00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - An 80-year-old man is brought to the emergency department by his daughter. She...

    Incorrect

    • An 80-year-old man is brought to the emergency department by his daughter. She found him on the floor and noticed slow and shallow breathing. He has a past medical history of asthma and hypertension.

      His arterial blood sample is sent for blood gas analysis. The results return within minutes and show the following:

      PaCO2 High
      PaO2 Low
      pH 7.27

      Which one of the following medications could be causing these arterial blood gas results?

      Your Answer: Salbutamol

      Correct Answer: Opioids

      Explanation:

      Opioid overdose can cause respiratory acidosis due to the resulting respiratory depression. This can lead to an increase in pCO2 and a decrease in pO2, which is similar to type 2 respiratory failure. As a result, ABG may show respiratory acidosis due to the accumulation of CO2.

      It is important to note that paracetamol does not typically cause respiratory depression.

      To manage opioid-induced respiratory depression, naloxone is commonly used. This medication acts as a partial opioid receptor antagonist and counteracts the effects of opioids.

      Doxapram, on the other hand, is a respiratory stimulant and is not used in the treatment of respiratory depression caused by opioids.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      43.2
      Seconds
  • Question 2 - An individual who has been a lifelong smoker and is 68 years old...

    Incorrect

    • An individual who has been a lifelong smoker and is 68 years old arrives at the Emergency Department with a heart attack. During the explanation of his condition, a doctor mentions that the arteries supplying his heart have been narrowed and damaged. What substance is increased on endothelial cells after damage or oxidative stress, leading to the recruitment of monocytes to the vessel wall?

      Your Answer: Low-density lipoprotein

      Correct Answer: Vascular cell adhesion molecule-1

      Explanation:

      VCAM-1 is a protein expressed on endothelial cells in response to pro-atherosclerotic conditions. It binds to lymphocytes, monocytes, and eosinophils, causing adhesion to the endothelium. Its expression is upregulated by cytokines and is critical in the development of atherosclerosis.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      219.1
      Seconds
  • Question 3 - During a soccer match, a young player is tackled and suffers a twisting...

    Correct

    • During a soccer match, a young player is tackled and suffers a twisting injury to their knee. They are diagnosed with a soft tissue knee injury. What is the name of the structure that originates from the medial surface of the lateral femoral condyle and inserts onto the anterior intercondylar area of the tibial plateau?

      Your Answer: Anterior cruciate ligament

      Explanation:

      To recall the attachments of the ACL, one can imagine placing their hand in their pocket and moving from the superolateral to inferomedial direction. Conversely, for the PCL, the movement would be from inferolateral to superomedial.

      The ACL originates from the medial surface of the lateral condyle, while the PCL originates from the lateral surface of the medial condyle.

      Located in the medial compartment of the knee, beneath the medial condyle of the femur, is the medial meniscus.

      The knee joint is the largest and most complex synovial joint in the body, consisting of two condylar joints between the femur and tibia and a sellar joint between the patella and femur. The degree of congruence between the tibiofemoral articular surfaces is improved by the presence of the menisci, which compensate for the incongruence of the femoral and tibial condyles. The knee joint is divided into two compartments: the tibiofemoral and patellofemoral compartments. The fibrous capsule of the knee joint is a composite structure with contributions from adjacent tendons, and it contains several bursae and ligaments that provide stability to the joint. The knee joint is supplied by the femoral, tibial, and common peroneal divisions of the sciatic nerve and by a branch from the obturator nerve, while its blood supply comes from the genicular branches of the femoral artery, popliteal, and anterior tibial arteries.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      40.4
      Seconds
  • Question 4 - A 65-year-old man who is a heavy smoker complains of dyspepsia. Upon testing,...

    Correct

    • A 65-year-old man who is a heavy smoker complains of dyspepsia. Upon testing, he is diagnosed with helicobacter pylori infection. Later, he experiences an episode of haematemesis and faints. Which blood vessel is most likely responsible for this?

      Your Answer: Gastroduodenal artery

      Explanation:

      It is probable that he has a duodenal ulcer located at the back. Such ulcers can penetrate the gastroduodenal artery and result in significant bleeding. While gastric ulcers can also invade vessels, they are not typically associated with major bleeding of this type.

      The Gastroduodenal Artery: Supply and Path

      The gastroduodenal artery is responsible for supplying blood to the pylorus, proximal part of the duodenum, and indirectly to the pancreatic head through the anterior and posterior superior pancreaticoduodenal arteries. It commonly arises from the common hepatic artery of the coeliac trunk and terminates by bifurcating into the right gastroepiploic artery and the superior pancreaticoduodenal artery.

      To better understand the relationship of the gastroduodenal artery to the first part of the duodenum, the stomach is reflected superiorly in an image sourced from Wikipedia. This artery plays a crucial role in providing oxygenated blood to the digestive system, ensuring proper functioning and health.

    • This question is part of the following fields:

      • Gastrointestinal System
      18.3
      Seconds
  • Question 5 - A 35-year-old woman presents to the Emergency Department with progressive weakness of her...

    Correct

    • A 35-year-old woman presents to the Emergency Department with progressive weakness of her lower limbs. Her symptoms started three days previously when she noticed her legs felt heavy when rising from a seated position. This weakness has progressed to the point now where she is unable to stand unassisted and has now started to affect some of the muscles of her abdominal wall and lower back. She is otherwise well, apart from suffering a diarrhoeal illness 12 days previously. Neurological examination of the lower limbs identifies generalised weakness, reduced tone and absent reflexes; sensory examination is unremarkable.

      Which of the following organisms is most likely to have caused this patient's diarrhoeal symptoms?

