-
Question 1
Incorrect
-
A 45-year-old man presents to the emergency department with fever, productive cough, and shortness of breath. He has no medical history and takes no regular medications.
Upon examination, coarse crackles and bronchial breathing are heard at the right lung base.
Chest radiography reveals consolidation in the lower right zone.
Arterial blood gas results are as follows:
pH 7.36 (7.35-7.45)
pO2 7.2 kPa (11-13)
pCO2 4.1 kPa (4-6)
SaO2 87% (94-98)
Based on the likely diagnosis, what is the expected initial physiological response?Your Answer: Vasodilation of the pulmonary arteries
Correct Answer: Vasoconstriction of the pulmonary arteries
Explanation:When hypoxia is present, the pulmonary arteries undergo vasoconstriction, which is the appropriate response. The patient is exhibiting symptoms of pneumonia and type 1 respiratory failure, as evidenced by clinical and radiographic findings. Vasoconstriction of the small pulmonary arteries helps to redirect blood flow from poorly ventilated regions of the lung to those with better ventilation, resulting in improved gas exchange efficiency between the alveoli and blood.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
How many fissures can be found in the right lung?
At what age do these fissures typically develop?Your Answer:
Correct Answer: Two
Explanation:The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
A 27-year-old man is undergoing respiratory spirometry. He performs a maximal inhalation followed by a maximal exhalation. Which of the following measurements will most accurately depict this process?
Your Answer:
Correct Answer: Vital capacity
Explanation:The maximum amount of air that can be breathed in and out within one minute is known as maximum voluntary ventilation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.
Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?Your Answer:
Correct Answer: C3-C6
Explanation:The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 59-year-old man has been found to have cancer. He is experiencing a range of symptoms, some of which appear to be unrelated to the location or size of the tumor. This is due to the fact that cancerous tissue can acquire the ability to produce endocrine effects on other cells in the body. Can you provide an instance of this phenomenon?
Your Answer:
Correct Answer: Production of PTH
Explanation:Paraneoplastic syndrome is a set of symptoms that arise from the secretion of hormones and cytokines by cancer cells or the immune system’s response to the tumor.
Squamous cell lung cancer often produces PTHrP (parathyroid hormone-related protein), which leads to hypercalcemia in affected patients.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression. She has a history of hyperthyroidism that was controlled with carbimazole. However, she was deemed a suitable candidate for thyroidectomy after presenting to the emergency department with dyspnoea and stridor.
As a surgical resident assisting the ENT surgeon, you need to ligate the superior thyroid artery before removing the thyroid glands to prevent excessive bleeding. However, the superior laryngeal artery, a branch of the superior thyroid artery, is closely related to a structure that, if injured, can lead to loss of sensation in the laryngeal mucosa.
What is the correct identification of this structure?Your Answer:
Correct Answer: Internal laryngeal nerve
Explanation:The internal laryngeal nerve and the superior laryngeal artery are closely associated with each other. The superior laryngeal artery travels alongside the internal laryngeal branch of the superior laryngeal nerve, beneath the thyrohyoid muscle. It originates from the superior thyroid artery near its separation from the external carotid artery.
If the internal laryngeal nerve is damaged, it can result in a loss of sensation to the laryngeal mucosa. The nerve is situated beneath the mucous membrane of the piriform recess, making it vulnerable to injury from sharp objects like fish and chicken bones that may become stuck in the recess.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
An 87-year-old man with a history of interstitial lung disease is admitted with fever, productive cough, and difficulty breathing. His inflammatory markers are elevated, and a chest x-ray reveals focal patchy consolidation in the right lung. He requires oxygen supplementation as his oxygen saturation level is 87% on room air. What factor causes a decrease in haemoglobin's affinity for oxygen?
Your Answer:
Correct Answer: Increase in temperature
Explanation:What effect does pyrexia have on the oxygen dissociation curve?
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.
What could be the probable reason for this patient's clinical presentation?Your Answer:
Correct Answer: Diabetes mellitus
Explanation:Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.
It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Incorrect
-
A 50-year-old man suffers a closed head injury and experiences a decline in consciousness upon arrival at the hospital. To monitor his intracranial pressure, an ICP monitor is inserted. What is the normal range for intracranial pressure?
