00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 49-year-old male has sustained a facial burn at work. During the morning...

    Incorrect

    • A 49-year-old male has sustained a facial burn at work. During the morning ward round, it is observed in the surgeon's notes that the facial artery has good arterial blood supply, leading to hope for satisfactory healing. What is the name of the major artery that the facial artery branches off from?

      Your Answer: Internal carotid artery

      Correct Answer: External carotid artery

      Explanation:

      The facial artery is the primary source of blood supply to the face, originating from the external carotid artery after the lingual artery. It follows a winding path and terminates as the angular artery at the inner corner of the eye.

      The internal carotid artery provides blood to the front and middle parts of the brain, while the vertebral artery, a branch of the subclavian artery, supplies the spinal cord, cerebellum, and back part of the brain. The brachiocephalic artery supplies the right side of the head and arm, giving rise to the subclavian and common carotid arteries on the right side.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      24.4
      Seconds
  • Question 2 - During surgery on her neck, a woman in her 50s suffers a vagus...

    Incorrect

    • During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.

      What other features would be expected with a vagus nerve injury?

      Your Answer: Loss of anal tone

      Correct Answer: Hoarse voice

      Explanation:

      The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.

      However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      11.2
      Seconds
  • Question 3 - With respect to the basilic vein, which statement is not true? ...

    Incorrect

    • With respect to the basilic vein, which statement is not true?

      Your Answer: It joins the brachial vein to form the axillary vein

      Correct Answer: Its deep anatomical location makes it unsuitable for use as an arteriovenous access site in fistula surgery

      Explanation:

      A basilic vein transposition is a surgical procedure that utilizes it during arteriovenous fistula surgery.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      24.3
      Seconds
  • Question 4 - An individual in their mid-20s is identified to have a superior vena cava...

    Correct

    • An individual in their mid-20s is identified to have a superior vena cava on the left side. What is the most probable route for blood from this system to reach the heart?

      Your Answer: Via the coronary sinus

      Explanation:

      The Superior Vena Cava: Anatomy, Relations, and Developmental Variations

      The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.

      Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an un-roofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.

      Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      20.7
      Seconds
  • Question 5 - A 75-year-old man presents to the emergency department following a syncopal episode. He...

    Incorrect

    • A 75-year-old man presents to the emergency department following a syncopal episode. He has no significant medical history and denies any loss of bladder or bowel control or tongue biting.

      During examination, an ejection systolic murmur is detected at the right sternal edge in the second intercostal space. The murmur is heard radiating to the carotids.

      What intervention can be done to decrease the intensity of the murmur heard during auscultation?

      Your Answer: Raising legs

      Correct Answer: Valsalva manoeuvre

      Explanation:

      The intensity of the ejection systolic murmur heard in aortic stenosis can be decreased by performing the Valsalva manoeuvre. On the other hand, the intensity of the murmur can be increased by administering amyl nitrite, raising legs, expiration, and squatting. These actions increase the volume of blood flow through the valve.

      Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.

      Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.

    • This question is part of the following fields:

      • Cardiovascular System
      32.6
      Seconds
  • Question 6 - As a curious fourth-year medical student, you observe the birth of a full-term...

    Incorrect

    • As a curious fourth-year medical student, you observe the birth of a full-term baby delivered vaginally to a mother who has given birth once before. The infant's Apgar score is 9 at 1 minute and 10 at 10 minutes, and the delivery is uncomplicated. However, a postnatal examination reveals that the ductus arteriosus has not closed properly. Can you explain the process by which this structure normally closes?

      Your Answer: Decreased oxygen tension as the infant is no longer receiving oxygenated blood from the placenta

      Correct Answer: Decreased prostaglandin concentration

      Explanation:

      The ductus arteriosus, which is a shunt connecting the pulmonary artery with the descending aorta in utero, closes with the first breaths of life. This is due to an increase in pulmonary blood flow, which helps to clear local vasodilating prostaglandins that keep the duct open during fetal development. The opening of the lung alveoli with the first breath of life leads to an increase in oxygen tension in the blood, but this is not the primary mechanism behind the closure of the ductus arteriosus. It is important to note that oxygen tension in the blood increases after birth when the infant breathes in air and no longer receives mixed oxygenated blood via the placenta.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      23.7
      Seconds
  • Question 7 - A 75-year-old man presents to the emergency department with acute chest pain that...

