00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which one of the following is not a characteristic of the distal convoluted...

    Incorrect

    • Which one of the following is not a characteristic of the distal convoluted tubule in the kidney?

      Your Answer: It is a risk of damage in a patient with compartment syndrome due to a tibial fracture

      Correct Answer: Its secretory function is most effective at low systolic blood pressures (typically less than 100 mmHg)

      Explanation:

      Compartment syndrome can lead to necrosis of the proximal convoluted tubule, which plays a crucial role in reabsorbing up to two thirds of filtered water. Acute tubular necrosis is more likely to occur when systolic blood pressure falls below the renal autoregulatory range, particularly if it is low. However, within this range, the absolute value of systolic BP has minimal impact.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      41.8
      Seconds
  • Question 2 - A 50-year-old man visits his doctor complaining of pain in his lower back....

    Incorrect

    • A 50-year-old man visits his doctor complaining of pain in his lower back. He reports seeing blood in his urine and feeling a lump in his left flank, causing him great concern. The doctor plans to perform an ultrasound.
      What is the probable diagnosis at this point?

      Your Answer: Urinary tract infection

      Correct Answer: Renal cell carcinoma

      Explanation:

      Common Kidney Conditions and Their Symptoms

      Haematuria, loin pain, and an abdominal mass are the three main symptoms associated with renal cell carcinoma. Patients may also experience weight loss and malaise. Diagnostic tests such as ultrasonography and excretion urography can reveal the presence of a solid lesion or space-occupying lesion. CT and MRI scans may be used to determine the stage of the tumour. Nephrectomy is the preferred treatment option, unless the patient’s second kidney is not functioning properly.

      Nephrotic syndrome is a kidney condition that causes excessive protein excretion. Patients typically experience swelling around the eyes and legs.

      Renal calculi, or kidney stones, can cause severe flank pain and haematuria. Muscle spasms occur as the body tries to remove the stone.

      Urinary tract infections are more common in women and present with symptoms such as frequent urination, painful urination, suprapubic pain, and haematuria.

      In summary, these common kidney conditions can cause a range of symptoms and require different diagnostic tests and treatment options. It is important to seek medical attention if any of these symptoms are present.

    • This question is part of the following fields:

      • Renal System
      42
      Seconds
  • Question 3 - A 26-year-old male presents to his general practitioner with polyuria. He complains that...

    Correct

    • A 26-year-old male presents to his general practitioner with polyuria. He complains that it has been affecting his social life, as he often has to go to the bathroom in the middle of social situations. The patient mentions that he notices this mostly when he drinks alcohol with his friends. He is otherwise feeling well. There is no significant past medical history and he is not on any regular medication. Clinical examinations are normal. A urine dipstick test shows no abnormalities. Blood results show no electrolyte abnormalities. The general practitioner explains that his symptoms are likely related to alcohol intake, as alcohol can cause polyuria.

      What is the most likely physiological explanation for this patient's polyuria?

      Your Answer: Suppressed antidiuretic hormone secretion

      Explanation:

      Polyuria in the patient is most likely caused by alcohol bingeing, which can suppress ADH secretion in the posterior pituitary gland. This leads to decreased water reabsorption in the kidneys and subsequent polyuria. Other potential causes such as ADH resistance from chronic lithium ingestion, diabetes insipidus, osmotic diuresis from hyperglycemia, and chronic kidney disease are less likely based on the patient’s symptoms and investigative findings.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      45.4
      Seconds
  • Question 4 - A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension...

    Correct

    • A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?

      Your Answer: Distal convoluted tubule and collecting duct of the nephron

      Explanation:

      Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.

      Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.

    • This question is part of the following fields:

      • Renal System
      39.6
      Seconds
  • Question 5 - A 35-year-old man comes to you with complaints of pedal oedema, frothy urine...

    Correct

    • A 35-year-old man comes to you with complaints of pedal oedema, frothy urine and decreased urine output. He has no significant medical history. You suspect that the patient's nephrotic syndrome may be caused by a common form of idiopathic glomerulonephritis that affects adults.

      What would be the most helpful initial test to confirm this particular diagnosis?

      Your Answer: Anti-phospholipase A2 antibodies

      Explanation:

      Idiopathic membranous glomerulonephritis is believed to be associated with anti-phospholipase A2 antibodies. This condition is a common cause of nephrotic syndrome in adults, and since the patient has no other relevant medical history, an idiopathic cause is likely. To confirm the diagnosis, measuring anti-phospholipase A2 levels is recommended.

      Testing for ASOT would suggest post-streptococcal glomerulonephritis (PSGN), which is more common in children and typically presents with an acute nephritic picture rather than nephrotic syndrome. Therefore, this is not the most likely diagnosis.