      Your Answer: Campylobacter jejuni

      Explanation:

      The correct answer for the trigger of Guillain-Barre syndrome is Campylobacter jejuni. The patient’s symptoms of ascending muscle weakness without sensory signs and absent reflexes and reduced tone suggest a lower motor neuron lesion, which is likely due to GBS. GBS is an autoimmune-mediated demyelinating disease of the peripheral nervous system that is often triggered by an infection, with Campylobacter jejuni being the classic trigger. None of the other options are associated with GBS. Bacillus cereus can cause food poisoning from rice, resulting in vomiting and diarrhoea. Escherichia coli is common among travellers and can cause watery stools and abdominal cramps. Shigella can cause bloody diarrhoea with vomiting and abdominal pain.

      Understanding Guillain-Barre Syndrome and Miller Fisher Syndrome

      Guillain-Barre syndrome is a condition that affects the peripheral nervous system and is often triggered by an infection, particularly Campylobacter jejuni. The immune system attacks the myelin sheath that surrounds nerve fibers, leading to demyelination. This results in symptoms such as muscle weakness, tingling sensations, and paralysis.

      The pathogenesis of Guillain-Barre syndrome involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. Studies have shown a correlation between the presence of anti-ganglioside antibodies, particularly anti-GM1 antibodies, and the clinical features of the syndrome. In fact, anti-GM1 antibodies are present in 25% of patients with Guillain-Barre syndrome.

      Miller Fisher syndrome is a variant of Guillain-Barre syndrome that is characterized by ophthalmoplegia, areflexia, and ataxia. This syndrome typically presents as a descending paralysis, unlike other forms of Guillain-Barre syndrome that present as an ascending paralysis. The eye muscles are usually affected first in Miller Fisher syndrome. Studies have shown that anti-GQ1b antibodies are present in 90% of cases of Miller Fisher syndrome.

      In summary, Guillain-Barre syndrome and Miller Fisher syndrome are conditions that affect the peripheral nervous system and are often triggered by infections. The pathogenesis of these syndromes involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. While Guillain-Barre syndrome is characterized by muscle weakness and paralysis, Miller Fisher syndrome is characterized by ophthalmoplegia, areflexia, and ataxia.

    • This question is part of the following fields:

      • Neurological System
      37
      Seconds
  • Question 6 - Which of the following Human Immunodeficiency Virus (HIV) enzymes does the pathogen use...

    Correct

    • Which of the following Human Immunodeficiency Virus (HIV) enzymes does the pathogen use prior to integrating its genome into the DNA of the host cell?

      Your Answer: Reverse transcriptase

      Explanation:

      The HIV virus relies on reverse transcriptase for its pathogenesis. This enzyme is responsible for converting viral RNA into DNA, which is then integrated into the host cell’s genetic material.

      Understanding the HIV Virus: Structure, Cell Entry, and Replication

      HIV is a retrovirus that belongs to the lentivirus genus. It has two variants, HIV-1 and HIV-2, with the latter being more common in West Africa. The virus has a spherical shape with two copies of single-stranded RNA enclosed by a capsid of the viral protein p24. The capsid is surrounded by a matrix composed of viral protein p17, and the envelope proteins gp120 and gp41. The pol gene encodes for viral enzymes reverse transcriptase, integrase, and HIV protease.

      HIV can infect CD4 T cells, macrophages, and dendritic cells. The virus enters the cell by binding to CD4 and CXCR4 on T cells and CD4 and CCR5 on macrophages. Mutations in CCR5 can give immunity to HIV.

      After entering a cell, the enzyme reverse transcriptase creates dsDNA from the RNA for integration into the host cell’s genome. This process allows the virus to replicate and produce new virions, which can infect other cells and continue the cycle of infection. Understanding the structure, cell entry, and replication of the HIV virus is crucial in developing effective treatments and prevention strategies.

    • This question is part of the following fields:

      • General Principles
      6.9
      Seconds
  • Question 7 - Which ions are responsible for the plateau phase of the cardiac action potential...

    Correct

    • Which ions are responsible for the plateau phase of the cardiac action potential in stage 2?

      Your Answer: Calcium in, potassium out

      Explanation:

      The Phases of Cardiac Action Potential

      The cardiac action potential is a complex process that involves four distinct phases. The first phase, known as phase 0 or the depolarisation phase, is initiated by the opening of fast Na channels, which allows an influx of Na ions into the cell. This influx of positively charged ions creates a positive current that rapidly depolarises the cell membrane.

      In the second phase, known as phase 1 or initial repolarisation, the fast Na channels close, causing a brief period of repolarisation. This is followed by phase 2 or the plateau phase, which is characterised by the opening of K and Ca channels. The influx of calcium ions into the cell is balanced by the efflux of potassium ions, resulting in a net neutral current.

      The final phase, phase 3 or repolarisation, is initiated by the closure of Ca channels, which causes a net negative current as K+ ions continue to leave the cell. It is important to note that the inward movement of sodium alone would not result in a plateau, as it represents a positive current. The normal action of the sodium-potassium pump involves the inward movement of potassium combined with the outward movement of sodium.

    • This question is part of the following fields:

      • Cardiovascular System
      16.2
      Seconds
  • Question 8 - A 45-year-old woman with a family history of multiple endocrine neoplasia type 1...

    Correct

    • A 45-year-old woman with a family history of multiple endocrine neoplasia type 1 visits her GP complaining of upper abdominal pain. She reports experiencing worsening dyspepsia after meals for the past three months. Upon further questioning, she discloses that she has had loose stools and unintentionally lost approximately one stone in weight during this time.

      What is the typical physiological function of the hormone that is accountable for this patient's symptoms?

      Your Answer: Increase H+ secretion by gastric parietal cells

      Explanation:

      The correct answer is that gastrin increases the secretion of H+ by gastric parietal cells. This patient is suffering from Zollinger-Ellison syndrome due to a gastrinoma, which results in excessive production of gastrin and an overly acidic environment in the duodenum. This leads to symptoms such as dyspepsia, diarrhoea, and weight loss, as the intestinal pH is no longer optimal for digestion. The patient’s family history of multiple endocrine neoplasia type 1 is also a clue, as this condition is associated with around 25% of gastrinomas. Gastrin’s normal function is to increase the secretion of H+ by gastric parietal cells to aid in digestion.

