00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A patient in their 60s develops complete heart block in hospital after experiencing...

    Correct

    • A patient in their 60s develops complete heart block in hospital after experiencing a myocardial infarction. Their ECG displays a heart rate of 37 beats per minute and desynchronisation of atrial and ventricular contraction. What is the most probable coronary artery that is occluded in heart block during a myocardial infarction, indicating damage to the AV node?

      Your Answer: RIght coronary artery

      Explanation:

      The atrioventricular node is most likely supplied by the right coronary artery.

      The left coronary artery gives rise to the left anterior descending and circumflex arteries.

      An anterior myocardial infarction is caused by occlusion of the left anterior descending artery.

      The coronary sinus is a venous structure that drains blood from the heart and returns it to the right atrium.

      Understanding Coronary Circulation

      Coronary circulation refers to the blood flow that supplies the heart with oxygen and nutrients. The arterial supply of the heart is divided into two main branches: the left coronary artery (LCA) and the right coronary artery (RCA). The LCA originates from the left aortic sinus, while the RCA originates from the right aortic sinus. The LCA further divides into two branches, the left anterior descending (LAD) and the circumflex artery, while the RCA supplies the posterior descending artery.

      The LCA supplies the left ventricle, left atrium, and interventricular septum, while the RCA supplies the right ventricle and the inferior wall of the left ventricle. The SA node, which is responsible for initiating the heartbeat, is supplied by the RCA in 60% of individuals, while the AV node, which is responsible for regulating the heartbeat, is supplied by the RCA in 90% of individuals.

      On the other hand, the venous drainage of the heart is through the coronary sinus, which drains into the right atrium. During diastole, the coronary arteries fill with blood, allowing for the delivery of oxygen and nutrients to the heart muscles. Understanding the coronary circulation is crucial in the diagnosis and management of various heart diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 2 - A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain...

    Incorrect

    • A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain during physical activity. After initial investigations, an outpatient coronary angiography is performed which reveals severe stenosis/atheroma in multiple vessels. The patient is informed that this condition is a result of various factors, including the detrimental effects of smoking on the blood vessels.

      What is the ultimate stage in the development of this patient's condition?

      Your Answer: Fatty infiltration of the subendothelial space by low-density lipoprotein (LDL) particles

      Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      2.8
      Seconds
  • Question 3 - A 45-year-old male with no past medical history is recently diagnosed with hypertension....

    Incorrect

    • A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:

      Na 137 mmol/l
      K 4.7 mmol/l
      Cl 98 mmol/l
      Urea 12.2 mmol/l
      Creatinine 250 mg/l

      What is the most likely cause for the abnormal blood test results?

      Your Answer: Dehydration

      Correct Answer: Bilateral stenosis of renal arteries

      Explanation:

      Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      7
      Seconds
  • Question 4 - A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She...

    Incorrect

    • A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She has left-sided heart failure and her recent echo revealed a reduced ejection fraction. She complains of nocturnal breathlessness and needing multiple pillows to sleep.

      She is prescribed bisoprolol and another medication with the explanation that it will help decrease mortality.

      What is the probable medication she has been prescribed?

      Your Answer: Spironolactone

      Correct Answer: Ramipril

      Explanation:

      In the treatment of heart failure, medications are used to improve the heart’s ability to pump blood effectively. Beta blockers, such as bisoprolol, are commonly prescribed to slow the heart rate and improve filling. The first-line drugs for heart failure are beta blockers and ACE inhibitors. Therefore, the patient in question will be prescribed an ACE inhibitor, such as ramipril, as the second drug. Ramipril works by reducing venous resistance, making it easier for the heart to pump blood out, and lowering arterial pressures, which increases the heart’s pre-load.

      Carvedilol is not the correct choice for this patient. Although it can be used in heart failure, the patient is already taking a beta blocker, and adding another drug from the same class could cause symptomatic bradycardia or hypotension.

      Digoxin is not the appropriate choice either. While it can be used in heart failure, it should only be initiated by a specialist.

      Sacubitril-valsartan is also not the right choice for this patient. Although it is becoming more commonly used in heart failure patients, it should only be prescribed by a specialist after first and second-line treatment options have been exhausted.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      13517.7
      Seconds
  • Question 5 - A 75-year-old woman complains of increasing shortness of breath in the past few...