      While dyslipidaemia is commonly found in nephrotic syndrome, confirming it would not help confirm the suspected diagnosis of idiopathic membranous glomerulonephritis.

      Although acute kidney injury (AKI) can occur in individuals with nephrotic syndrome, assessing renal function is unlikely to help diagnose membranous glomerulonephritis.

      While assessing the protein content in a sample may be useful in diagnosing nephrotic syndrome, it is not specific to membranous glomerulonephritis.

      Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.

      Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.

      The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.

    • This question is part of the following fields:

      • Renal System
      41.3
      Seconds
  • Question 6 - A 67-year-old man is attending the urology clinic and receiving goserelin for his...

    Incorrect

    • A 67-year-old man is attending the urology clinic and receiving goserelin for his metastatic prostate cancer. Can you explain the drug's mechanism of action?

      Your Answer: Relaxation of prostatic smooth muscle

      Correct Answer: Overstimulation of GnRH receptors

      Explanation:

      GnRH agonists used in the treatment of prostate cancer can paradoxically lead to lower LH levels in the long term. This is because chronic use of these agonists can result in overstimulation of GnRH receptors, which in turn disrupts endogenous hormonal feedback systems. While initially stimulating the production of LH/FSH and subsequent androgen production, chronic use of GnRH agonists can cause negative feedback to suppress the release of gonadotropins, resulting in a significant decrease in serum testosterone levels. This mechanism can be thought of as switching on to switch off. It is important to note that inhibiting the 5 alpha-reductase enzyme and relaxing prostatic smooth muscle are not mechanisms of action for GnRH agonists, but rather for other medications used in the treatment of prostate conditions.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      22.2
      Seconds
  • Question 7 - A 56-year-old man presents to the outpatient cardiology clinic complaining of fatigue and...

    Incorrect

    • A 56-year-old man presents to the outpatient cardiology clinic complaining of fatigue and weight gain. He has been diagnosed with type II diabetes for 14 years and has been taking metformin to control his blood sugar levels. An echocardiogram reveals a globally dilated left ventricle with a reduced ejection fraction of approximately 30%, and his NT-proBNP level is 1256 (<125 pg/mL). The healthcare provider decides to initiate empagliflozin therapy due to its cardioprotective effects in patients with heart failure with reduced ejection fraction. What is the primary mechanism of action for this new medication?

      Your Answer: Collecting duct

      Correct Answer: Proximal convoluted tubule

      Explanation:

      Glucose reabsorption within the nephron is mainly concentrated in the proximal convoluted tubule.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      56.8
      Seconds
  • Question 8 - John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a...

    Incorrect

    • John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a burning sensation and interrupted flow of urine that have persisted for approximately 5 months. During a digital rectal examination, his GP detects an enlarged prostate without nodules and his PSA levels are moderately elevated. The diagnosis is BPH. Which zone of the prostate experiences enlargement in BPH?

      Your Answer: Fibromuscular zone

      Correct Answer: Transitional zone

      Explanation:

      The periurethral gland area of the prostate gland does not have a distinct functional or histological identity. It is composed of cells from various regions of the prostate that are linked to different medical conditions. This part of the prostate does not typically experience enlargement and lacks glandular elements. Instead, it consists solely of fibrous tissue and smooth muscle cells, as its name implies.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      31.3
      Seconds
  • Question 9 - What are the probable outcomes of the discharge of vasopressin from the pituitary...

    Incorrect

    • What are the probable outcomes of the discharge of vasopressin from the pituitary gland?

      Your Answer: Vasoconstriction of the afferent glomerular arteriole

      Correct Answer: Increased water permeability of the distal tubule cells of the kidney

      Explanation:

      Aquaporin channels are inserted into the apical membrane of the distal tubule and collecting ducts as a result of ADH (vasopressin).

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      30.9
      Seconds
  • Question 10 - A 54-year-old man visits the outpatient clinic complaining of feeling generally unwell with...

    Incorrect

    • A 54-year-old man visits the outpatient clinic complaining of feeling generally unwell with increased diarrhoea and vomiting for the past week. He has a medical history of hypertension and type 2 diabetes mellitus and is currently taking amlodipine, candesartan, doxazosin, metformin, gliclazide, and insulin.

      The following investigations were conducted:

      Results today 3 months ago Reference ranges
      Na+ 137 mmol/L 133 mmol/L (135 - 145)
      K+ 6.1 mmol/L 3.6 mmol/L (3.5 - 5.0)
      Urea 8.9 mmol/L 4.5 mmol/L (2.0 - 7.0)
      Creatinine 155 µmol/L 65 µmol/L (55 - 120)
      eGFR 35 mL/min/1.73m² 90 mL/min/1.73m² (> 60)

      Which medication should be discontinued?