      The options delay gastric emptying, increase H+ secretion by gastric chief cells, and stimulate pancreatic bicarbonate secretion are incorrect. Gastrin’s role is to promote digestion and increase gastric emptying, not delay it. Gastric chief cells secrete pepsinogen and gastric lipase to aid in protein and fat digestion, not H+. Finally, pancreatic bicarbonate secretion is stimulated by secretin, which is produced by duodenal S-cells, not gastrin.

      Overview of Gastrointestinal Hormones

      Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.

      One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.

      Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.

      Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.

    • This question is part of the following fields:

      • Gastrointestinal System
      54.6
      Seconds
  • Question 9 - A 23-year-old female medical student arrives at the emergency department with haematemesis, a...

    Incorrect

    • A 23-year-old female medical student arrives at the emergency department with haematemesis, a fever and weakness. She had been experiencing headache, myalgia and nausea for the past 3 days, but felt slightly better yesterday before feeling much worse today. She had recently travelled to Uganda for her elective and did not receive any of the recommended travel vaccines. Upon examination, she is bradycardic, weak all over and visibly jaundiced.

      What is the most appropriate description of the infection that this student is currently suffering from?

      Your Answer: Zoonotic protozoal infection

      Correct Answer: Zoonotic viral infection

      Explanation:

      The probable cause of the patient’s illness is yellow fever, which is a zoonotic infection. The symptoms, temporary relief, and recent travel to a region with a high incidence of yellow fever all point to this diagnosis. Yellow fever is a viral disease that is transmitted by the Aedes mosquito and can infect other primates as well. It is recommended that individuals traveling to yellow fever-prone areas receive the yellow fever vaccine before departure.

      Yellow Fever: A Viral Hemorrhagic Fever Spread by Mosquitos

      Yellow fever is a type of viral hemorrhagic fever that is spread by Aedes mosquitos. The incubation period for this zoonotic infection is typically between 2 to 14 days. While some individuals may experience only mild flu-like symptoms lasting less than a week, the classic description of yellow fever involves a sudden onset of high fever, rigors, nausea, and vomiting. Bradycardia, or a slow heart rate, may also develop. After a brief remission, jaundice, haematemesis, and oliguria may occur. In severe cases, individuals may experience jaundice and haematemesis. Councilman bodies, which are inclusion bodies, may also be seen in the hepatocytes.

    • This question is part of the following fields:

      • General Principles
      37
      Seconds
  • Question 10 - What is the primary reason for children to have a small stature? ...

    Correct

    • What is the primary reason for children to have a small stature?

      Your Answer: Idiopathic short stature

      Explanation:

      Causes and Management of Short Stature in Children

      Short stature is a common condition in children that can be caused by various factors. The most common cause is idiopathic short stature, which includes familial short stature and constitutional delay of growth and puberty. Other causes include chronic diseases, nutritional problems, growth hormone deficiency, hypothyroidism, and chromosomal abnormalities. However, most children with short stature will attain a satisfactory adult height, and reassurance with a period of watchful waiting is often a reasonable approach.

      Further investigation is necessary when the child’s height deficit is less than the first percentile for age, the growth rate is abnormally slow, the predicted height differs significantly from midparental height, or the body proportions are abnormal. Growth hormone therapy is available for the treatment of children with growth hormone deficiency and idiopathic short stature, but the benefits are relatively modest and the treatment is expensive and inconvenient. Current evidence suggests that the use of growth hormone is safe in children, although there are reports of increased risks of intracranial hypertension, glucose intolerance, or a slipped capital femoral epiphysis.

    • This question is part of the following fields:

      • Paediatrics
      10.1
      Seconds
  • Question 11 - A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She...

    Correct

    • A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She has left-sided heart failure and her recent echo revealed a reduced ejection fraction. She complains of nocturnal breathlessness and needing multiple pillows to sleep.

      She is prescribed bisoprolol and another medication with the explanation that it will help decrease mortality.

      What is the probable medication she has been prescribed?

      Your Answer: Ramipril

      Explanation:

      In the treatment of heart failure, medications are used to improve the heart’s ability to pump blood effectively. Beta blockers, such as bisoprolol, are commonly prescribed to slow the heart rate and improve filling. The first-line drugs for heart failure are beta blockers and ACE inhibitors. Therefore, the patient in question will be prescribed an ACE inhibitor, such as ramipril, as the second drug. Ramipril works by reducing venous resistance, making it easier for the heart to pump blood out, and lowering arterial pressures, which increases the heart’s pre-load.

      Carvedilol is not the correct choice for this patient. Although it can be used in heart failure, the patient is already taking a beta blocker, and adding another drug from the same class could cause symptomatic bradycardia or hypotension.

      Digoxin is not the appropriate choice either. While it can be used in heart failure, it should only be initiated by a specialist.

      Sacubitril-valsartan is also not the right choice for this patient. Although it is becoming more commonly used in heart failure patients, it should only be prescribed by a specialist after first and second-line treatment options have been exhausted.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      29.4
      Seconds
  • Question 12 - A surgeon is scheduled to perform a laparotomy for a perforated duodenal ulcer...

    Incorrect

    • A surgeon is scheduled to perform a laparotomy for a perforated duodenal ulcer on a pediatric patient. An upper midline incision will be made. Which structure is most likely to be divided by the incision?

      Your Answer: Rectus abdominis muscle

      Correct Answer: Linea alba

      Explanation:

      When performing upper midline abdominal incisions, the linea alba is typically divided. It is not common to divide muscles in this approach, as it does not typically enhance access and encountering them is not a routine occurrence.