Your Answer:
Correct Answer: 7 - 15mm Hg
Explanation:The typical range for intracranial pressure is 7 to 15 mm Hg, with the brain able to tolerate increases up to 24 mm Hg before displaying noticeable clinical symptoms.
Understanding the Monro-Kelly Doctrine and Autoregulation in the CNS
The Monro-Kelly doctrine governs the pressure within the cranium by considering the skull as a closed box. The loss of cerebrospinal fluid (CSF) can accommodate increases in mass until a critical point is reached, usually at 100-120ml of CSF lost. Beyond this point, intracranial pressure (ICP) rises sharply, and pressure will eventually equate with mean arterial pressure (MAP), leading to neuronal death and herniation.
The central nervous system (CNS) has the ability to autoregulate its own blood supply through vasoconstriction and dilation of cerebral blood vessels. However, extreme blood pressure levels can exceed this capacity, increasing the risk of stroke. Additionally, metabolic factors such as hypercapnia can cause vasodilation, which is crucial in ventilating head-injured patients.
It is important to note that the brain can only metabolize glucose, and a decrease in glucose levels can lead to impaired consciousness. Understanding the Monro-Kelly doctrine and autoregulation in the CNS is crucial in managing intracranial pressure and preventing neurological damage.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double vision, shortness of breath, and rapid breathing. These symptoms typically occur in the evening or after physical activity.
What respiratory condition could be causing her symptoms?Your Answer:
Correct Answer: Restrictive lung disease
Explanation:The presence of myasthenia gravis can result in a restrictive pattern of lung disease due to weakened chest wall muscles, leading to incomplete expansion during inhalation.
Occupational lung disease, also known as pneumoconioses, is caused by inhaling specific types of dust particles in the workplace, resulting in a restrictive pattern of lung disease. However, symptoms such as drooping eyelids and double vision are typically not associated with this condition.
Pneumonia is an infection of the lung tissue that typically presents with symptoms such as coughing, chest pain, fever, and difficulty breathing.
Pulmonary embolism is an acute condition that presents with symptoms such as chest pain, shortness of breath, and coughing up blood.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?
Your Answer:
Correct Answer: Silent chest
Explanation:Identify the life-threatening features of an asthma attack.
Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.
A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.
It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 65-year-old man is having a coronary artery bypass surgery. Which structure would typically need to be divided during the median sternotomy procedure?
Your Answer:
Correct Answer: Interclavicular ligament
Explanation:During a median sternotomy, the interclavicular ligament is typically cut to allow access. However, it is important to avoid intentionally cutting the pleural reflections, as this can lead to the accumulation of fluid in the pleural cavity and require the insertion of a chest drain. The pectoralis major muscles may also be encountered, but if the incision is made in the midline, they should not need to be formally divided. It is crucial to be mindful of the proximity of the brachiocephalic vein and avoid injuring it, as this can result in significant bleeding.
Sternotomy Procedure
A sternotomy is a surgical procedure that involves making an incision in the sternum to access the heart and great vessels. The most common type of sternotomy is a median sternotomy, which involves making a midline incision from the interclavicular fossa to the xiphoid process. The fat and subcutaneous tissues are then divided to the level of the sternum, and the periosteum may be gently mobilized off the midline. However, it is important to avoid vigorous periosteal stripping. A bone saw is used to divide the bone itself, and bleeding from the bony edges of the cut sternum is stopped using roller ball diathermy or bone wax.
Posteriorly, the reflections of the parietal pleura should be identified and avoided, unless surgery to the lung is planned. The fibrous pericardium is then incised, and the heart is brought into view. It is important to avoid the left brachiocephalic vein, which is an important posterior relation at the superior aspect of the sternotomy incision. More inferiorly, the thymic remnants may be identified. At the inferior aspect of the incision, the abdominal cavity may be entered, although this is seldom troublesome.
Overall, a sternotomy is a complex surgical procedure that requires careful attention to detail and a thorough understanding of the anatomy of the chest and heart. By following the proper techniques and precautions, surgeons can safely access the heart and great vessels to perform a variety of life-saving procedures.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
A 20-year-old male arrives at the emergency department with a sudden worsening of his asthma symptoms. He is experiencing difficulty in speaking and breathing, with cyanosis of the lips and a respiratory rate of 33 breaths per minute. He reports feeling lightheaded. Although his airways are open, his chest sounds are faint upon auscultation. The patient is administered oxygen, nebulized salbutamol, and intravenous aminophylline.