    Incorrect

    • A 75-year-old man presents to the emergency department with acute chest pain that is radiating to his left shoulder. He has a medical history of a previous transient ischaemic attack three years ago and is currently taking aspirin 75mg OD.

      Upon initial assessment, an ECG reveals ST-segment elevation in V1-V3. The patient undergoes percutaneous coronary intervention with a drug-eluting stent and is stable post-procedure. His treatment plan includes ramipril, ticagrelor, simvastatin, and atenolol.

      What is the mechanism of action of the newly prescribed antiplatelet medication?

      Your Answer: Inhibit phosphodiesterase

      Correct Answer: Inhibit the binding of ADP to platelets

      Explanation:

      Ticagrelor and clopidogrel have a similar mechanism of action in inhibiting ADP binding to platelet receptors, which prevents platelet aggregation. In patients with STEMI who undergo percutaneous coronary intervention with a drug-eluting stent, dual antiplatelet therapy, beta-blockers, ACE inhibitors, and anti-hyperlipidemic drugs are commonly used for secondary management.

      Glycoprotein IIb/IIIa complex is a fibrinogen receptor found on platelets that, when activated, leads to platelet aggregation. Glycoprotein IIb/IIIa inhibitors, such as abciximab, bind to this receptor and prevent ligands like fibrinogen from accessing their binding site. Glycoprotein IIb/IIIa antagonists, like eptifibatide, compete with ligands for the receptor’s binding site, blocking the formation of thrombi.

      Dipyridamole inhibits platelet cAMP-phosphodiesterase, leading to increased intra-platelet cAMP and decreased arachidonic acid release, resulting in reduced thromboxane A2 formation. It also inhibits adenosine reuptake by vascular endothelial cells and erythrocytes, leading to increased adenosine concentration, activation of adenyl cyclase, and increased cAMP production.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      22.3
      Seconds
  • Question 8 - A 24-year-old patient is brought to the emergency department after ingesting a bottle...

    Correct

    • A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?

      Your Answer: Hypohidrosis

      Explanation:

      Hypohidrosis is a possible side-effect of Atropine.

      Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.

      Understanding Atropine and Its Uses

      Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.

      Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.

    • This question is part of the following fields:

      • Cardiovascular System
      16.3
      Seconds
  • Question 9 - A 75-year-old man presents to the emergency department with sudden onset chest pain...

    Correct

    • A 75-year-old man presents to the emergency department with sudden onset chest pain that started 3 hours ago and is radiating to his left shoulder. He reports feeling a heavy pressure over his sternum. The patient has a 40-year history of smoking one pack of cigarettes per day and was diagnosed with hyperlipidaemia 25 years ago. An initial ECG reveals ST elevation in V3 and V4. Despite resuscitative efforts, the patient passes away. Upon autopsy, a section of the left anterior descending artery stained with haematoxylin and eosin shows atheroma formation.

      What is the final step in the pathogenesis of the autopsy finding in this case?

      Your Answer: Smooth muscle migration from tunica media

      Explanation:

      An elderly patient with typical anginal pain is likely suffering from ischaemic heart disease, which is commonly caused by atherosclerosis. This patient has risk factors for atherosclerosis, including smoking and hyperlipidaemia.

      Atherosclerosis begins with thickening of the tunica intima, which is mainly composed of proteoglycan-rich extracellular matrix and acellular lipid pools. Fatty streaks, which are minimal lipid depositions on the luminal surface, can be seen in normal individuals and are not necessarily a part of the atheroma. They can begin as early as in the twenties.

      As the disease progresses, fibroatheroma develops, characterized by infiltration of macrophages and T-lymphocytes, with the formation of a well-demarcated lipid-rich necrotic core. Foam cells appear early in the disease process and play a major role in atheroma formation.