      Abdominal Incisions: Types and Techniques

      Abdominal incisions are surgical procedures that involve making an opening in the abdominal wall to access the organs inside. The most common approach is the midline incision, which involves dividing the linea alba, transversalis fascia, extraperitoneal fat, and peritoneum. Another type is the paramedian incision, which is parallel to the midline and involves dividing the anterior rectus sheath, rectus, posterior rectus sheath, transversalis fascia, extraperitoneal fat, and peritoneum. The battle incision is similar to the paramedian but involves displacing the rectus medially.

      Other types of abdominal incisions include Kocher’s incision under the right subcostal margin for cholecystectomy, Lanz incision in the right iliac fossa for appendicectomy, gridiron oblique incision centered over McBurney’s point for appendicectomy, Pfannenstiel’s transverse supra-pubic incision primarily used to access pelvic organs, McEvedy’s groin incision for emergency repair of a strangulated femoral hernia, and Rutherford Morrison extraperitoneal approach to the left or right lower quadrants for access to iliac vessels and renal transplantation.

      Each type of incision has its own advantages and disadvantages, and the choice of incision depends on the specific surgical procedure and the surgeon’s preference. Proper closure of the incision is crucial to prevent complications such as infection and hernia formation. Overall, abdominal incisions are important techniques in surgical practice that allow for safe and effective access to the abdominal organs.

    • This question is part of the following fields:

      • Gastrointestinal System
      22
      Seconds
  • Question 13 - A 78-year-old man presents to his GP after experiencing dizziness while gardening. During...

    Incorrect

    • A 78-year-old man presents to his GP after experiencing dizziness while gardening. During the examination, the GP detects an ejection systolic murmur that radiates to the carotids. What could be the possible cause of this finding?

      Your Answer: Aortic regurgitation

      Correct Answer: Aortic stenosis

      Explanation:

      Valvular Murmurs: Systolic and Diastolic Classification

      Valvular murmurs are a common topic in medical examinations, and it is crucial to have a good of them. The easiest way to approach valvular murmurs is to classify them into systolic and diastolic.

      If the arterial valves, such as the aortic or pulmonary valves, are narrowed, ventricular contraction will cause turbulent flow, resulting in a systolic murmur. On the other hand, if these valves are incompetent or regurgitant, blood will leak back through the valve during diastole, causing a diastolic murmur.

      Similarly, the atrioventricular valves, such as the mitral and tricuspid valves, can be thought of in the same way. If these valves are regurgitant, blood will be forced back into the atria during systole, causing a systolic murmur. If they are narrowed, blood will not flow freely from the atria to the ventricles during diastole, causing a diastolic murmur.

      Therefore, a systolic murmur can indicate aortic/pulmonary stenosis or mitral/tricuspid regurgitation. Clinical signs and symptoms, such as presyncope and radiation to the carotids, can help identify aortic stenosis.

    • This question is part of the following fields:

      • Clinical Sciences
      20.4
      Seconds
  • Question 14 - Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome? ...

    Incorrect

    • Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome?

      Your Answer: They consist of beta tubulin subunits only

      Correct Answer: They are arranged in a 9+2 formation in cilia

      Explanation:

      Microtubules and Chediak-Higashi Syndrome

      Microtubules are structures composed of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to vary the length. They are found in flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. Chemotherapy agents, such as taxanes, target microtubules in breast cancer treatment.

      Chediak-Higashi syndrome is an autosomal recessive condition that presents with albinism, bleeding and bruising due to platelet dysfunction, and susceptibility to infections due to abnormal neutrophils. The LYST gene is responsible for lysosomal trafficking proteins and is affected in this syndrome.

      In summary, microtubules are important structures in various cellular processes and are targeted in cancer treatment. Chediak-Higashi syndrome is a rare genetic disorder that affects lysosomal trafficking proteins and presents with various symptoms.

    • This question is part of the following fields:

      • Basic Sciences
      15.4
      Seconds
  • Question 15 - A 42-year-old male visits the HIV clinic for regular blood tests to monitor...

    Correct

    • A 42-year-old male visits the HIV clinic for regular blood tests to monitor his condition. Which type of cells are utilized to assess the advancement of HIV in affected individuals?

      Your Answer: CD4 T cells

      Explanation:

      The progression of human immunodeficiency virus (HIV) is measured using CD4 count. If the CD4 count is below 200cells/mm3, it indicates a diagnosis of acquired immune deficiency syndrome (AIDS). Although the number of NK cells decreases in HIV, it is not used to determine disease progression. HIV often activates polyclonal B cells. The reticulocyte count may decrease in HIV, but it is not linked to disease progression.

      Immunological Changes in Progressive HIV

      In progressive HIV, there are several immunological changes that occur. These changes include a reduction in CD4 count, an increase in B2-microglobulin, a decrease in IL-2 production, polyclonal B-cell activation, a decrease in NK cell function, and reduced delayed hypersensitivity responses. These changes can lead to a weakened immune system and an increased susceptibility to infections. It is important for individuals with HIV to receive proper medical care and treatment to manage these immunological changes and maintain their overall health.

    • This question is part of the following fields:

      • General Principles
      9.4
      Seconds
  • Question 16 - A 35-year-old man visits the physician's clinic with indications of premature ejaculation, which...

    Correct

    • A 35-year-old man visits the physician's clinic with indications of premature ejaculation, which is believed to be caused by hypersensitivity of the reflex arc.

      Can you identify the correct description of this reflex arc?

      Your Answer: Ejaculation is controlled by the sympathetic nervous system at the L1 level

      Explanation:

      The correct statement is that ejaculation is controlled by the sympathetic nervous system at the L1 level. This is because the preganglionic sympathetic cell bodies responsible for ejaculation are located in the central autonomic region of the T12-L1 segments. It is important to note that erection is controlled by the parasympathetic nervous system at the S2-S4 level, and not by the pudendal nerve, which is responsible for supplying sensation to the penis.