What is the mechanism of action of aminophylline?Your Answer:
Correct Answer: Binds to adenosine receptors and blocks adenosine-mediated bronchoconstriction
Explanation:Aminophylline works by binding to adenosine receptors and preventing adenosine-induced bronchoconstriction. This mode of action is different from antihistamines like loratadine, which is an incorrect option. Theophylline, a shorter acting form of aminophylline, competitively inhibits type III and type IV phosphodiesterase enzymes responsible for breaking down cyclic AMP in smooth muscle cells, leading to possible bronchodilation. Additionally, theophylline binds to the adenosine A2B receptor and blocks adenosine-mediated bronchoconstriction. In inflammatory conditions, theophylline activates histone deacetylase, which prevents the transcription of inflammatory genes that require histone acetylation for transcription to begin. Therefore, the last three options are incorrect. (Source: Drugbank)
Aminophylline infusions are utilized to manage acute asthma and COPD. In patients who have not received xanthines (theophylline or aminophylline) before, a loading dose of 5 mg/kg is administered through a slow intravenous injection lasting at least 20 minutes. For the maintenance infusion, 1g of aminophylline is mixed with 1 litre of normal saline to create a solution of 1 mg/ml. The recommended dose is 500-700 mcg/kg/hour, or 300 mcg/kg/hour for elderly patients. It is important to monitor plasma theophylline concentrations.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She has been experiencing increased breathlessness, particularly at night. Her medical history includes long-standing COPD, heart failure, and previous breast cancer that was treated with a mastectomy and radiotherapy. She used to smoke 20 cigarettes a day for 22 years but has since quit.
During the examination, her respiratory rate is 23/min, oxygen saturation is 93%, blood pressure is 124/98mmHg, and temperature is 37.2ºC. A gas transfer test is performed, and her transfer factor is found to be low.
What is the most likely diagnosis?Your Answer:
Correct Answer: Pulmonary oedema
Explanation:TLCO, also known as transfer factor, is a measurement of how quickly gas can move from a person’s lungs into their bloodstream. To test TLCO, a patient inhales a mixture of carbon monoxide and a tracer gas, holds their breath for 10 seconds, and then exhales forcefully. The exhaled gas is analyzed to determine how much tracer gas was absorbed during the 10-second period.
A high TLCO value is associated with conditions such as asthma, pulmonary hemorrhage, left-to-right cardiac shunts, polycythemia, hyperkinetic states, male gender, and exercise. Conversely, most other conditions result in a low TLCO value, including pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary edema, emphysema, and anemia.
Understanding Transfer Factor in Lung Function Testing
The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.
KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder & hip joint pain. He has raised erythematous lesions on both legs. His blood tests reveal elevated calcium levels and serum ACE levels. A chest x-ray shows bilateral hilar lymphadenopathy.
What is the probable diagnosis?Your Answer:
Correct Answer: Sarcoidosis
Explanation:If a patient presents with raised serum ACE levels, sarcoidosis should be considered as a possible diagnosis. The combination of erythema nodosum and bilateral hilar lymphadenopathy on a chest x-ray is pathognomonic of sarcoidosis. Lung cancer is unlikely in a young patient without a significant smoking history, and tuberculosis would require recent foreign travel to a TB endemic country. Multiple myeloma would not cause the same symptoms as sarcoidosis. Exposure to organic material would not be a likely cause of raised serum ACE levels.
Understanding Sarcoidosis: A Multisystem Disorder
Sarcoidosis is a condition that affects multiple systems in the body and is characterized by the presence of non-caseating granulomas. The exact cause of this disorder is unknown, but it is more commonly seen in young adults and individuals of African descent.
The symptoms of sarcoidosis can vary depending on the severity of the condition. Acute symptoms may include erythema nodosum, bilateral hilar lymphadenopathy, swinging fever, and polyarthralgia. On the other hand, insidious symptoms may include dyspnea, non-productive cough, malaise, and weight loss. Additionally, some individuals may develop skin symptoms such as lupus pernio, while others may experience hypercalcemia due to increased conversion of vitamin D to its active form.