      Your Answer: Insulin lantus

      Correct Answer: Candesartan

      Explanation:

      In cases of acute kidney injury, it is important to identify and treat the underlying cause while preventing further deterioration. However, certain medications must be discontinued, including angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, NSAIDs, and diuretics. Therefore, candesartan, an angiotensin receptor blocker, should be stopped in this patient. On the other hand, amlodipine, a calcium channel blocker, and doxazosin, an alpha antagonist, are safe to continue in patients with acute kidney injury.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      37.3
      Seconds
  • Question 11 - A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for...

    Incorrect

    • A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for several years. He complains of discomfort in the suprapubic region and upon cystoscopy, a mass lesion is discovered in his bladder. What is the probable diagnosis?

      Your Answer: Leiomyosarcoma

      Correct Answer: Squamous cell carcinoma

      Explanation:

      Schistosomiasis is more prevalent in Egypt than in the UK and can lead to repeated occurrences of haematuria. If individuals with this condition develop a bladder tumor, the most frequent type is SCC.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      31.6
      Seconds
  • Question 12 - Which one of the following decreases the production of renin? ...

    Correct

    • Which one of the following decreases the production of renin?

      Your Answer: Beta-blockers

      Explanation:

      Renin and its Factors

      Renin is a hormone that is produced by juxtaglomerular cells. Its main function is to convert angiotensinogen into angiotensin I. There are several factors that can stimulate or reduce the secretion of renin.

      Factors that stimulate renin secretion include hypotension, which can cause reduced renal perfusion, hyponatremia, sympathetic nerve stimulation, catecholamines, and erect posture. On the other hand, there are also factors that can reduce renin secretion, such as beta-blockers and NSAIDs.

      It is important to understand the factors that affect renin secretion as it plays a crucial role in regulating blood pressure and fluid balance in the body. By knowing these factors, healthcare professionals can better manage and treat conditions related to renin secretion.

    • This question is part of the following fields:

      • Renal System
      10.3
      Seconds
  • Question 13 - A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight...

    Correct

    • A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight loss, and visible haematuria. After ruling out a UTI, the GP refers them through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms malignant renal cancer. What is the probable histological type of their cancer?

      Your Answer: Clear cell carcinoma

      Explanation:

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      19.6
      Seconds
  • Question 14 - A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to...

    Incorrect

    • A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?

      Your Answer: glomerular capillary bed- afferent arteriole- peritubular capillaries and medullary vasa recta- efferent arteriole

      Correct Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta

      Explanation:

      The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.

      The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.

      If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      51.7
      Seconds
  • Question 15 - A 79-year-old woman visits her primary care physician for routine blood tests to...

    Incorrect

    • A 79-year-old woman visits her primary care physician for routine blood tests to monitor her declining kidney function. During her latest test, her serum potassium level was slightly above the normal range. The patient appeared to be in good health, and this has never been an issue before, so the physician orders a repeat blood test before taking any action. What is the most probable cause of an artificial increase in potassium levels (i.e., a serum potassium result that is higher than the actual value found in the patient)?

      Your Answer: Vomiting and diarrhoea after sample retrieval

      Correct Answer: Delayed analysis of the sample

      Explanation:

      Delayed analysis of the sample is the cause of pseudohyperkalaemia, which is a laboratory artefact. Potassium is mainly found inside cells, and if the sample is not processed promptly, potassium leaks out of the cells and into the serum, resulting in a higher reading than the actual level in the patient. This can be a significant issue in primary care. It is recommended to retrieve the FBC sample before the U&E sample to avoid exposing the latter to the potassium-based anticoagulant in FBC bottles, which can cause an artifactual result. Sunlight exposure is not a known cause of artifactual results. If a patient vomits or has diarrhoea after the sample is retrieved, the sample still reflects the serum potassium level at the time of retrieval and is not artefactual. Additionally, diarrhoea and vomiting can cause a decrease in potassium, not an increase as stated in the question.

      Understanding Pseudohyperkalaemia

      Pseudohyperkalaemia is a condition where there is an apparent increase in serum potassium levels due to the excessive leakage of potassium from cells during or after blood is drawn. This is a laboratory artefact and does not reflect the actual serum potassium concentration. Since most of the potassium is intracellular, any leakage from cells can significantly affect serum levels. The release of potassium occurs when large numbers of platelets aggregate and degranulate.

