-
Question 1
Correct
-
A patient's ECG displays broad complex QRS complexes, indicating a possible ventricular origin issue or aberrant conduction. What is the typical resting membrane potential of ventricular contractile fibers in the heart?
Your Answer: -90mV
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?
Your Answer: Autosomal dominant
Explanation:The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed with heart failure. Afterload-induced increases can lead to systolic dysfunction in heart failure.
What factors worsen his condition by increasing afterload?Your Answer: Ventricular dilatation
Explanation:Ventricular dilation can increase afterload, which is the resistance the heart must overcome during contraction. Afterload is often measured as ventricular wall stress, which is influenced by ventricular pressure, radius, and wall thickness. As the ventricle dilates, the radius increases, leading to an increase in wall stress and afterload. This can eventually lead to heart failure if the heart is unable to compensate. Conversely, decreased systemic vascular resistance and hypotension can decrease afterload, while increased venous return can increase preload. Mitral valve stenosis, on the other hand, can decrease preload.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
Which one of the following statements relating to the posterior cerebral artery is false?
Your Answer: It is connected to the circle of Willis via the superior cerebellar artery
Explanation:The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.
These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?
Your Answer: L1
Explanation:The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.
The Superior Mesenteric Artery and its Branches
The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.
The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.
The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
An 80-year-old patient comes in for a routine follow-up appointment and reports a decline in exercise tolerance. They mention having difficulty with stairs and experiencing occasional central chest pain that radiates to their back, which is relieved by rest. The pain is not present at rest.
During the examination, you observe a regular, slow-rising pulse and record a blood pressure of 110/95mmHg. Upon auscultation of the precordium, you detect an ejection systolic murmur.
To further assess cardiac function and valves, an echocardiogram is scheduled. Based on the likely diagnosis, what additional exam findings are you most likely to discover?Your Answer: Fourth heart sound (S4)
Explanation:The patient’s symptoms and physical exam suggest the presence of aortic stenosis. This is indicated by the ejection systolic murmur, slow-rising pulse, and progressive heart failure symptoms. The fourth heart sound (S4) is also present, which occurs when the left atrium contracts forcefully to compensate for a stiff ventricle. In aortic stenosis, the left ventricle is hypertrophied due to the narrowed valve, leading to the S4 sound.
While hepatomegaly is more commonly associated with right heart valvular disease, it is not entirely ruled out in this case. However, the patient’s history is more consistent with aortic stenosis.
Malar flush, a pink flushed appearance across the cheeks, is typically seen in mitral stenosis due to hypercarbia causing arteriole vasodilation.
Pistol shot femoral pulses, a sound heard during systole when auscultating the femoral artery, is a finding associated with aortic regurgitation and not present in this case.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
As a medical student working in the emergency department, you come across a 75-year-old man with a medical history of hypertension, dyslipidaemia, and atrial fibrillation. He was brought in by ambulance after collapsing at home. During the examination, you notice that he is unable to raise his right arm and has reduced sensation on the right side of his body. The consultant suspects that the patient is having a stroke and orders an urgent CT head.
Upon reviewing the results, the consultant informs you that there is a significant area of ischaemia affecting the insula, somatosensory cortex, and part of the frontal cortex. Your task is to identify the artery that is most likely to be occluded by an infarct.Your Answer: Left middle cerebral artery
Explanation:The correct blood vessel supplying the frontal, temporal, and parietal lobes is the left middle cerebral artery. This is evident from the patient’s symptoms of right-sided loss of sensation and weakness, which are controlled by the contralateral somatosensory and motor cortex. The other options, such as the anterior spinal artery and the anterior cerebral arteries, are incorrect as they do not supply the brain or the specific areas affected in this patient.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?
Your Answer: Middle thyroid arteries
Correct Answer: Superior and inferior thyroid arteries
Explanation:The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?
Your Answer: Coagulative necrosis, eosinophils, contracted scar
Correct Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils
Explanation:In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.
From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.
Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.
During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.
What other symptom is this patient likely to encounter?Your Answer: Stridor
Correct Answer: Difficulty swallowing
Explanation:The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.
The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
Which one of the following statements relating to the pharmacology of warfarin is false?
Your Answer: The half life of warfarin is 40 hours
Correct Answer: Warfarin has a large volume of distribution
Explanation:To impair fibrin formation, warfarin impacts the carboxylation of glutamic acid residues in clotting factors 2, 7, 9, and 10. Factor 2 has the lengthiest half-life of around 60 hours, so it may take up to three days for warfarin to take full effect. Warfarin is protein-bound, resulting in a small distribution volume.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has noticed these veins for a couple of weeks now, and they appeared during her pregnancy. Lately, she has observed red-brown discoloration around the veins on the back of her calf. What could be the probable root cause of this?
