incorrect

    • An 80-year-old man arrives at the emergency department complaining of chest pain, sweating, and nausea. His ECG reveals ST elevation. Which phase of the cardiac action potential does this correspond to? The ST segment of the ECG represents a period of sluggish calcium influx in the cardiac action potential.

      Your Answer: Phase 1

      Correct Answer: Phase 2

      Explanation:

      The ST segment in the ECG is caused by the slow influx of calcium during phase 2 of the cardiac action potential. Understanding the cardiac action potential is important for interpreting the electrical activity of the heart as reflected in the ECG waveform. The QRS complex represents rapid depolarisation, the ST segment represents the plateau phase, and the T wave represents repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      310.3
      Seconds
  • Question 27 - As a doctor on the cardiology ward, I am currently treating a 50-year-old...

    Incorrect

    • As a doctor on the cardiology ward, I am currently treating a 50-year-old patient who was admitted due to syncope and dyspnoea. The patient has just returned from an echocardiography which revealed a pedunculated mass. What is the most probable primary tumor that this patient is suffering from?

      Your Answer: Rhabdomyoma

      Correct Answer: Myxoma

      Explanation:

      Atrial myxoma is the most frequently occurring primary cardiac tumor.

      Primary cardiac tumors are uncommon, and among them, myxomas are the most prevalent. Most of these tumors are benign and are found in the atria. Imaging typically reveals a pedunculated mass.

      The remaining options are also primary cardiac tumors.

      Atrial Myxoma: Overview and Features

      Atrial myxoma is a primary cardiac tumor that is commonly found in the left atrium, with 75% of cases occurring in this area. It is more prevalent in females and is often attached to the fossa ovalis. Symptoms of atrial myxoma include dyspnea, fatigue, weight loss, pyrexia of unknown origin, and clubbing. Emboli and atrial fibrillation may also occur. A mid-diastolic murmur, known as a tumor plop, may be present. Diagnosis is typically made through echocardiography, which shows a pedunculated heterogeneous mass attached to the fossa ovalis region of the interatrial septum.

    • This question is part of the following fields:

      • Cardiovascular System
      5.6
      Seconds
  • Question 28 - A 45-year-old patient presents to the emergency department with increasing dyspnea on exertion...

    Correct

    • A 45-year-old patient presents to the emergency department with increasing dyspnea on exertion and swelling in both legs. A recent outpatient echocardiogram revealed a left ventricular ejection fraction of 31%. During chest examination, an extra heart sound is detected just prior to the first.

      What is the cause of this additional heart sound?

      Your Answer: Atria contracting forcefully to overcome an abnormally stiff ventricle

      Explanation:

      The presence of S4, which sounds like a ‘gallop rhythm’, can be heard after S2 and in conjunction with a third heart sound. However, if the ventricles are contracting against a stiffened aorta, it would not produce a significant heart sound during this phase of the cardiac cycle. Any sound that may be heard in this scenario would occur between the first and second heart sounds during systole, and it would also cause a raised pulse pressure and be visible on chest X-ray as calcification. Delayed closure of the aortic valve could cause a split second heart sound, but it would appear around the time of S2, not before S1. On the other hand, retrograde flow of blood from the right ventricle into the right atrium, known as tricuspid regurgitation, would cause a systolic murmur instead of an additional isolated heart sound. This condition is often caused by infective endocarditis in intravenous drug users or a history of rheumatic fever.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      2
      Seconds
  • Question 29 - Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After...

    Correct

    • Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After a 3-month trial of improving diet and increasing exercise, her blood pressure is still elevated at 160/100 mmHg. Her doctor decides to start her on enalapril, an ACE inhibitor, to treat her hypertension.

      At what location in the body is enalapril activated to its pharmacologically active compound?

      Your Answer: Under phase 1 metabolism in the liver

      Explanation:

      ACE inhibitors are prodrugs that require activation through phase 1 metabolism in the liver, except for captopril and lisinopril which are administered as active drugs. The hepatic esterolysis process converts ACE inhibitors into their active metabolite, allowing them to function as subtype 1B prodrugs. It is important to note that ACE inhibitors are not activated at the site of therapeutic action, and belong to subtype 1A and 2C prodrugs that are activated intracellularly or extracellularly at the therapeutic site, respectively. Answer 3 is a distractor, as ACE inhibitors do not activate ACE in the lung, but rather inhibit its activity. Answer 5 is also incorrect, as most ACE inhibitors require activation through metabolism.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      4.4
      Seconds
  • Question 30 - A 28-year-old, gravida 2 para 1, presents to the emergency department with pelvic...

    Correct

    • A 28-year-old, gravida 2 para 1, presents to the emergency department with pelvic pain. She delivered a healthy baby at 37 weeks gestation 13 days ago.

      During the examination, it was found that she has right lower quadrant pain and her temperature is 37.8ยบ C. Further tests revealed a left gonadal (ovarian) vein thrombosis. The patient was informed about the risk of the thrombus lodging in the venous system from the left gonadal vein.

      What is the first structure that the thrombus will go through if lodged from the left gonadal vein?

      Your Answer: Left renal vein

      Explanation:

      The left gonadal veins empty into the left renal vein, meaning that any thrombus originating from the left gonadal veins would travel to the left renal vein. However, if the thrombus originated from the right gonadal vein, it would flow into the inferior vena cava (IVC) since the right gonadal vein directly drains into the IVC.

      The portal vein is typically formed by the merging of the superior mesenteric and splenic veins, and it also receives blood from the inferior mesenteric, gastric, and cystic veins.

      The superior vena cava collects venous drainage from the upper half of the body, specifically above the diaphragm.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      6.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (12/30) 40%
Passmed