      Anatomy of the Sympathetic Nervous System

      The sympathetic nervous system is responsible for the fight or flight response in the body. The preganglionic efferent neurons of this system are located in the lateral horn of the grey matter of the spinal cord in the thoraco-lumbar regions. These neurons leave the spinal cord at levels T1-L2 and pass to the sympathetic chain. The sympathetic chain lies on the vertebral column and runs from the base of the skull to the coccyx. It is connected to every spinal nerve through lateral branches, which then pass to structures that receive sympathetic innervation at the periphery.

      The sympathetic ganglia are also an important part of this system. The superior cervical ganglion lies anterior to C2 and C3, while the middle cervical ganglion (if present) is located at C6. The stellate ganglion is found anterior to the transverse process of C7 and lies posterior to the subclavian artery, vertebral artery, and cervical pleura. The thoracic ganglia are segmentally arranged, and there are usually four lumbar ganglia.

      Interruption of the head and neck supply of the sympathetic nerves can result in an ipsilateral Horners syndrome. For the treatment of hyperhidrosis, sympathetic denervation can be achieved by removing the second and third thoracic ganglia with their rami. However, removal of T1 is not performed as it can cause a Horners syndrome. In patients with vascular disease of the lower limbs, a lumbar sympathetomy may be performed either radiologically or surgically. The ganglia of L2 and below are disrupted, but if L1 is removed, ejaculation may be compromised, and little additional benefit is conferred as the preganglionic fibres do not arise below L2.

    • This question is part of the following fields:

      • Neurological System
      40.3
      Seconds
  • Question 17 - A 35-year-old woman arrives at the emergency department complaining of worsening bone pain...

    Incorrect

    • A 35-year-old woman arrives at the emergency department complaining of worsening bone pain in her left hip over the past few days. She mentions feeling ill and feverish, but attributes it to a recent cold. The patient is a known IV drug user and has not traveled recently.

      During the examination, the left hip appears red and tender, and multiple track marks are visible.

      Which organism is most likely responsible for her symptoms?

      Your Answer: Streptococcus pneumoniae

      Correct Answer: Staphylococcus aureus

      Explanation:

      Osteomyelitis is most commonly caused by Staphylococcus aureus in both adults and children. IV drug use is a known risk factor for this condition as it can introduce microorganisms directly into the bloodstream. While Escherichia coli can also cause osteomyelitis, it is more prevalent in children than adults. Mycobacterium tuberculosis can also lead to osteomyelitis, but it is less common than Staphylococcus aureus. Bone introduction typically occurs via the circulatory system from pulmonary tuberculosis. However, antitubercular therapy has reduced the incidence of tuberculosis, making bone introduction less likely than with Staphylococcus aureus, which is part of the normal skin flora. Salmonella enterica is the most common cause of osteomyelitis in individuals with sickle cell disease. As the patient is not known to have sickle cell, Staphylococcus aureus remains the most probable cause.

      Understanding Osteomyelitis: Types, Causes, and Treatment

      Osteomyelitis is a bone infection that can be classified into two types: haematogenous and non-haematogenous. Haematogenous osteomyelitis is caused by bacteria in the bloodstream and is usually monomicrobial. It is more common in children and can be caused by risk factors such as sickle cell anaemia, intravenous drug use, immunosuppression, and infective endocarditis. On the other hand, non-haematogenous osteomyelitis is caused by the spread of infection from adjacent soft tissues or direct injury to the bone. It is often polymicrobial and more common in adults, with risk factors such as diabetic foot ulcers, pressure sores, diabetes mellitus, and peripheral arterial disease.

      Staphylococcus aureus is the most common cause of osteomyelitis, except in patients with sickle-cell anaemia where Salmonella species are more prevalent. To diagnose osteomyelitis, MRI is the imaging modality of choice, with a sensitivity of 90-100%.

      The treatment for osteomyelitis involves a course of antibiotics for six weeks. Flucloxacillin is the preferred antibiotic, but clindamycin can be used for patients who are allergic to penicillin. Understanding the types, causes, and treatment of osteomyelitis is crucial in managing this bone infection.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      50.6
      Seconds
  • Question 18 - You are designing a research project looking at the sensitivities and specificities of...

    Correct

    • You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically, you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      Your Answer: Calcium ions

      Explanation:

      Troponin C plays a crucial role in muscle contraction by binding to calcium ions. However, it is not a specific marker for myocardial necrosis as it can be released due to damage in both skeletal and cardiac muscles.

      On the other hand, Troponin T and Troponin I are specific markers for myocardial necrosis. Troponin T binds to tropomyosin to form a complex, while Troponin I holds the troponin-tropomyosin complex in place by binding to actin.

      Muscle contraction occurs when actin slides along myosin, which is the thick component of muscle fibers. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      35
      Seconds
  • Question 19 - A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to...

    Incorrect

    • A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?

      Your Answer: Parafollicular C cells

      Correct Answer: Chromaffin cells

      Explanation:

      The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.

      Calcitonin is secreted by the parafollicular C cells in the thyroid gland.

      The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      30.2
      Seconds
  • Question 20 - A 32-year-old woman arrives at the emergency department complaining of headaches and abdominal...

    Incorrect

    • A 32-year-old woman arrives at the emergency department complaining of headaches and abdominal pain for the past few weeks. She reports experiencing blurry vision over the last week. During the examination, the physician observes a slight yellow tint to the patient's sclera and an elevated blood pressure of 170/106 mmHg. The urine dip reveals proteinuria. Based on these symptoms, what is the probable diagnosis?

      Your Answer: Biliary tract disease

      Correct Answer: HELLP syndrome

      Explanation:

      The patient is exhibiting symptoms that are indicative of pre-eclampsia, such as headache, abdominal pain, and blurred vision. However, the presence of jaundice suggests that the patient is actually suffering from HELLP syndrome, which is a complication during pregnancy that involves haemolysis, elevated liver enzymes, and low platelets. This condition often occurs in conjunction with pregnancy-induced hypertension or pre-eclampsia.