    Incorrect

    • A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?

      Your Answer: Right heart failure

      Correct Answer: Biventricular failure

      Explanation:

      Diagnosis and Assessment of Biventricular Failure

      This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.

      Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.

    • This question is part of the following fields:

      • Cardiovascular System
      9.4
      Seconds
  • Question 6 - A man in his 50s arrives at the emergency department exhibiting signs of...

    Correct

    • A man in his 50s arrives at the emergency department exhibiting signs of a stroke. After undergoing a CT angiogram, it is revealed that there is a constriction in the artery that provides blood to the right common carotid.

      What is the name of the affected artery?

      Your Answer: Brachiocephalic artery

      Explanation:

      The largest branch from the aortic arch is the brachiocephalic artery, which originates from it. This artery gives rise to both the right subclavian artery and the right common carotid arteries. The brachiocephalic artery is supplied by the aortic arch, while the coronary arteries are supplied by the ascending aorta. Additionally, the coeliac trunk is a branch that stems from the abdominal aorta.

      The Brachiocephalic Artery: Anatomy and Relations

      The brachiocephalic artery is the largest branch of the aortic arch, originating at the apex of the midline. It ascends superiorly and posteriorly to the right, lying initially anterior to the trachea and then on its right-hand side. At the level of the sternoclavicular joint, it divides into the right subclavian and right common carotid arteries.

      In terms of its relations, the brachiocephalic artery is anterior to the sternohyoid, sterno-thyroid, thymic remnants, left brachiocephalic vein, and right inferior thyroid veins. Posteriorly, it is related to the trachea, right pleura, right lateral, right brachiocephalic vein, superior part of the SVC, left lateral, thymic remnants, origin of left common carotid, inferior thyroid veins, and trachea at a higher level.

      The brachiocephalic artery typically has no branches, but it may have the thyroidea ima artery. Understanding the anatomy and relations of the brachiocephalic artery is important for medical professionals, as it is a crucial vessel in the human body.

    • This question is part of the following fields:

      • Cardiovascular System
      6.4
      Seconds
  • Question 7 - An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision...

    Incorrect

    • An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision on the right side that started 30 minutes ago. Based on the history and examination, it is probable that she has experienced an ophthalmic artery stroke. Which branch of the Circle of Willis is likely affected?

      Your Answer: Anterior cerebral artery

      Correct Answer: Internal carotid artery

      Explanation:

      The ophthalmic artery originates from the internal carotid artery, which is part of the Circle of Willis, a circular network of arteries that supply the brain. The anterior cerebral arteries, which supply the frontal and parietal lobes, as well as the corpus callosum and cingulate cortex of the brain, also arise from the internal carotid artery. A stroke of the ophthalmic artery or its branch, the central retinal artery, can cause painless loss of vision. The basilar artery, which forms part of the posterior cerebral circulation, is formed from the convergence of the two vertebral arteries and gives rise to many arteries, but not the ophthalmic artery. The posterior cerebral artery, which supplies the occipital lobe, arises from the basilar artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      8.1
      Seconds
  • Question 8 - A 32-year-old male is admitted for elective surgery for a lymph node biopsy...

    Incorrect

    • A 32-year-old male is admitted for elective surgery for a lymph node biopsy in the supraclavicular region. Following the surgery, the patient experiences difficulty in shrugging his left shoulder. What could be the probable cause?

      Your Answer: Phrenic nerve lesion

      Correct Answer: Accessory nerve lesion

      Explanation:

      The posterior triangle is where the accessory nerve is located, and it is susceptible to injury in this area. In addition to experiencing issues with shoulder shrugging, the individual may also encounter challenges when attempting to raise their arm above their head.

      The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.

    • This question is part of the following fields:

      • Cardiovascular System
      4.3
      Seconds
  • Question 9 - A 36-year-old male comes to his GP complaining of chest pain that has...

    Correct

    • A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.

      Your Answer: Acute pericarditis

      Explanation:

      Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.

      Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.

      A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.

      A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.