Your Answer: Haemosiderin deposition
Explanation:The hyperpigmentation observed in patients with varicose eczema/venous ulcers is likely caused by haemosiderin deposition. This occurs when red blood cells burst due to venous stasis, leading to the release of haemoglobin which is stored as haemosiderin. The excess haemosiderin causes a local red-brown discolouration around areas of varicose veins.
Acanthosis nigricans is an unlikely cause as it is associated with metabolic disorders and not varicose veins. Atrophie blanche describes hypopigmentation seen in venous ulcers, while lipodermatosclerosis causes thickening of the skin in varicose veins without changing the skin color. Melanoma, a skin cancer that causes dark discolouration, is unlikely to be associated with varicose veins and is an unlikely explanation for the observed discolouration on the back of the calf.
Understanding Varicose Veins
Varicose veins are enlarged and twisted veins that occur when the valves in the veins become weak or damaged, causing blood to flow backward and pool in the veins. They are most commonly found in the legs and can be caused by various factors such as age, gender, pregnancy, obesity, and genetics. While many people seek treatment for cosmetic reasons, others may experience symptoms such as aching, throbbing, and itching. In severe cases, varicose veins can lead to skin changes, bleeding, superficial thrombophlebitis, and venous ulceration.
To diagnose varicose veins, a venous duplex ultrasound is typically performed to detect retrograde venous flow. Treatment options vary depending on the severity of the condition. Conservative treatments such as leg elevation, weight loss, regular exercise, and compression stockings may be recommended for mild cases. However, patients with significant or troublesome symptoms, skin changes, or a history of bleeding or ulcers may require referral to a specialist for further evaluation and treatment. Possible treatments include endothermal ablation, foam sclerotherapy, or surgery.
In summary, varicose veins are a common condition that can cause discomfort and cosmetic concerns. While many cases do not require intervention, it is important to seek medical attention if symptoms or complications arise. With proper diagnosis and treatment, patients can manage their condition and improve their quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Correct
-
Where is the site of action of bendroflumethiazide in elderly patients?
Your Answer: Proximal part of the distal convoluted tubules
Explanation:Thiazides and thiazide-like medications, such as indapamide, work by blocking the Na+-Cl− symporter at the start of the distal convoluted tubule, which inhibits the reabsorption of sodium.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?
Your Answer: T12
Explanation:The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
Ella, a 69-year-old female, arrives at the emergency department with abrupt tearing abdominal pain that radiates to her back.
Ella has a medical history of hypertension, hypercholesterolemia, and diabetes. Her body mass index is 31 kg/m². She smokes 10 cigarettes a day.
The emergency physician orders an ECG and MRI, which confirm the diagnosis of an aortic dissection.
Which layer or layers of the aorta are impacted?Your Answer: Tear in tunica media
Correct Answer: Tear in tunica intima
Explanation:An aortic dissection occurs when there is a tear in the innermost layer (tunica intima) of the aorta’s wall. This tear allows blood to flow into the space between the tunica intima and the middle layer (tunica media), causing pooling. The tear only affects the tunica intima layer and does not involve the outermost layer (tunica externa) or all three layers of the aortic wall.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?
Your Answer:
Correct Answer: Sinoatrial node
Explanation:The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.
Ivabradine: An Anti-Anginal Drug
Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.
However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.
Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 75-year-old man is scheduled for an arterial bypass surgery to treat foot ulceration and claudication. The distal arterial anastomosis will be formed using the anterior tibial artery. Which of the following structures is not in close proximity to it?
Your Answer:
Correct Answer: Tibialis posterior
Explanation:The anterior tibial artery is closely associated with the tibialis anterior muscle as it serves as one of the main arteries in the anterior compartment.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.
What is the mechanism of action of ticagrelor?Your Answer:
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
Which vessel is the first to branch from the external carotid artery?
Your Answer:
Correct Answer: Superior thyroid artery
Explanation:Here is a mnemonic to remember the order in which the branches of the external carotid artery originate: Some Attendings Like Freaking Out Potential Medical Students. The first branch is the superior thyroid artery, followed by the ascending pharyngeal, lingual, facial, occipital, post auricular, and finally the maxillary and superficial temporal arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.
Into which vessel does this vein directly empty?Your Answer:
Correct Answer: Popliteal vein
Explanation:The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.
Your Answer:
Correct Answer: Acute pericarditis
Explanation:Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.
Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.
A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.
A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.
A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 59-year-old man with a history of hypertension presents to the ED with sudden palpitations that started six hours ago. He denies chest pain, dizziness, or shortness of breath.
His vital signs are heart rate 163/min, blood pressure 155/92 mmHg, respiratory rate 17/min, oxygen saturations 98% on air, and temperature 36.2ºC. On examination, his pulse is irregularly irregular, and there is no evidence of pulmonary edema. His Glasgow Coma Scale is 15.