      Pre-eclampsia is a pregnancy-related disorder that is characterized by high blood pressure and damage to another organ system, typically the kidneys, which is evidenced by proteinuria. This condition typically develops after the 20th week of pregnancy in women who previously had normal blood pressure.

      Jaundice During Pregnancy

      During pregnancy, jaundice can occur due to various reasons. One of the most common liver diseases during pregnancy is intrahepatic cholestasis of pregnancy, which affects around 1% of pregnancies and is usually seen in the third trimester. Symptoms include itching, especially in the palms and soles, and raised bilirubin levels. Ursodeoxycholic acid is used for symptomatic relief, and women are typically induced at 37 weeks. However, this condition can increase the risk of stillbirth.

      Acute fatty liver of pregnancy is a rare complication that can occur in the third trimester or immediately after delivery. Symptoms include abdominal pain, nausea, vomiting, headache, jaundice, and hypoglycemia. ALT levels are typically elevated. Supportive care is the initial management, and delivery is the definitive management once the patient is stabilized.

      Gilbert’s and Dubin-Johnson syndrome may also be exacerbated during pregnancy. Additionally, HELLP syndrome, which stands for Haemolysis, Elevated Liver enzymes, Low Platelets, can also cause jaundice during pregnancy. It is important to monitor liver function tests and seek medical attention if any symptoms of jaundice occur during pregnancy.

    • This question is part of the following fields:

      • Reproductive System
      35.5
      Seconds
  • Question 21 - A 22-year-old male student is brought to the Emergency Department via ambulance. He...

    Incorrect

    • A 22-year-old male student is brought to the Emergency Department via ambulance. He is unconscious, hypotensive, and tachycardic. According to his friend, he started feeling unwell after being stung by a bee in the park. The medical team suspects anaphylactic shock and begins resuscitation. While anaphylactic shock causes widespread vasodilation, which mediator is responsible for arteriole constriction?

      Your Answer: Nitric oxide

      Correct Answer: Endothelin

      Explanation:

      Arteriolar constriction is facilitated by various mediators such as noradrenaline from the sympathetic nervous system, circulating catecholamines, angiotensin-2, and locally released endothelin peptide by endothelial cells. Endothelin primarily acts on ET(A) receptors to cause constriction, but it can also cause dilation by acting on ET(B) receptors.

      On the other hand, the parasympathetic nervous system, nitric oxide, and prostacyclin are all responsible for facilitating arteriolar dilation, rather than constriction.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      26.9
      Seconds
  • Question 22 - A pharmaceutical company is striving to develop a novel weight-loss drug that imitates...

    Correct

    • A pharmaceutical company is striving to develop a novel weight-loss drug that imitates the satiety-inducing effects of the endogenous peptide hormone cholecystokinin (CCK).

      What are the cells that naturally synthesize and secrete this hormone?

      Your Answer: I cells in the upper small intestine

      Explanation:

      CCK is a hormone produced by I cells in the upper small intestine that enhances the digestion of fats and proteins. When partially digested proteins and fats are detected, CCK is synthesized and released, resulting in various processes such as the secretion of digestive enzymes from the pancreas, contraction of the gallbladder, relaxation of the sphincter of Oddi, decreased gastric emptying, and a trophic effect on pancreatic acinar cells. These processes lead to the breakdown of fats and proteins and suppression of hunger.

      B cells, on the other hand, are part of the immune system and produce antibodies as part of the B cell receptors. They are produced in the bone marrow and migrate to the spleen and lymphatic system, but they do not play a role in satiety.

      Somatostatin is a hormone released from D cells in the pancreas and stomach that regulates peptide hormone release and gastric emptying. It is stimulated by the presence of fat, bile salt, and glucose in the intestines.

      Gastrin is a hormone that increases acid release from parietal cells in the stomach and aids in gastric motility. It is released from G cells in the antrum of the stomach in response to distension of the stomach, stimulation of the vagus nerves, and the presence of peptides/amino acids in the lumen.

      Secretin is a hormone that regulates enzyme secretion from the stomach, pancreas, and liver. It is released from the S cells in the duodenum in response to the presence of acid in the lumen.

      Overview of Gastrointestinal Hormones

      Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.

      One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.

      Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.

      Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.

    • This question is part of the following fields:

      • Gastrointestinal System
      25.9
      Seconds
  • Question 23 - A 23-year-old man is involved in a physical altercation and suffers a stab...

    Incorrect

    • A 23-year-old man is involved in a physical altercation and suffers a stab wound in his upper forearm. Upon examination, a small yet deep laceration is observed. There is an evident loss of pincer movement in the thumb and index finger, with minimal sensation loss. Which nerve is most likely to have been injured?

      Your Answer: Median nerve

      Correct Answer: Anterior interosseous nerve

      Explanation:

      The median nerve gives rise to the anterior interosseous nerve, which is a motor branch located below the elbow. If this nerve is injured, it typically results in the following symptoms: pain in the forearm, inability to perform pincer movements with the thumb and index finger (as it controls the long flexor muscles of the flexor pollicis longus and flexor digitorum profundus of the index and middle finger), and minimal loss of sensation due to the absence of a cutaneous branch.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      25.3
      Seconds
  • Question 24 - During a placement in general practice, a 56-year-old woman comes in with new...

    Correct

    • During a placement in general practice, a 56-year-old woman comes in with new nipple discharge and skin dimpling over her breast. The GP conducts a breast examination, including the lymph nodes surrounding the area. Which lymph nodes receive the most breast lymph?

      Your Answer: Axilliary lymph nodes

      Explanation:

      The lymphatic system of the breast is responsible for draining excess fluid and waste products. Lymph from the upper outer quadrant of the breast drains to the axillary lymph nodes, while lymph from the inner quadrants drains to the parasternal lymph nodes. Additionally, some lymph from the lower quadrants drains to the inferior phrenic lymph nodes.