      There are several causes of pseudohyperkalaemia, including haemolysis during venipuncture, delay in processing the blood specimen, abnormally high numbers of platelets, leukocytes, or erythrocytes, and familial causes. To obtain an accurate result, measuring an arterial blood gas is recommended. For obtaining a lab sample, using a lithium heparin tube, requesting a slow spin on the lab centrifuge, and walking the sample to the lab should ensure an accurate result. Understanding pseudohyperkalaemia is important to avoid misdiagnosis and unnecessary treatment.

    • This question is part of the following fields:

      • Renal System
      33.5
      Seconds
  • Question 16 - A 33-year-old individual presents to the emergency department in an intoxicated state after...

    Correct

    • A 33-year-old individual presents to the emergency department in an intoxicated state after a night of drinking. Although there are no immediate medical concerns, the patient is visibly under the influence of alcohol, exhibiting unsteady gait, reduced social inhibition, and mild slurring of speech. Additionally, the patient is observed to be urinating frequently.

      What is the probable mechanism behind the increased frequency of urination in this patient?

      Your Answer: Suppression of antidiuretic hormone (ADH) release from the posterior pituitary gland

      Explanation:

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      35.5
      Seconds
  • Question 17 - What electrolyte imbalance is probable in a patient experiencing diarrhea and a palpable...

    Correct

    • What electrolyte imbalance is probable in a patient experiencing diarrhea and a palpable soft mass during digital rectal examination?

      Your Answer: Hypokalaemia

      Explanation:

      Rectal secretions from large villous adenomas of the rectum can cause hypokalaemia due to their high potassium content, which is a result of the marked secretory activity of the adenomas.

      Understanding Hypokalaemia and its Causes

      Hypokalaemia is a condition characterized by low levels of potassium in the blood. Potassium and hydrogen ions are competitors, and as potassium levels decrease, more hydrogen ions enter the cells. Hypokalaemia can occur with either alkalosis or acidosis. In cases of alkalosis, hypokalaemia may be caused by vomiting, thiazide and loop diuretics, Cushing’s syndrome, or Conn’s syndrome. On the other hand, hypokalaemia with acidosis may be caused by diarrhoea, renal tubular acidosis, acetazolamide, or partially treated diabetic ketoacidosis.

      It is important to note that magnesium deficiency may also cause hypokalaemia. In such cases, normalizing potassium levels may be difficult until the magnesium deficiency has been corrected. Understanding the causes of hypokalaemia can help in its diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      16.8
      Seconds
  • Question 18 - A 70-year-old male was admitted to the hospital due to delirium observed in...

    Incorrect

    • A 70-year-old male was admitted to the hospital due to delirium observed in the nursing home. Upon diagnosis, he was found to have a lower respiratory tract infection which progressed to sepsis. During his stay in the ICU, he was discovered to have severe hyponatremia. The medical team has prescribed tolvaptan along with other medications.

      What is the mechanism of action of tolvaptan?

      Your Answer: Vasopressin V3 receptor antagonist

      Correct Answer: Vasopressin V2 receptor antagonist

      Explanation:

      Tolvaptan is a drug that blocks the action of vasopressin at the V2 receptor, which reduces water absorption and increases aquaresis without sodium loss. Vasopressin is a hormone that regulates water balance in the body.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      24.4
      Seconds
  • Question 19 - A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride....

    Incorrect

    • A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride. He is informed that the drug works by inhibiting the conversion of testosterone to dihydrotestosterone, thereby preventing further enlargement of the prostate. What is the mechanism of action of finasteride?

      Your Answer: Alpha-1 agonist

      Correct Answer: 5-alpha reductase inhibitor

      Explanation:

      The enzyme 5-alpha-reductase is responsible for converting testosterone into dihydrotestosterone (DHT) in the testes and prostate. DHT is a more active form of testosterone. Finasteride is a medication that inhibits 5-alpha-reductase, preventing the conversion of testosterone to DHT. This can help prevent further growth of the prostate and is why finasteride is used clinically.

      Alpha-1 agonist is an incorrect answer as it refers to adrenergic receptors and does not affect the conversion of testosterone to DHT. These drugs are used for benign prostate hyperplasia to relax smooth muscles in the bladder, reducing urinary symptoms. Tamsulosin is an example of an alpha-1 agonist.

      Androgen antagonist is also incorrect as these drugs block the action of testosterone and DHT by preventing their attachment to receptors. They do not affect the conversion of testosterone to DHT.

      Gonadotrophin-releasing hormone modulators are also an incorrect answer. These drugs affect the hypothalamus and the production of gonadotrophs, such as luteinizing hormone. They do not affect the conversion of testosterone to DHT.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      21
      Seconds
  • Question 20 - A 73-year-old man comes to the clinic with complaints of increasing nocturia, a...