An ECG shows atrial fibrillation with a rapid ventricular response. Despite treatment with IV fluids, IV metoprolol, and IV digoxin, his heart rate remains elevated at 162 beats per minute.
As the onset of symptoms was less than 48 hours ago, the decision is made to attempt chemical cardioversion with amiodarone. Why is a loading dose necessary for amiodarone?Your Answer:
Correct Answer: Long half-life
Explanation:Amiodarone requires a prolonged loading regime to achieve stable therapeutic levels due to its highly lipophilic nature and wide absorption by tissue, which reduces its bioavailability in serum. While it is predominantly a class III anti-arrhythmic, it also has numerous effects similar to class Ia, II, and IV. Amiodarone is primarily eliminated through hepatic excretion and has a long half-life, meaning it is eliminated slowly and only requires a low maintenance dose to maintain appropriate therapeutic concentrations. The inhibition of cytochrome P450 by amiodarone is not the reason for administering a loading dose.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
What is the average stroke volume in a resting 75 Kg man?
Your Answer:
Correct Answer: 70ml
Explanation:The range of stroke volumes is between 55 and 100 milliliters.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
An 80-year-old man arrives at the emergency department with intense crushing chest pain. His ECG reveals ST-segment elevation in leads V1, V2, V3, and V4, and troponin levels are positive, indicating a provisional diagnosis of STEMI.
The following morning, nursing staff discovers that the patient has passed away.
Based on the timeline of his hospitalization, what is the probable cause of his death?Your Answer:
Correct Answer: Ventricular fibrillation (VF)
Explanation:The most likely cause of sudden death within the first 24 hours following a STEMI is ventricular fibrillation (VF). Histology findings during this time period include early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. Patients with these findings are at high risk of developing ventricular arrhythmia, heart failure, and cardiogenic shock. Acute mitral regurgitation, left ventricular free wall rupture, and pericardial effusion secondary to Dressler’s syndrome are less likely causes of sudden death in this time frame.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
You are caring for a woman who has heart failure with reduced ejection fraction due to a previous myocardial infarction.
Starling's Law of the Heart states that:Your Answer:
Correct Answer: As preload progressively increases, stroke volume increases gradually then decreases suddenly
Explanation:Starling’s Law of the Heart states that as preload increases, stroke volume also increases gradually, up to a certain point. However, beyond this point, stroke volume decreases due to overloading of the cardiac muscle fibers. Therefore, the higher the cardiac preload, the greater the stroke volume, but only up to a certain limit.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?
Your Answer:
Correct Answer: Left
Explanation:To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.
ECG Axis Deviation: Causes of Left and Right Deviation
Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.
Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.
On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.
It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 50-year-old man with a history of rate-controlled atrial fibrillation (AF) presents with chest pain, palpitations, and dizziness. The patient has a past medical history of a transient ischemic episode and is taking warfarin to prevent further ischemic episodes. He also has a history of gout, low back pain, depression, and polymyalgia rheumatica.
Upon immediate ECG, the patient is found to have an irregularly irregular rhythm consistent with fast AF. You decide to perform electrical cardioversion and prescribe a course of amiodarone to prevent recurrence.
What drug interaction should you be cautious of in this patient?Your Answer:
Correct Answer: Warfarin and amiodarone
Explanation:The metabolism of warfarin is reduced by amiodarone, which can increase the risk of bleeding. However, there are no known interactions between amiodarone and naproxen, paracetamol, codeine, or allopurinol. It should be noted that the patient in question is not diabetic and therefore should not be taking metformin.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.
What findings may be observed on the echocardiogram of this patient?Your Answer:
Correct Answer: Systolic anterior motion (SAM)
Explanation:The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
Each of the following increases the production of endothelin, except for which one?
Your Answer:
Correct Answer: Prostacyclin
Explanation:Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 67-year-old man with a stable angina history for two years visits his cardiologist for a regular check-up. During the review, the cardiologist observes that the patient's heart rate is low at 46 bpm. As a result, the cardiologist decides to replace his beta-blocker with a new anti-anginal drug called nicorandil.
What is the mode of action of the patient's new medication?Your Answer:
Correct Answer: Potassium channel activator through activation of guanylyl cyclase
Explanation:Nicorandil activates potassium channels, leading to vasodilation. This activation triggers guanylyl cyclase, which increases the production of cyclic GMP (cGMP) and activates protein kinase G (PKG). PKG phosphorylates and inhibits GTPase RhoA, reducing Rho-kinase activity and increasing myosin phosphatase activity. As a result, the smooth muscle becomes less sensitive to calcium, leading to dilation of the large coronary arteries and improved perfusion. Nicorandil does not significantly affect calcium or sodium channels. This mechanism helps alleviate anginal symptoms.
Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)