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      19
      Seconds
  • Question 25 - A 65-year-old woman comes to the clinic complaining of fever and productive cough...

    Incorrect

    • A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'

      What is the probable causative organism in this case?

      Your Answer: Streptococcus pneumoniae

      Correct Answer: Klebsiella pneumoniae

      Explanation:

      The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.

      Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.

      Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.

      Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.

      Understanding Klebsiella Pneumoniae

      Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.

      The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.

    • This question is part of the following fields:

      • Respiratory System
      45.2
      Seconds
  • Question 26 - A 32-year-old motorcyclist is admitted to the emergency department following a collision with...

    Correct

    • A 32-year-old motorcyclist is admitted to the emergency department following a collision with a car. Upon secondary survey, a deep penetrating injury is discovered in the patient's left lateral thigh. The wound is surgically debrided and the patient is subsequently admitted to the neurological intensive care unit.

      After a few days, the patient develops a fever and experiences significant swelling in the affected area. Upon applying pressure, crackling sounds are heard, leading to a suspected diagnosis of gas gangrene.

      What is the mechanism behind the bacterial toxin responsible for the patient's clinical symptoms?

      Your Answer: Degradation of phospholipids

      Explanation:

      The correct answer is degradation of phospholipids. Gas gangrene, which is characterized by deep tissue crepitus surrounding a penetrating wound, is caused by Clostridium perfringens, an organism that releases an alpha-toxin, a lecithinase enzyme that degrades phospholipids.

      The mechanisms of diphtheria toxin and pseudomonas exotoxin A involve ADP-ribosylation of elongation factor II, which inhibits protein synthesis in human cells but does not cause gas gangrene.

      Protein A, a virulence factor of Staphylococcus aureus, binds the Fc region of IgA, but infection with Staphylococcus aureus is not associated with gas gangrene.

      The tetanus toxin inhibits presynaptic GABA release, causing trismus and opisthotonus rather than gas gangrene.

      Exotoxins vs Endotoxins: Understanding the Differences

      Exotoxins and endotoxins are two types of toxins produced by bacteria. Exotoxins are secreted by bacteria, while endotoxins are only released when the bacterial cell is lysed. Exotoxins are typically produced by Gram-positive bacteria, with some exceptions like Vibrio cholerae and certain strains of E. coli.

      Exotoxins can be classified based on their primary effects, which include pyrogenic toxins, enterotoxins, neurotoxins, tissue invasive toxins, and miscellaneous toxins. Pyrogenic toxins stimulate the release of cytokines, resulting in fever and rash. Enterotoxins act on the gastrointestinal tract, causing either diarrheal or vomiting illness. Neurotoxins act on the nerves or neuromuscular junction, causing paralysis. Tissue invasive toxins cause damage to tissues, while miscellaneous toxins have various effects.

      On the other hand, endotoxins are lipopolysaccharides that are released from Gram-negative bacteria like Neisseria meningitidis. These toxins can cause fever, sepsis, and shock. Unlike exotoxins, endotoxins are not actively secreted by bacteria but are instead released when the bacterial cell is lysed.

      Understanding the differences between exotoxins and endotoxins is important in diagnosing and treating bacterial infections. While exotoxins can be targeted with specific treatments like antitoxins, endotoxins are more difficult to treat and often require supportive care.

    • This question is part of the following fields:

      • General Principles
      36.2
      Seconds
  • Question 27 - Samantha is a 42-year-old woman who has presented with new-onset urinary retention over...

    Incorrect

    • Samantha is a 42-year-old woman who has presented with new-onset urinary retention over the past 8 hours. She was previously diagnosed with non-Hodgkin's lymphoma and is currently undergoing chemotherapy treatment for this. She notes that prior to this, her urine had a reddish-tinge.

      A 3-way catheter was inserted and blood-stained urine with clots was seen within the catheter bag. Urinalysis showed significant blood but no leukocytes or nitrites were seen. A cystoscopy performed did not show any masses and biopsies taken did not show any malignancy. It was felt that this was a likely side effect of one of these chemotherapy agents.

      What is the underlying mechanism of action of the culprit chemotherapy agent?

      Your Answer: Monoclonal antibody against CD20

      Correct Answer: Promotes cross-linking of DNA

      Explanation:

      The chemotherapy regime R-CHOP, which is likely being used to manage the patient’s non-Hodgkin’s lymphoma, includes cyclophosphamide, a drug that functions as an alkylating agent and promotes cross-linking of DNA. This can lead to haemorrhagic cystitis, which is likely the cause of the patient’s haematuria. Other drugs in the regime have different mechanisms of action, such as inhibition of microtubule formation with vincristine, inhibition of topoisomerase II and DNA/RNA synthesis with doxorubicin, and monoclonal antibody targeting of CD20 with rituximab. Pyrimidine analogues like 5-fluorouracil, which block thymidylate synthase and induce cell cycle arrest and apoptosis, are not commonly used in the management of non-Hodgkin’s lymphoma.

      Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.

    • This question is part of the following fields:

      • Haematology And Oncology
      58.6
      Seconds
  • Question 28 - As a medical student on placement with a surgical team, you come across...

    Incorrect

    • As a medical student on placement with a surgical team, you come across a patient who has developed foot drop in their right leg after surgery. You notice that the patient is dragging their right foot and experiencing weakness in dorsiflexion and eversion of their foot, as well as an inability to extend their toes. Which nerve is most likely to have been affected during the operation?

      Your Answer: Tibial nerve

      Correct Answer: Common fibular nerve

      Explanation:

      The common fibular nerve starts at the top of the popliteal fossa, passing medial to the biceps femoris and then crossing over the head of the gastrocnemius. It provides an articular branch to the knee before winding around the neck and passing under the Fibularis longus. At this point, it divides into superficial and deep branches. In the popliteal fossa, it also divides to give the lateral sural cutaneous nerve, which joins with a branch from the tibial nerve to form the sural nerve. If the nerve is damaged, it can result in foot drop, which can occur due to prolonged pressure on the nerve during an operation or other causes. Motor loss of other nerves, such as the tibial, sciatic, inferior gluteal, or femoral nerves, can result in weakness in other muscles.