      A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      5.1
      Seconds
  • Question 10 - A 63-year-old male on the wards has come to you with recent onset...

    Incorrect

    • A 63-year-old male on the wards has come to you with recent onset indigestion. He denies any red flag symptoms and has a medical history of hypertension, congestive heart failure, depression, and gout. Later in the day, while reviewing his routine blood results, you notice an abnormality.

      Here are his blood results from two days ago and today:

      Parameter 2 days ago Today
      Hb 135 g/l 134 g/l
      Platelets 310 * 109/l 312 * 109/l
      WBC 6.5 * 109/l 6.4 * 109/l
      Na+ 142 mmol/l 128 mmol/l
      K+ 4.2 mmol/l 3.8 mmol/l
      Urea 4.8 mmol/l 4.8 mmol/l
      Creatinine 60 µmol/l 61 µmol/l

      What could be the reason for the discrepancy in his blood results?

      Your Answer: Excessive 0.9% NaCl infusions

      Correct Answer: Combined use of indapamide and omeprazole

      Explanation:

      Severe hyponatraemia can occur when PPIs and thiazide diuretics are used together. The patient in question has recently experienced hyponatraemia, which is most likely caused by the combination of indapamide and omeprazole. It is probable that omeprazole was prescribed for his indigestion, while he is likely taking indapamide due to his history of congestive heart failure. It is important to note that the other options listed can cause hypernatraemia, not hyponatraemia.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      25.4
      Seconds
  • Question 11 - Oliver is an 80-year-old man with known left-sided heart failure. He has a...

    Incorrect

    • Oliver is an 80-year-old man with known left-sided heart failure. He has a left ventricular ejection fraction of 31%. He has recently been admitted to the cardiology ward as the doctors are concerned his condition is worsening. He is short of breath on exertion and has peripheral oedema.

      Upon reviewing his ECG, you note a right bundle branch block (RBBB) indicative of right ventricular hypertrophy. You also observe that this was present on an ECG of his on an emergency department admission last month.

      What is the most likely cause of the RBBB in Oliver?

      Your Answer: Rheumatic heart disease

      Correct Answer: Cor pulmonale

      Explanation:

      A frequent underlying cause of RBBB that persists over time is right ventricular hypertrophy, which may result from the spread of left-sided heart failure to the right side of the heart. Oliver’s shortness of breath is likely due to an accumulation of fluid in the lungs, which can increase pulmonary perfusion pressure and lead to right ventricular strain and hypertrophy. This type of right heart failure that arises from left heart failure is known as cor-pulmonale. While a pulmonary embolism or rheumatic heart disease can also cause right ventricular strain, they are less probable in this case. Myocardial infarction typically presents with chest pain, which is not mentioned in the question stem regarding Oliver’s symptoms.

      Right bundle branch block is a frequently observed abnormality on ECGs. It can be differentiated from left bundle branch block by remembering the phrase WiLLiaM MaRRoW. In RBBB, there is a ‘M’ in V1 and a ‘W’ in V6, while in LBBB, there is a ‘W’ in V1 and a ‘M’ in V6.

      There are several potential causes of RBBB, including normal variation which becomes more common with age, right ventricular hypertrophy, chronically increased right ventricular pressure (such as in cor pulmonale), pulmonary embolism, myocardial infarction, atrial septal defect (ostium secundum), and cardiomyopathy or myocarditis.

    • This question is part of the following fields:

      • Cardiovascular System
      11.9
      Seconds
  • Question 12 - An 80-year-old patient comes in for a routine follow-up appointment and reports a...

    Incorrect

    • An 80-year-old patient comes in for a routine follow-up appointment and reports a decline in exercise tolerance. They mention having difficulty with stairs and experiencing occasional central chest pain that radiates to their back, which is relieved by rest. The pain is not present at rest.

      During the examination, you observe a regular, slow-rising pulse and record a blood pressure of 110/95mmHg. Upon auscultation of the precordium, you detect an ejection systolic murmur.

      To further assess cardiac function and valves, an echocardiogram is scheduled. Based on the likely diagnosis, what additional exam findings are you most likely to discover?