    Incorrect

    • A 73-year-old man comes to the clinic with complaints of increasing nocturia, a feeble urinary stream, and some weight loss in the past few months. Upon examination, an enlarged prostate with nodules is observed, and he is promptly referred for further testing, which reveals prostate cancer cells.

      During the local urology cancer multidisciplinary team meeting, his case is discussed, and the team recommends a course of bicalutamide. What is the mechanism of action of this medication?

      Your Answer: Gonadotrophin-releasing hormone antagonist

      Correct Answer: Androgen receptor blocker

      Explanation:

      Bicalutamide, a non-steroidal drug, is utilized in the treatment of prostate cancer as an androgen receptor blocker. It is often used in combination with other approaches such as hormonal treatment, radiotherapy, chemotherapy, and prostatectomy. Abiraterone, on the other hand, is an androgen synthesis blocker that inhibits enzymes required for production. It is typically used for hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after anti-androgen therapy has failed. Goserelin is a gonadotrophin-releasing hormone (GnRH) agonist that ultimately downregulates sex hormones. It is initially co-prescribed with an anti-androgen due to its potential to cause an initial flare in testosterone levels. More recently, GnRH antagonists like abarelix have been used to quickly suppress testosterone without the initial flare seen with agonists. Cyproterone acetate, which exhibits progestogenic activity and steroidal and antiandrogenic effects, is another drug used in prostate cancer management but is less commonly used due to the widespread use of non-steroidal drugs like bicalutamide.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      26.1
      Seconds
  • Question 21 - A 87-year-old woman, Gwen, has been admitted to the geriatric ward with a...

    Incorrect

    • A 87-year-old woman, Gwen, has been admitted to the geriatric ward with a suspected UTI.

      Gwen is disoriented, visibly dehydrated and overall in poor health. She has a medical history of hypertension and takes ramipril.

      The resident orders an ECG, which reveals tented T waves and wide QRS complexes. As a result, they prescribe calcium gluconate.

      What is the purpose of administering calcium gluconate in this patient's treatment?

      Your Answer: Increases calcium concentration in the blood to treat hypocalcaemia

      Correct Answer: Stabilises the myocardium to protect against hyperkalaemia

      Explanation:

      Calcium gluconate is not used to lower potassium levels, but rather to stabilize the myocardium and prevent life-threatening arrhythmias. In this patient with a UTI and likely AKI, hyperkalaemia is a common electrolyte imbalance that can disrupt the electrical gradient across the myocardial cells. Insulin and glucose are used to lower blood potassium levels by driving potassium into the cells. Calcium gluconate may be used to treat hypocalcaemia, but this is not a concern in this patient. Additionally, calcium gluconate does not affect the excretion of calcium from the kidneys. IV fluids would be used to manage the patient’s dehydration, but calcium gluconate is not used to increase fluid retention by the kidneys.

      Managing Hyperkalaemia: A Step-by-Step Guide

      Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.

      ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.

      The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.

      In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.

    • This question is part of the following fields:

      • Renal System
      34.8
      Seconds
  • Question 22 - You are asked to evaluate a 53-year-old man who has developed sudden right...

    Correct

    • You are asked to evaluate a 53-year-old man who has developed sudden right arm pain while in the renal ward.

      According to the patient, the pain started in his right arm within a few minutes while he was resting in bed. He denies any history of trauma. He was recently admitted due to significant edema throughout his body, including periorbital edema.

      Upon examination, his right arm appears pale, cool to the touch, has a capillary refill time of 6 seconds, and no palpable radial pulse. However, his brachial pulse is present.

      The patient is currently undergoing daily blood tests to monitor his renal function. On admission, his urine dipstick showed heavy proteinuria. A 24-hour urine collection was performed, and the results have just been reported:

      Protein 6.2g/L

      What is the probable cause of his right arm pain?

      Your Answer: Antithrombin III deficiency

      Explanation:

      When a patient with nephrotic syndrome experiences symptoms such as those presented in this scenario, the possibility of a vascular event should be considered. The acute onset of symptoms and underlying renal disease suggest the need to differentiate between arterial and venous events, such as arterial thromboembolism or dissection and venous thromboembolism.

      Nephrotic syndrome increases the risk of both venous and arterial thromboses due to the loss of coagulation factors and plasminogen, leading to a hypercoagulable state. In this case, the lack of a radial pulse and cool limb suggest arterial pathology, which is more strongly associated with the loss of antithrombin III than with renal loss of protein S.

      Risk factors such as Factor V Leiden deficiency, the omission of low molecular weight heparin, and immobility in hospital are not specifically relevant to this case.