      Lower limb anatomy is an important topic that often appears in examinations. One aspect of this topic is the nerves that control motor and sensory functions in the lower limb. The femoral nerve controls knee extension and thigh flexion, and provides sensation to the anterior and medial aspect of the thigh and lower leg. It is commonly injured in cases of hip and pelvic fractures, as well as stab or gunshot wounds. The obturator nerve controls thigh adduction and provides sensation to the medial thigh. It can be injured in cases of anterior hip dislocation. The lateral cutaneous nerve of the thigh provides sensory function to the lateral and posterior surfaces of the thigh, and can be compressed near the ASIS, resulting in a condition called meralgia paraesthetica. The tibial nerve controls foot plantarflexion and inversion, and provides sensation to the sole of the foot. It is not commonly injured as it is deep and well protected, but can be affected by popliteral lacerations or posterior knee dislocation. The common peroneal nerve controls foot dorsiflexion and eversion, and can be injured at the neck of the fibula, resulting in foot drop. The superior gluteal nerve controls hip abduction and can be injured in cases of misplaced intramuscular injection, hip surgery, pelvic fracture, or posterior hip dislocation. Injury to this nerve can result in a positive Trendelenburg sign. The inferior gluteal nerve controls hip extension and lateral rotation, and is generally injured in association with the sciatic nerve. Injury to this nerve can result in difficulty rising from a seated position, as well as difficulty jumping or climbing stairs.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      20.1
      Seconds
  • Question 29 - You are developing a new drug for hypertension which acts to decrease blood...

    Incorrect

    • You are developing a new drug for hypertension which acts to decrease blood pressure by targeting the rate limiting enzyme. What enzyme will you target?

      Your Answer: HMG-CoA synthase

      Correct Answer: Fructose 1,6 bisphosphatase

      Explanation:

      Fructose 1,6 bisphosphatase is the enzyme that limits the rate of gluconeogenesis.

      When glycogen is depleted during prolonged fasting, the liver cells produce glucose through gluconeogenesis using lactate, pyruvate, glycerol, and amino acids. The enzyme fructose 1,6 bisphosphatase limits the rate of this process.

      Ketogenesis is limited by the enzyme HMG-CoA synthase.

      Cholesterol synthesis is limited by the enzyme HMG-CoA reductase.

      De novo purine synthesis is limited by the enzyme glutamine-PRPP amidotransferase.

      Rate-Determining Enzymes in Metabolic Processes

      Metabolic processes involve a series of chemical reactions that occur in living organisms to maintain life. Enzymes play a crucial role in these processes by catalyzing the reactions. However, not all enzymes have the same impact on the rate of the reaction. Some enzymes are rate-determining, meaning that they control the overall rate of the process. The table above lists the rate-determining enzymes involved in common metabolic processes.

      For example, in the TCA cycle, isocitrate dehydrogenase is the rate-determining enzyme. In glycolysis, phosphofructokinase-1 controls the rate of the process. In gluconeogenesis, fructose-1,6-bisphosphatase is the rate-determining enzyme. Similarly, glycogen synthase controls the rate of glycogenesis, while glycogen phosphorylase controls the rate of glycogenolysis.

      Other metabolic processes, such as lipogenesis, lipolysis, cholesterol synthesis, and ketogenesis, also have rate-determining enzymes. Acetyl-CoA carboxylase controls the rate of lipogenesis, while carnitine-palmitoyl transferase I controls the rate of lipolysis. HMG-CoA reductase is the rate-determining enzyme in cholesterol synthesis, while HMG-CoA synthase controls the rate of ketogenesis.

      The urea cycle, de novo pyrimidine synthesis, and de novo purine synthesis also have rate-determining enzymes. Carbamoyl phosphate synthetase I controls the rate of the urea cycle, while carbamoyl phosphate synthetase II controls the rate of de novo pyrimidine synthesis. Glutamine-PRPP amidotransferase is the rate-determining enzyme in de novo purine synthesis.

      Understanding the rate-determining enzymes in metabolic processes is crucial for developing treatments for metabolic disorders and diseases. By targeting these enzymes, researchers can potentially regulate the rate of the process and improve the health outcomes of individuals with these conditions.

    • This question is part of the following fields:

      • General Principles
      32.2
      Seconds
  • Question 30 - A 45-year-old woman arrives at the emergency department complaining of a sudden headache....

    Correct

    • A 45-year-old woman arrives at the emergency department complaining of a sudden headache. The doctor is evaluating her condition. Her BMI is 33 kgm2.

      During the cranial nerve examination, the doctor observes papilloedema on fundoscopy. The patient also reports a loss of taste in the back third of her tongue. Which of the following nerves could be responsible for this loss?

      Your Answer: Glossopharyngeal nerve

      Explanation:

      The glossopharyngeal nerve mediates taste and sensation from the posterior one-third of the tongue, while the anterior two-thirds of the tongue receive taste input from the chorda tympani branch of the facial nerve and sensation input from the lingual branch of the mandibular division of the trigeminal nerve. The base of the tongue receives taste and sensation input from the internal branch of the superior laryngeal nerve, which is a branch of the vagus nerve.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      24.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (3/5) 60%
Cardiovascular System (3/5) 60%
Musculoskeletal System And Skin (1/3) 33%
Gastrointestinal System (3/4) 75%
General Principles (3/5) 60%
Paediatrics (1/1) 100%
Clinical Sciences (0/1) 0%
Basic Sciences (0/1) 0%
Endocrine System (0/1) 0%
Reproductive System (0/1) 0%
Haematology And Oncology (1/2) 50%
Respiratory System (0/1) 0%
Passmed