Sarcoidosis is also associated with several syndromes, including Lofgren’s syndrome, Mikulicz syndrome, and Heerfordt’s syndrome. Lofgren’s syndrome is an acute form of the disease that typically presents with bilateral hilar lymphadenopathy, erythema nodosum, fever, and polyarthralgia. Mikulicz syndrome is characterized by enlargement of the parotid and lacrimal glands due to sarcoidosis, tuberculosis, or lymphoma. Finally, Heerfordt’s syndrome, also known as uveoparotid fever, presents with parotid enlargement, fever, and uveitis secondary to sarcoidosis.
In conclusion, sarcoidosis is a complex disorder that can affect multiple systems in the body. While the exact cause is unknown, early diagnosis and treatment can help manage symptoms and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Incorrect
-
A 24-year-old female arrives at the emergency department in a state of panic following a recent breakup with her partner. She complains of chest tightness and dizziness, fearing that she may be experiencing a heart attack. Upon examination, her vital signs are stable except for a respiratory rate of 34 breaths per minute. What compensatory mechanism is expected in response to the change in her oxyhaemoglobin dissociation curve, and what is the underlying cause?
Your Answer:
Correct Answer: Left shift, respiratory alkalosis
Explanation:The patient’s oxygen dissociation curve has shifted to the left, indicating respiratory alkalosis. This is likely due to the patient experiencing a panic attack and hyperventilating, leading to a decrease in carbon dioxide levels and an increase in the affinity of haemoglobin for oxygen. Respiratory acidosis, hypercapnia, and a right shift of the curve are not appropriate explanations for this patient’s condition.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
What is the accurate embryonic source of the stapes?
Your Answer:
Correct Answer: Second pharyngeal arch
Explanation:The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?
Your Answer:
Correct Answer: Absent vas deferens
Explanation:Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Incorrect
-
A 38-year-old man has been admitted to the ICU through the ED with reduced consciousness and cyanosis. Despite an oxygen saturation of 94% in the ED, both peripheral and central cyanosis were present. Arterial blood gas monitoring revealed significant hypoxia, but no evidence of methaemoglobin. The suspected diagnosis is carbon monoxide poisoning, and the patient is intubated and ventilated to prevent further leftward shift of the oxygen dissociation curve. What factors can cause this shift in the oxygen dissociation curve?
Your Answer:
Correct Answer: Hypocapnia
Explanation:The oxygen dissociation curve can be shifted to the left by low pCO2, which increases haemoglobin’s affinity for oxygen and makes it less likely to release oxygen to the tissues. In contrast, acidosis, hypercapnia, and hyperthermia cause a right shift of the curve, making it easier for oxygen to be released to the tissues. Raised levels of 2,3-diphosphoglycerate also shift the curve to the right by inhibiting oxygen binding to haemoglobin.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A 49-year-old man experiences blunt force trauma to the head and subsequently experiences respiratory distress, leading to hypercapnia. What is the most probable consequence of this condition?
Your Answer:
Correct Answer: Cerebral vasodilation
Explanation:Cerebral vasodilation is a common result of hypercapnia, which can be problematic for patients with cranial trauma due to the potential increase in intracranial pressure.
Understanding the Monro-Kelly Doctrine and Autoregulation in the CNS
The Monro-Kelly doctrine governs the pressure within the cranium by considering the skull as a closed box. The loss of cerebrospinal fluid (CSF) can accommodate increases in mass until a critical point is reached, usually at 100-120ml of CSF lost. Beyond this point, intracranial pressure (ICP) rises sharply, and pressure will eventually equate with mean arterial pressure (MAP), leading to neuronal death and herniation.
The central nervous system (CNS) has the ability to autoregulate its own blood supply through vasoconstriction and dilation of cerebral blood vessels. However, extreme blood pressure levels can exceed this capacity, increasing the risk of stroke. Additionally, metabolic factors such as hypercapnia can cause vasodilation, which is crucial in ventilating head-injured patients.
It is important to note that the brain can only metabolize glucose, and a decrease in glucose levels can lead to impaired consciousness. Understanding the Monro-Kelly doctrine and autoregulation in the CNS is crucial in managing intracranial pressure and preventing neurological damage.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Incorrect
-
You are clerking a 45-year-old patient on the neurosurgery ward who is scheduled to undergo a pituitary tumour removal surgery. During your conversation, the patient inquires about the procedure. As you are aware, the neurosurgeon gains access to the pituitary gland through the patient's nasal cavity, specifically through one of the paranasal sinuses. Can you identify which of the paranasal sinuses is situated on the roof of the posterior nasal cavity, below the pituitary gland?