      Your Answer: Hepatomegaly

      Correct Answer: Fourth heart sound (S4)

      Explanation:

      The patient’s symptoms and physical exam suggest the presence of aortic stenosis. This is indicated by the ejection systolic murmur, slow-rising pulse, and progressive heart failure symptoms. The fourth heart sound (S4) is also present, which occurs when the left atrium contracts forcefully to compensate for a stiff ventricle. In aortic stenosis, the left ventricle is hypertrophied due to the narrowed valve, leading to the S4 sound.

      While hepatomegaly is more commonly associated with right heart valvular disease, it is not entirely ruled out in this case. However, the patient’s history is more consistent with aortic stenosis.

      Malar flush, a pink flushed appearance across the cheeks, is typically seen in mitral stenosis due to hypercarbia causing arteriole vasodilation.

      Pistol shot femoral pulses, a sound heard during systole when auscultating the femoral artery, is a finding associated with aortic regurgitation and not present in this case.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      117.7
      Seconds
  • Question 13 - A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a...

    Incorrect

    • A 63-year-old woman is prescribed furosemide for ankle swelling. During routine monitoring, a blood test reveals an abnormality and an ECG shows new U waves, which were not present on a previous ECG. What electrolyte imbalance could be responsible for these symptoms and ECG changes?

      Your Answer: Hyperkalaemia

      Correct Answer: Hypokalaemia

      Explanation:

      The correct answer is hypokalaemia, which can be a side effect of furosemide. This condition is characterized by U waves on ECG, as well as small or absent T waves, prolonged PR interval, ST depression, and/or long QT. Hypercalcaemia, on the other hand, can cause shortening of the QT interval and J waves in severe cases. Hyperkalaemia is associated with tall-tented T waves, loss of P waves, broad QRS complexes, sinusoidal wave pattern, and/or ventricular fibrillation, and can be caused by various factors such as acute or chronic kidney disease, medications, diabetic ketoacidosis, and Addison’s disease. Hypernatraemia, which can be caused by dehydration or diabetes insipidus, does not typically result in ECG changes.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      7
      Seconds
  • Question 14 - A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding...

    Incorrect

    • A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding and weight gain. During cardiac examination, a continuous 'machine-like' murmur is detected. An echocardiogram confirms the presence of a patent ductus arteriosus (PDA).

      What is the name of the structure that would remain if the PDA had closed at birth?

      Your Answer: Ligamentum venosum

      Correct Answer: Ligamentum arteriosum

      Explanation:

      The ligamentum arteriosum is what remains of the ductus arteriosus after it typically closes at birth. If the ductus arteriosus remains open, known as a patent ductus arteriosus, it can cause infants to fail to thrive. The ventricles of the heart come from the bulbus cordis and primitive ventricle. The coronary sinus is formed by a group of cardiac veins merging together. The ligamentum venosum is the leftover of the ductus venosum. The fossa ovalis is created when the foramen ovale closes.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      21.8
      Seconds
  • Question 15 - A man in his 50s arrives at the emergency department with bleeding following...

    Incorrect

    • A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?

      Your Answer: Baroreceptors are present throughout the arterial system

      Correct Answer: Baroreceptors are stimulated by arterial stretch

      Explanation:

      Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      3.4
      Seconds
  • Question 16 - A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins....

    Correct

    • A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?

      Your Answer: Deep external pudendal artery

      Explanation:

      The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      2
      Seconds
  • Question 17 - With respect to the basilic vein, which statement is not true? ...

    Correct

    • With respect to the basilic vein, which statement is not true?

      Your Answer: Its deep anatomical location makes it unsuitable for use as an arteriovenous access site in fistula surgery

      Explanation:

      A basilic vein transposition is a surgical procedure that utilizes it during arteriovenous fistula surgery.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 18 - A 78-year-old woman has presented with dyspnea. During cardiovascular examination, a faint murmur...

    Correct

    • A 78-year-old woman has presented with dyspnea. During cardiovascular examination, a faint murmur is detected in the mitral area. If the diagnosis is mitral stenosis, what is the most probable factor that would increase the loudness and clarity of the murmur during auscultation?