      Further progression leads to thin cap fibroatheroma, where the necrotic core becomes bigger and the fibrous cap thins out. Throughout the process, there is a progressive increase in the number of inflammatory cells. Finally, smooth muscle cells from the tunica media proliferate and migrate into the tunica intima, completing the formation of the atheroma.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages that phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      37.5
      Seconds
  • Question 10 - A 79-year-old woman with a history of heart failure visits the clinic complaining...

    Incorrect

    • A 79-year-old woman with a history of heart failure visits the clinic complaining of swollen ankles and difficulty walking. She has previously experienced fluid retention due to her heart failure. During the examination, soft heart sounds are heard and pitting edema is observed in both lower limbs up to 15 cm above the ankles. The decision is made to increase her daily furosemide dose from 40mg to 80 mg. Which part of the nephron does furosemide target?

      Your Answer: Distal convoluted tubule

      Correct Answer: Ascending limb of the loop of Henle

      Explanation:

      Furosemide is a loop diuretic that works by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle. It is commonly used to treat fluid retention in patients with heart failure. Other diuretic agents work on different parts of the nephron, such as carbonic anhydrase inhibitors in the proximal and distal tubules, thiazide diuretics in the distal convoluted tubule, and potassium-sparing diuretics like amiloride and spironolactone in the cortical collecting ducts. Understanding the mechanism of action of diuretics can help clinicians choose the most appropriate medication for their patients.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      16.7
      Seconds
  • Question 11 - A 50-year-old man visits the diabetic foot clinic and has his foot pulses...

    Correct

    • A 50-year-old man visits the diabetic foot clinic and has his foot pulses checked. During the examination, the healthcare provider palpates the posterior tibial pulse and the dorsalis pedis pulse. What artery does the dorsalis pedis artery continue from?

      Your Answer: Anterior tibial artery

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery.

      At the level of the pelvis, the common iliac artery gives rise to the external iliac artery.

      The lateral compartment of the leg is supplied by the peroneal artery, also known as the fibular artery.

      A branch of the popliteal artery is the tibioperoneal trunk.

      The anterior tibial artery is formed by the popliteal artery.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      12.7
      Seconds
  • Question 12 - A 54-year-old man is undergoing the insertion of a long venous line through...

    Incorrect

    • A 54-year-old man is undergoing the insertion of a long venous line through the femoral vein into the right atrium to measure CVP. The catheter is being passed through the IVC. At what level does this vessel enter the thorax?

      Your Answer: L2

      Correct Answer: T8

      Explanation:

      The diaphragm is penetrated by the IVC at T8.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      8.9
      Seconds
  • Question 13 - An 68-year-old woman is presented to the vascular clinic with a painful ulcer...

    Correct

    • An 68-year-old woman is presented to the vascular clinic with a painful ulcer on the anterior aspect of her shin. She reports experiencing pain in the same leg at night and while sitting in a chair.

      The patient has a medical history of diabetes for 11 years, hypertension for 12 years, and has been a smoker for over 50 years.

      Upon examination, a pale ulcer with a 'punched out' appearance is observed. The patient declines further examination.

      Based on the given clinical scenario, what is the most probable type of ulcer?

      Your Answer: Arterial ulcer

      Explanation:

      The correct answer is arterial ulcer. These types of leg ulcers are typically pale, painful, and have a punched-out appearance. They are often associated with peripheral vascular disease, which is likely in this patient given her cardiovascular risk factors and claudication pain. The fact that she experiences pain while sitting down suggests critical ischemia. Venous ulcers, on the other hand, appear red and oozing with irregular margins and are usually associated with varicose veins, edema, or lipodermatosclerosis. Marjolin ulcers are a malignant transformation of chronic ulcers into squamous cell carcinoma, while neuropathic ulcers typically occur over pressure areas such as the sole of the foot and are associated with a sensory neuropathy. Although this patient has diabetes, the history and appearance of the ulcer are more consistent with an arterial ulcer.

      Venous leg ulcers are caused by venous hypertension and can be managed with compression banding. Marjolin’s ulcers are a type of squamous cell carcinoma that occur at sites of chronic inflammation. Arterial ulcers are painful and occur on the toes and heel, while neuropathic ulcers commonly occur over the plantar surface of the metatarsal head and hallux. Pyoderma gangrenosum is associated with inflammatory bowel disease and can present as erythematous nodules or pustules that ulcerate.