Your Answer:
Correct Answer: Sphenoid sinus
Explanation:Paranasal Air Sinuses and Carotid Sinus
The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.
On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.
Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
What is the embryonic origin of the pulmonary artery?
Your Answer:
Correct Answer: Sixth pharyngeal arch
Explanation:The right pulmonary artery originates from the proximal portion of the sixth pharyngeal arch on the right side, while the distal portion of the same arch gives rise to the left pulmonary artery and the ductus arteriosus.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor measures 4 centimeters in its largest dimension and is not invading any surrounding structures. However, there are metastases in the ipsilateral hilar lymph nodes, and no distant metastases have been found. What is the TNM score for this patient, considering the primary tumor (T), regional lymph nodes (N), and distant metastases (M)?
Your Answer:
Correct Answer: T2 N1 M0
Explanation:It is crucial to have knowledge about the TNM system for staging lung cancer. The absence of distant metastases eliminates one of the options immediately (as M must be 0).
The size and invasion of the tumor are significant factors:
– T1 is less than 3 cm
– T2 is between 3 cm and 7 cm
– T3 is more than 7 cm and/or involves invasion of the chest wall, parietal pleura, diaphragm, phrenic nerve, mediastinal pleura, or parietal pericardium
– T4 can be any size but involves invasion of other structuresTo differentiate between N1 and N2, remember that N1 involves ipsilateral hilar or peribronchial lymph nodes, while N2 involves ipsilateral mediastinal and/or subcarinal lymph nodes.
Small Cell Lung Cancer: Characteristics and Management
Small cell lung cancer is a type of lung cancer that usually develops in the central part of the lungs and arises from APUD cells. This type of cancer is often associated with the secretion of hormones such as ADH and ACTH, which can cause hyponatremia and Cushing’s syndrome, respectively. In addition, ACTH secretion can lead to bilateral adrenal hyperplasia and hypokalemic alkalosis due to high levels of cortisol. Patients with small cell lung cancer may also experience Lambert-Eaton syndrome, which is characterized by antibodies to voltage-gated calcium channels causing a myasthenic-like syndrome.
Management of small cell lung cancer depends on the stage of the disease. Patients with very early stage disease may be considered for surgery, while those with limited disease typically receive a combination of chemotherapy and radiotherapy. Patients with more extensive disease are offered palliative chemotherapy. Unfortunately, most patients with small cell lung cancer are diagnosed with metastatic disease, making treatment more challenging.
Overall, small cell lung cancer is a complex disease that requires careful management and monitoring. Early detection and treatment can improve outcomes, but more research is needed to better understand the underlying mechanisms of this type of cancer.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Incorrect
-
A 67-year-old man is admitted to the acute stroke unit following a haemorrhagic stroke. Three days after admission he complains of pain and swelling in the left calf. A Doppler ultrasound shows large DVT with extension into the upper leg. Given his recent stroke, anticoagulation is contraindicated, however, there is a significant risk of him developing a pulmonary embolus. The decision is made to insert an inferior vena cava (IVC) filter. The registrar inserting the filter is fairly junior, he plans to insert this just above the renal veins, however, asks the consultant if there are any landmarks he can use to guide him. The consultant advises him if he reaches the diaphragm he has gone too far!
At which vertebral level would the diaphragm be encountered when inserting an IVC filter?Your Answer:
Correct Answer: T8
Explanation:The point at which the inferior vena cava passes through the diaphragm is being asked in this question. The correct answer is T8, which is where the IVC crosses the diaphragm through the caval opening. The IVC is formed by the joining of the left and right common iliac veins at around L5.
In patients who are at high risk of pulmonary embolus and for whom anticoagulation is not effective or contraindicated, an IVC filter can be used. This filter is usually inserted above the renal veins, but it can be placed at any level, including the superior vena cava, if necessary.
The other options provided in the question, T6, T10, and T11, are not associated with any significant structures. The oesophagus passes through the diaphragm with the vagal trunk at T10.