      Your Answer: Ask the patient to breathe out

      Explanation:

      To accentuate the sound of a left-sided murmur consistent with mitral stenosis during a cardiovascular examination, the patient should be asked to exhale. Conversely, a right-sided murmur is louder during inspiration. Listening in the left lateral position while the patient is lying down can also emphasize a mitral stenosis. To identify a mitral regurgitation murmur, listening in the axilla is helpful as it radiates. Diastolic murmurs can be heard better with a position change, while systolic murmurs tend to radiate and can be distinguished by listening in different anatomical landmarks. For example, an aortic stenosis may radiate to the carotids, while an aortic regurgitation may be heard better with the patient leaning forward.

      Understanding Mitral Stenosis

      Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.

      Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.

      Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.

      Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      5.9
      Seconds
  • Question 19 - A nursing student is being consented for a parathyroidectomy for symptomatic hyperparathyroidism. The...

    Incorrect

    • A nursing student is being consented for a parathyroidectomy for symptomatic hyperparathyroidism. The parathyroid gland consists of 2 superior and 2 inferior glands. The patient is informed that all four glands will be removed in order to achieve a complete resolution of her symptoms. You explain to her that the superior and inferior glands are derived from different structures.

      From which one of the following embryological structures are the superior parathyroid glands derived from?

      Your Answer: Second pharyngeal pouch

      Correct Answer: Fourth pharyngeal pouch

      Explanation:

      The superior parathyroid glands are formed from the fourth pharyngeal pouch during embryonic development. The pharyngeal pouches develop between the branchial arches, with the first pouch located between the first and second arches. There are four pairs of pouches, with the fifth pouch being either absent or very small. A helpful mnemonic to remember the derivatives of the four pharyngeal pouches is 1A, 2P, 3 TIP, 4 SUB. This stands for the auditory tube, middle ear cavity, and mastoid antrum for the first pouch; the crypts of the palatine tonsil for the second pouch; the thymus and inferior parathyroid gland for the third pouch; and the superior parathyroid gland and ultimobranchial body for the fourth pouch.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      8.7
      Seconds
  • Question 20 - A 50-year-old man is being investigated by cardiologists for worsening breathlessness, fatigue, and...

    Incorrect

    • A 50-year-old man is being investigated by cardiologists for worsening breathlessness, fatigue, and chest pain during exertion. Results from an echocardiogram reveal a thickened interventricular septum and reduced left ventricle filling. What is the most likely diagnosis based on these findings?

      Your Answer: Restrictive cardiomyopathy

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Hypertrophic obstructive cardiomyopathy is a condition where the heart muscle, particularly the interventricular septum, becomes thickened and less flexible, leading to diastolic dysfunction. In contrast, restrictive cardiomyopathy also results in reduced flexibility of the heart chamber walls, but without thickening of the myocardium. Dilated cardiomyopathy, on the other hand, is characterized by enlarged heart chambers with thin walls and a decreased ability to pump blood out of the heart.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      998.9
      Seconds
  • Question 21 - A 63-year-old woman comes to her doctor for a review of her angina...

    Correct

    • A 63-year-old woman comes to her doctor for a review of her angina medication. She expresses worry about her condition and inquires about the cause of the narrowing of her coronary arteries.

      What alteration takes place during the progression of atherosclerosis?

      Your Answer: Fatty infiltration of the subendothelial space

      Explanation:

      The subendothelial space is where fatty infiltration takes place.

      Foam cells are created by the ingestion of LDLs, not HDLs.

      Infiltration does not occur in the tunica externa, but rather in the subendothelial space.

      Smooth muscle proliferation occurs, not hypertrophy.

      Endothelial dysfunction leads to a decrease in nitric oxide bioavailability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      7.4
      Seconds
  • Question 22 - A 14-year-old girl presents to the general practitioner with fever, malaise, involuntary movements...

    Incorrect

    • A 14-year-old girl presents to the general practitioner with fever, malaise, involuntary movements of the neck and arms and erythema marginatum. She was previously unwell with tonsillitis six weeks ago. She is taken to the hospital and after a series of investigations is diagnosed with rheumatic fever.

      What is the underlying pathology of this condition?