      Possible Complications of Nephrotic Syndrome

      Nephrotic syndrome is a condition that affects the kidneys, causing them to leak protein into the urine. This can lead to a number of complications, including an increased risk of thromboembolism, which is related to the loss of antithrombin III and plasminogen in the urine. This can result in deep vein thrombosis, pulmonary embolism, and renal vein thrombosis, which can cause a sudden deterioration in renal function.

      Other complications of nephrotic syndrome include hyperlipidaemia, which can increase the risk of acute coronary syndrome, stroke, and other cardiovascular problems. Chronic kidney disease is also a possible complication, as is an increased risk of infection due to the loss of urinary immunoglobulin. Additionally, hypocalcaemia can occur due to the loss of vitamin D and binding protein in the urine.

      It is important for individuals with nephrotic syndrome to be aware of these potential complications and to work closely with their healthcare providers to manage their condition and prevent further complications from occurring. Regular monitoring and treatment can help to minimize the risk of these complications and improve overall health outcomes.

    • This question is part of the following fields:

      • Renal System
      6.5
      Seconds
  • Question 23 - A 58-year-old man visits his primary care physician with complaints of painful urination...

    Incorrect

    • A 58-year-old man visits his primary care physician with complaints of painful urination and difficulty in emptying his bladder. He has a history of urinary tract infection and atrial fibrillation. During the examination, the physician notes an enlarged and tender prostate. The patient's vital signs are as follows: blood pressure 125/85 mmHg, pulse rate 96 beats per minute, temperature 38.9 ºC, and respiratory rate 24 breaths per minute. Which of the following organisms is most likely responsible for his symptoms?

      Your Answer: Tuberculosis mycobacterium

      Correct Answer: E.coli

      Explanation:

      The predominant cause of acute bacterial prostatitis (ABP) is E.coli, according to available data. Pneumocystis jirovecii is an opportunistic pathogen that typically causes pneumonia in immunocompromised individuals, particularly those with HIV and a CD count below 200. Treatment for this infection involves co-trimoxazole. There is no evidence of ABP being caused by tuberculosis mycobacterium in the literature.

      Understanding Acute Bacterial Prostatitis

      Acute bacterial prostatitis is a condition that occurs when gram-negative bacteria enter the prostate gland through the urethra. The most common pathogen that causes this condition is Escherichia coli. Risk factors for acute bacterial prostatitis include recent urinary tract infection, urogenital instrumentation, intermittent bladder catheterisation, and recent prostate biopsy.

      Symptoms of acute bacterial prostatitis include pain in various areas such as the perineum, penis, rectum, or back. Obstructive voiding symptoms may also be present, along with fever and rigors. During a digital rectal examination, the prostate gland may feel tender and boggy.

      To manage acute bacterial prostatitis, a 14-day course of a quinolone is currently recommended by Clinical Knowledge Summaries. It is also important to consider screening for sexually transmitted infections. Understanding the symptoms and risk factors of acute bacterial prostatitis can help individuals seek prompt medical attention and receive appropriate treatment.

    • This question is part of the following fields:

      • Renal System
      6.1
      Seconds
  • Question 24 - A 50-year-old woman presents to her GP with a complaint of generalised puffiness....

    Incorrect

    • A 50-year-old woman presents to her GP with a complaint of generalised puffiness. She has been feeling lethargic and noticed swelling in her hands, feet, and face over the past few weeks. Additionally, she has been experiencing shortness of breath on exertion and cannot lie flat, frequently waking up at night gasping for air. She also reports tingling and loss of sensation in both feet, which has now extended to her knees. She has no regular medications and is otherwise healthy.

      Upon examination, the patient has decreased sensation over the distal lower limbs and hepatomegaly. Urine dipstick reveals protein +++ and urinalysis reveals hyperalbuminuria. Serology shows hypoalbuminaemia and hyperlipidaemia. An outpatient echocardiogram reveals both systolic and diagnostic heart failure, with a restrictive filling pattern. The Mantoux skin test was negative.

      What is the probable mechanism behind this patient's condition?

      Your Answer: Anti-neutrophil cytoplasmic antibody-induced inflammation

      Correct Answer: Deposition of light chain fragments

      Explanation:

      The deposition of light chain fragments in various tissues is the most common cause of amyloidosis (AL), which can present with symptoms such as nephrotic syndrome, heart failure, and peripheral neuropathy.

      Symptoms in the upper respiratory tract and kidneys are typically seen in granulomatosis with polyangiitis (GPA), which is caused by anti-neutrophil cytoplasmic antibody-induced inflammation. Therefore, this answer is not applicable.