    • This question is part of the following fields:

      • Cardiovascular System
      24.4
      Seconds
  • Question 14 - A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of...

    Correct

    • A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?

      Your Answer: L1

      Explanation:

      The L1 level is where the left renal artery is located.

      Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.

      At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.

      The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      18
      Seconds
  • Question 15 - A 36-year-old woman presents to her GP with a history of long-standing fatigue,...

    Incorrect

    • A 36-year-old woman presents to her GP with a history of long-standing fatigue, dyspnea, and chest discomfort that has recently worsened. Despite being physically active, she has been experiencing these symptoms. She is a social drinker and does not smoke. Her family history is unremarkable except for her mother who died of 'chest disease' at the age of 50. During examination, her observations are as follows:

      Blood pressure: 135/85mmHg
      Pulse: 95 beats/min
      Respiration: 25 breaths/min

      An ECG shows no abnormalities, and cardiac enzymes are within normal ranges. She is referred for echocardiography, which reveals a right pulmonary artery pressure of 35 mmhg.

      What substance is elevated in this patient, underlying the disease process?

      Your Answer: Nitric oxide

      Correct Answer: Endothelin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      39
      Seconds
  • Question 16 - A 25-year-old man has been diagnosed with an abnormal electrical connection in his...

    Incorrect

    • A 25-year-old man has been diagnosed with an abnormal electrical connection in his heart, resulting in frequent palpitations, dizzy spells, and shortness of breath. Delta waves are also evident on his ECG. Would ablation of the coronary sinus be a viable treatment option for this condition?

      From which embryological structure is the target for this surgery derived?

      Your Answer: Foramen ovale

      Correct Answer: Left horn of the sinus venosus

      Explanation:

      The sinus venosus has two horns, left and right. The left horn gives rise to the coronary sinus, while the right horn forms the smooth part of the right atrium. In patients with Wolff-Parkinson-White syndrome, an abnormal conduction pathway exists in the heart. To eliminate this pathway, a treatment called ablation of the coronary sinus is used. This involves destroying the conducting pathway that runs through the coronary sinus, which is formed from the left horn of the sinus venosus during embryonic development.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      56.3
      Seconds
  • Question 17 - Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome,...

    Correct

    • Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome, who has experienced recurrent episodes of sudden palpitations. The procedure involves catheterization within the heart to evaluate the electrical activity and determine the conduction velocity of various parts of the conduction pathway.

      Which segment of this pathway exhibits the highest conduction velocity?

      Your Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the fastest conduction velocities in the heart, at approximately 4m/sec, due to different connexins in their gap junctions. They allow depolarisation throughout the ventricular muscle. Atrial muscle conducts at around 0.5m/sec, the atrioventricular node conducts at a slow rate, and the Bundle of His conducts at 2m/sec, but not as rapidly as the Purkinje fibres.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      13.3
      Seconds
  • Question 18 - A 5-year-old girl with a history of unrepaired Tetralogy of Fallot has arrived...

    Incorrect

    • A 5-year-old girl with a history of unrepaired Tetralogy of Fallot has arrived at the emergency department with sudden cyanosis and difficulty breathing after crying. Additionally, the patient is administered oxygen, morphine, and propranolol, and is expected to recover well. Surgery to repair the condition is scheduled in the near future.

      What is the term for this cyanotic episode that is commonly associated with Tetralogy of Fallot?

      Your Answer: Neonatal respiratory distress syndrome (NRDS)

      Correct Answer: Tet's spells

      Explanation:

      The correct answer is Tet’s spells, which are episodic hypercyanotic events that can cause loss of consciousness in infants with Tetralogy of Fallot. This condition is characterized by four structural abnormalities in the heart, but Tet’s spells are a specific manifestation of the disease. Acute coronary syndrome and neonatal respiratory distress syndrome are not relevant to this patient’s presentation, while Eisenmenger’s syndrome is a chronic condition that does not fit the acute nature of Tet’s spells.