      Your Answer: Reaction to erythrogenic toxins produced by group A haemolytic streptococci

      Correct Answer: Molecular mimicry of the bacterial M protein

      Explanation:

      The development of rheumatic fever is caused by molecular mimicry of the bacterial M protein. This results in the patient experiencing constitutional symptoms such as fever and malaise, involuntary movements of the neck and arms known as Sydenham chorea, and a distinctive rash called erythema marginatum. The antibodies produced against the M protein cross-react with myosin and smooth muscle in arteries, leading to the characteristic features of rheumatic fever. Autoimmune demyelination of peripheral nerves, autoimmune demyelination of the central nervous system, and autoimmune destruction of postsynaptic acetylcholine receptors are all incorrect as they are the pathophysiology of other conditions such as Guillain Barre syndrome, multiple sclerosis, and myasthenia gravis, respectively.

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      5.8
      Seconds
  • Question 23 - A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been...

    Incorrect

    • A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?

      Your Answer: Direct thrombin inhibitor

      Correct Answer: P2Y12 receptor antagonist

      Explanation:

      Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      10.1
      Seconds
  • Question 24 - A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She...

    Incorrect

    • A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She has a medical history of deep vein thrombosis and pulmonary embolism and is currently taking warfarin for life. During this visit, her INR level is found to be 4.4, which is higher than her target of 3.0. Upon further inquiry, she reveals that she had been prescribed antibiotics by her GP recently. Can you identify the clotting factors that warfarin affects?

      Your Answer: Factors VIII, IX, XI, XII

      Correct Answer: Factors II, VII, IX, X

      Explanation:

      Warfarin is an oral anticoagulant that is widely used to prevent blood clotting in various medical conditions, including stroke prevention in atrial fibrillation and venous thromboembolism. Warfarin primarily targets the Vitamin K dependent clotting factors, which include factors II, VII, IX, and X.

      To monitor the effectiveness of warfarin therapy, the International Normalized Ratio (INR) is used. However, the INR can be affected by drug interactions, such as those with antibiotics. Therefore, it is important to be aware of the common drug interactions associated with warfarin.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      6.7
      Seconds
  • Question 25 - Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After...

    Correct

    • Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After a 3-month trial of improving diet and increasing exercise, her blood pressure is still elevated at 160/100 mmHg. Her doctor decides to start her on enalapril, an ACE inhibitor, to treat her hypertension.

      At what location in the body is enalapril activated to its pharmacologically active compound?

      Your Answer: Under phase 1 metabolism in the liver

      Explanation:

      ACE inhibitors are prodrugs that require activation through phase 1 metabolism in the liver, except for captopril and lisinopril which are administered as active drugs. The hepatic esterolysis process converts ACE inhibitors into their active metabolite, allowing them to function as subtype 1B prodrugs. It is important to note that ACE inhibitors are not activated at the site of therapeutic action, and belong to subtype 1A and 2C prodrugs that are activated intracellularly or extracellularly at the therapeutic site, respectively. Answer 3 is a distractor, as ACE inhibitors do not activate ACE in the lung, but rather inhibit its activity. Answer 5 is also incorrect, as most ACE inhibitors require activation through metabolism.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      22.5
      Seconds
  • Question 26 - A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The...

    Incorrect

    • A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The physician opts to initiate oral amiodarone at 200 mg thrice daily, and gradually decrease at weekly intervals until a maintenance dose of 200 mg once daily.

      What is the rationale behind this dosing plan?

      Your Answer: It is metabolised and excreted rapidly by the kidneys

      Correct Answer: Amiodarone has a very long half-life

      Explanation:

      Amiodarone’s long half-life is due to its high lipophilicity and extensive tissue absorption, resulting in reduced bioavailability in serum. To achieve stable therapeutic levels, a prolonged loading regimen is necessary.

      To quickly achieve therapeutic levels, high doses of oral amiodarone are required due to poor absorption. Once achieved, a once-daily regimen can be continued. Amiodarone’s plasma half-life ranges from 20 to 100 days, meaning its effects persist long after discontinuation. Patients should be counseled on this and advised to recognize adverse effects and avoid drugs that interact with amiodarone even after stopping it.

      The statement that amiodarone has a short half-life is incorrect; it has a long half-life.