Structures Perforating the Diaphragm
The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.
To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Incorrect
-
A 75-year-old man presents with a 2-month history of progressive shortness of breath and a recent episode of coughing up blood in the morning. He has also experienced significant weight loss of over 12 lbs and loss of appetite. Upon physical examination, conjunctival pallor is noted. The patient has a 30 pack year history of smoking. A chest x-ray reveals a mediastinal mass and ipsilateral elevation of the right diaphragm. What structure is being compressed by the mediastinal mass to explain these findings?
Your Answer:
Correct Answer: Phrenic nerve
Explanation:Lung cancer can cause the hemidiaphragm on the same side to rise due to pressure on the phrenic nerve. Haemoptysis is a common symptom of lung cancer, along with significant weight loss and a history of smoking. A chest x-ray can confirm the presence of a mediastinal mass, which is likely to be lung cancer.
A rapidly expanding lung mass can cause compression of surrounding structures, leading to complications. For example, an apical tumor can compress the brachial plexus, causing sensory symptoms in the arms or Erb’s or Klumpke’s palsies. Compression of the cervical sympathetic chain can cause Horner’s syndrome, which includes meiosis, anhidrosis, ptosis, and enophthalmos.
A mediastinal mass can also compress the recurrent laryngeal nerve as it winds around the aortic arch, resulting in hoarseness of voice or aphonia. Superior vena caval syndrome is a medical emergency that can cause swelling of the face, neck, upper chest, and arms, as well as the development of collaterals on the chest wall. Malignancy is the most common cause, but non-malignant causes can include an aortic aneurysm, fibrosing mediastinitis, or iatrogenic factors.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Incorrect
-
A 29-year-old cyclist is brought to the emergency department by air ambulance following a car collision. She was intubated at the scene and currently has a Glasgow Coma Score of 8. Where is the control and regulation of the respiratory centers located?
Your Answer:
Correct Answer: Brainstem
Explanation:The brainstem houses the respiratory centres, which are responsible for regulating various aspects of breathing. These centres are located in the upper pons, lower pons and medulla oblongata.
The thalamus plays a role in sensory, motor and cognitive functions, and its axons connect with the cerebral cortex. The cerebellum coordinates voluntary movements and helps maintain balance and posture. The parietal lobe processes sensory information, including discrimination and body orientation. The primary visual cortex is located in the occipital lobe.
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Incorrect
-
A 67-year-old woman presents to the clinic with a gradual onset of dyspnea on exertion over the past 6 months. She has a medical history of severe COPD and is currently receiving long-term oxygen therapy. During the examination, you observe pitting edema up to the mid-thighs, an elevated JVP with a prominent V wave, a precordial heave, and a loud P2. What is the most probable mechanism involved in this diagnosis?
Your Answer:
Correct Answer: Pulmonary arteries vasoconstriction due to hypoxia
Explanation:Hypoxia causes vasoconstriction of pulmonary arteries, leading to a diagnosis of right heart failure secondary to hypoxic lung disease, also known as cor pulmonale.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
Which one of the following muscles is supplied by the external laryngeal nerve?
Your Answer:
Correct Answer: Cricothyroid
Explanation:Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A 29-year-old man comes to your clinic with a complaint of ear pain that has been bothering him for the past 2 days. He reports no hearing loss or discharge and feels generally healthy. During the physical examination, you observe that he has no fever. When you palpate the tragus of the affected ear, he experiences pain. Upon otoscopy, you notice that the external auditory canal is red. The tympanic membrane is not bulging, and there is no visible fluid level. Which bone can you see pressing against the tympanic membrane?
Your Answer:
Correct Answer: Malleus
Explanation:The ossicle that is in contact with the tympanic membrane is called the malleus. The middle ear contains three bones known as ossicles, which are arranged from lateral to medial. The malleus is the most lateral ossicle and its handle and lateral process attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus articulates with the incus. The incus is located between the other two ossicles and articulates with both. The body of the incus articulates with the malleus, while the long limb of the bone articulates with the stapes. The Latin word for ‘hammer’ is used to describe the malleus, while the Latin word for ‘anvil’ is used to describe the incus.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
Which of the following physiological changes does not take place after a tracheostomy?
Your Answer:
Correct Answer: Work of breathing is increased.
Explanation:HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)