      Tuberculosis is caused by Mycobacterium, but the absence of pulmonary features and negative Mantoux skin test make it unlikely in this case. Therefore, this answer is not applicable.

      Amyloidosis is a condition that can occur in different forms. The most common type is AL amyloidosis, which is caused by the accumulation of immunoglobulin light chain fragments. This can be due to underlying conditions such as myeloma, Waldenstrom’s, or MGUS. Symptoms of AL amyloidosis can include nephrotic syndrome, cardiac and neurological issues, macroglossia, and periorbital eccymoses.

      Another type of amyloidosis is AA amyloid, which is caused by the buildup of serum amyloid A protein, an acute phase reactant. This form of amyloidosis is often seen in patients with chronic infections or inflammation, such as TB, bronchiectasis, or rheumatoid arthritis. The most common symptom of AA amyloidosis is renal involvement.

      Beta-2 microglobulin amyloidosis is another form of the condition, which is caused by the accumulation of beta-2 microglobulin, a protein found in the major histocompatibility complex. This type of amyloidosis is often seen in patients who are on renal dialysis.

    • This question is part of the following fields:

      • Renal System
      8.5
      Seconds
  • Question 25 - A 38-year-old female visits her doctor complaining of tingling sensations around her mouth...

    Incorrect

    • A 38-year-old female visits her doctor complaining of tingling sensations around her mouth and frequent muscle cramps. During the blood pressure check, her wrist and fingers start to cramp and flex. Despite these symptoms, she appears to be in good health.

      What condition is the most probable diagnosis?

      Your Answer: Hyperkalaemia

      Correct Answer: Hypocalcaemia

      Explanation:

      Hypocalcaemia is characterized by perioral paraesthesia, cramps, tetany, and convulsions. The female in this scenario is displaying these symptoms, along with a positive Trousseau’s sign and potentially a positive Chvostek’s sign. Hypocalcaemia is commonly caused by hyperparathyroidism, vitamin D deficiency, or phosphate infusions.

      Hyperkalaemia is when there is an elevated level of potassium in the blood, which can be caused by chronic kidney disease, dehydration, and certain medications such as spironolactone. Symptoms may include muscle weakness, heart palpitations, and nausea and vomiting.

      Hypermagnesaemia is rare and can cause decreased respiratory rate, muscle weakness, and decreased reflexes. It may be caused by renal failure, excessive dietary intake, or increased cell destruction.

      Hypokalaemia is relatively common and can cause weakness, fatigue, and muscle cramps. It may be caused by diuretic use, low dietary intake, or vomiting.

      Hyponatraemia may also cause cramps, but typically presents with nausea and vomiting, fatigue, confusion, and in severe cases, seizures or coma. Causes may include syndrome of inappropriate ADH release (SIADH), excessive fluid intake, and certain medications such as diuretics, SSRIs, and antipsychotics.

      Hypocalcaemia: Symptoms and Signs

      Hypocalcaemia is a condition characterized by low levels of calcium in the blood. As calcium is essential for proper muscle and nerve function, many of the symptoms and signs of hypocalcaemia are related to neuromuscular excitability. The most common features of hypocalcaemia include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. In chronic cases, patients may experience depression and cataracts. An electrocardiogram (ECG) may show a prolonged QT interval.

      Two specific signs that are commonly used to diagnose hypocalcaemia are Trousseau’s sign and Chvostek’s sign. Trousseau’s sign is observed when the brachial artery is occluded by inflating the blood pressure cuff and maintaining pressure above systolic. This causes wrist flexion and fingers to be drawn together, which is seen in around 95% of patients with hypocalcaemia and around 1% of normocalcaemic people. Chvostek’s sign is observed when tapping over the parotid gland causes facial muscles to twitch. This sign is seen in around 70% of patients with hypocalcaemia and around 10% of normocalcaemic people. Overall, hypocalcaemia can cause a range of symptoms and signs that are related to neuromuscular excitability, and specific diagnostic signs can be used to confirm the diagnosis.

    • This question is part of the following fields:

      • Renal System
      13
      Seconds
  • Question 26 - A 25-year-old man presents to his GP with a complaint of blood in...

    Incorrect

    • A 25-year-old man presents to his GP with a complaint of blood in his urine. He reports that it began a day ago and is bright red in color. He denies any pain and has not observed any clots in his urine. The patient is generally healthy, but had a recent upper respiratory tract infection 2 days ago.

      Upon urine dipstick examination, +++ blood and + protein are detected. What histological finding would be expected on biopsy, given the likely diagnosis?