      Patients do not need to stay admitted for monitoring during the loading regimen. However, thyroid and liver function tests should be performed every 6 months for up to 12 months after discontinuation due to the long half-life.

      Amiodarone is excreted via the liver and biliary system, not rapidly metabolized and eliminated by the kidneys. Therefore, patients with amiodarone overdose or toxicity are not suitable for dialysis.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      16.6
      Seconds
  • Question 27 - A 55-year-old woman with hypertension comes in for a routine check-up with her...

    Correct

    • A 55-year-old woman with hypertension comes in for a routine check-up with her GP. She mentions feeling fatigued for the past few days and has been taking antihypertensive medication for almost a year, but cannot recall the name. Her ECG appears normal.

      Hb 142 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 180 * 109/L (150 - 400)
      WBC 7.5 * 109/L (4.0 - 11.0)

      Na+ 133 mmol/L (135 - 145)
      K+ 3.8 mmol/L (3.5 - 5.0)
      Urea 5.5 mmol/L (2.0 - 7.0)
      Creatinine 98 µmol/L (55 - 120)

      What medication might she be taking?

      Your Answer: Hydrochlorothiazide

      Explanation:

      Thiazide diuretics have been known to cause hyponatremia, as seen in the clinical scenario and blood tests. The question aims to test knowledge of antihypertensive medications that may lead to hyponatremia.

      The correct answer is Hydrochlorothiazide, as ACE inhibitors, angiotensin receptor blockers, and calcium channel blockers may also cause hyponatremia. Beta-blockers, such as Atenolol, typically do not cause hyponatremia. Similarly, central agonists like Clonidine and alpha-blockers like Doxazosin are not known to cause hyponatremia.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      19
      Seconds
  • Question 28 - A 40-year-old man is stabbed in the abdomen and the inferior vena cava...

    Correct

    • A 40-year-old man is stabbed in the abdomen and the inferior vena cava is injured. What is the typical number of functional valves found in this vessel?

      Your Answer: 0

      Explanation:

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      5.4
      Seconds
  • Question 29 - A 65-year-old woman is admitted with severe community-acquired pneumonia that progresses to sepsis...

    Correct

    • A 65-year-old woman is admitted with severe community-acquired pneumonia that progresses to sepsis and sepsis-driven atrial fibrillation. During examination, her blood pressure is unrecordable and a weak pulse is detected in her left arm. She reports experiencing weakness, numbness, and pain in her left arm, leading doctors to suspect an embolus. What is the embolus' direction of travel from her heart to her left arm?

      Your Answer: Left atrium → Left ventricle → aortic arch → left subclavian artery → left axillary artery → left brachial artery

      Explanation:

      The path of oxygenated blood is from the left atrium to the left ventricle, then through the aortic arch, left subclavian artery, left axillary artery, and finally the left brachial artery.

      Vascular disorders of the upper limb are less common than those in the lower limb. The upper limb circulation can be affected by embolic events, stenotic lesions, inflammatory disorders, and venous diseases. The collateral circulation of the arterial inflow can impact disease presentation. Conditions include axillary/brachial embolus, arterial occlusions, Raynaud’s disease, upper limb venous thrombosis, and cervical rib. Treatment varies depending on the condition.

    • This question is part of the following fields:

      • Cardiovascular System
      7.6
      Seconds
  • Question 30 - A 50-year-old man comes to the cardiac clinic for a follow-up exercise stress...

    Incorrect

    • A 50-year-old man comes to the cardiac clinic for a follow-up exercise stress test. The physician discusses the cardiac adaptations during physical activity.

      What statement best describes this patient's pulse pressure?

      Your Answer:

      Correct Answer: Their increased stroke volume will increase pulse pressure

      Explanation:

      Increasing stroke volume leads to an increase in pulse pressure, while decreasing stroke volume results in a decrease in pulse pressure. This is because pulse pressure is determined by the difference between systolic and diastolic pressure, and an increase in stroke volume raises systolic pressure. During exercise, stroke volume increases to meet the body’s demands, leading to an increase in pulse pressure. Therefore, it is incorrect to say that a decrease in pulse pressure will increase stroke volume, or that a decrease in stroke volume will not affect pulse pressure.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (11/29) 38%
Passmed