      Your Answer: Marked interstitial oedema and interstitial infiltrate in the connective tissue between renal tubules

      Correct Answer: Mesangial hypercellularity with positive immunofluorescence for IgA & C3

      Explanation:

      The histological examination of IgA nephropathy reveals an increase in mesangial cells, accompanied by positive immunofluorescence for IgA and C3.

      Understanding IgA Nephropathy

      IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.

      Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.

      Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.

      The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.

      Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.

    • This question is part of the following fields:

      • Renal System
      15.8
      Seconds
  • Question 27 - A middle-aged woman expresses concerns about her baby not receiving enough blood supply....

    Correct

    • A middle-aged woman expresses concerns about her baby not receiving enough blood supply. Her physician assures her that her blood volume will rise during pregnancy, resulting in a sufficient blood supply for her baby. What is the cause of this increased blood volume?

      Your Answer: Renin-angiotensin system

      Explanation:

      The renin-angiotensin system is responsible for increasing plasma volume by converting angiotensinogen to angiotensin 2, which causes vasoconstriction and fluid retention. While increased ADH could theoretically raise plasma volume, it typically maintains the hypothalamic plasma volume set-point and reduces micturition rate, which is not consistent with pregnancy. Conversely, decreased ADH could increase micturition and decrease plasma volume. It is important to note that decreased GFR is not a factor in increasing plasma volume during pregnancy, as it actually increases.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      20.5
      Seconds
  • Question 28 - You are working in a GP clinic. A 32-year-old woman has multiple sclerosis....

    Incorrect

    • You are working in a GP clinic. A 32-year-old woman has multiple sclerosis. After taking a history and examining her, you diagnose her with chronic urinary retention.

      What nerves are most likely affected by demyelination in this case?

      Your Answer: Hypogastric

      Correct Answer: Pelvic splanchnic

      Explanation:

      The pelvic splanchnic nerves provide parasympathetic innervation to the bladder. In cases of chronic urinary retention, damage to these nerves may be the cause. The greater splanchnic nerves supply the foregut of the gastrointestinal tract, while the lesser splanchnic nerves supply the midgut. Sympathetic innervation of the bladder comes from the hypogastric nerve plexuses, and the lumbar splanchnic nerves innervate the smooth muscles and glands of the pelvis.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      11.3
      Seconds
  • Question 29 - A 35-year-old woman, gravida 3 para 1, is scheduled for a caesarian-section. During...

    Incorrect

    • A 35-year-old woman, gravida 3 para 1, is scheduled for a caesarian-section. During the procedure, it is crucial to avoid damaging certain structures, such as the bladder and its vascular supply, to prevent complications. What is the female bladder's venous drainage structure?

      Your Answer: Vescicovaginal plexus

      Correct Answer: Vesicouterine venous plexus

      Explanation:

      The vesicouterine venous plexus is responsible for draining the bladder in females, while the vesicoprostatic venous plexus serves the same function in males by connecting the prostatic venous plexus and vesical plexuses. The pampiniform plexus is responsible for draining the ovaries in females. It is important to note that the terms vesicorectal and vesicovaginal plexuses are not accurate anatomical structures, but rather refer to fistulas that may form between the bladder and nearby structures.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      12.8
      Seconds
  • Question 30 - A 72-year-old man, with a past medical history of diabetes, hypertension and stable...

    Correct

    • A 72-year-old man, with a past medical history of diabetes, hypertension and stable angina visits his family physician for a routine check-up. He is currently taking metoprolol, daily aspirin and insulin glargine. He lives alone and is able to manage his daily activities. He used to work as a teacher and his wife passed away from a stroke 5 years ago. During the examination, his heart rate is 60 beats per minute, respiratory rate is 14 breaths per minute and blood pressure is 125/80 mmHg. What is the direct effect of the metoprolol medication on this patient?

      Your Answer: Decrease in renin secretion

      Explanation:

      During the patient’s regular follow-up for diabetes and hypertension management, it was noted that both conditions increase the risk of cardiovascular complications and other related complications such as kidney and eye problems. To manage hypertension, the patient was prescribed metoprolol, a beta-blocker that reduces blood pressure by decreasing heart rate and cardiac output. Additionally, metoprolol blocks beta-1 adrenergic receptors in the juxtaglomerular apparatus of the kidneys, leading to a decrease in renin secretion. Renin is responsible for converting angiotensinogen to angiotensin I, which is further converted to angiotensin II, a hormone that increases blood pressure through vasoconstriction and sodium retention. By blocking renin secretion, metoprolol causes a decrease in blood pressure. Other antihypertensive medications work through different mechanisms, such as calcium channel blockers that dilate arterioles, ACE inhibitors that decrease angiotensin II secretion, and beta-blockers that decrease renin secretion.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      10.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (10/30) 33%
Passmed