      Understanding Tetralogy of Fallot

      Tetralogy of Fallot (TOF) is a congenital heart disease that causes cyanosis, or a bluish tint to the skin, due to a lack of oxygen in the blood. It is the most common cause of cyanotic congenital heart disease. TOF is typically diagnosed in infants between 1-2 months old, but may not be detected until they are 6 months old.

      TOF is caused by a malalignment of the aorticopulmonary septum, resulting in four characteristic features: a ventricular septal defect (VSD), right ventricular hypertrophy, pulmonary stenosis, and an overriding aorta. The severity of the right ventricular outflow tract obstruction determines the degree of cyanosis and clinical severity.

      Other symptoms of TOF include episodic hypercyanotic tet spells, which can cause severe cyanosis and loss of consciousness. These spells occur when the right ventricular outflow tract is nearly occluded and are triggered by stress, pain, or fever. A right-to-left shunt may also occur. A chest x-ray may show a boot-shaped heart, and an ECG may show right ventricular hypertrophy.

      Surgical repair is often necessary for TOF, and may be done in two parts. Beta-blockers may also be used to reduce infundibular spasm and help with cyanotic episodes. It is important to diagnose and manage TOF early to prevent complications and improve outcomes.

      Overall, understanding the causes, symptoms, and management of TOF is crucial for healthcare professionals and caregivers to provide the best possible care for infants with this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      15
      Seconds
  • Question 19 - A 55-year-old male with hypertension visits his GP complaining of a persistent dry...

    Correct

    • A 55-year-old male with hypertension visits his GP complaining of a persistent dry cough. He reports that this started two weeks ago after he was prescribed ramipril. What alternative medication class might the GP consider switching him to?

      Your Answer: Angiotensin receptor blockers

      Explanation:

      A dry cough is a common and bothersome side effect of ACE inhibitors like ramipril. However, angiotensin receptor blockers work by blocking angiotensin II receptors and have similar adverse effects to ACE inhibitors, but without the cough. According to guidelines, ACE inhibitors are the first line of treatment for white patients under 55 years old. If they are ineffective, angiotensin receptor blockers should be used instead. Beta-blockers, diuretics, calcium channel blockers, and alpha blockers are reserved for later use.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      11.2
      Seconds
  • Question 20 - A 40-year-old male patient complains of shortness of breath, weight loss, and night...

    Correct

    • A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?

      Your Answer: Splinter haemorrhages

      Explanation:

      Symptoms and Diagnosis of Infective Endocarditis

      This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.

    • This question is part of the following fields:

      • Cardiovascular System
      30.9
      Seconds
  • Question 21 - Mr. Johnson, a 68-year-old man visits his doctor with a complaint of experiencing...

    Incorrect

    • Mr. Johnson, a 68-year-old man visits his doctor with a complaint of experiencing dizzy spells for the past month. He mentions that he started taking a long-acting nitrate for heart failure about three weeks ago.

      The doctor takes his sitting blood pressure and compares it to his previous readings.

      Current BP 88/72mmHg
      BP two months ago 130/90mmHg

      The doctor concludes that the new medication has caused hypotension in Mr. Johnson.

      What molecular mechanism could be responsible for this change in blood pressure?

      Your Answer: Nitrate causing an increased in intracellular sodium

      Correct Answer: Nitrate causing a decrease in intracellular calcium

      Explanation:

      The release of nitric oxide caused by nitrates can lead to a decrease in intracellular calcium. This occurs when nitric oxide activates guanylate cyclase, which converts GDP to cGMP. The resulting decrease in intracellular calcium within smooth muscle cells causes vasodilation and can result in hypotension as a side effect. Additionally, flushing may occur as a result of the vasodilation caused by decreased intracellular calcium. It is important to note that nitrates do not affect intracellular potassium or sodium, and do not cause an increase in intracellular calcium, which would lead to smooth muscle contraction and an increase in blood pressure.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      38.7
      Seconds
  • Question 22 - An occlusion of the anterior cerebral artery may affect the blood supply to...

    Incorrect

    • An occlusion of the anterior cerebral artery may affect the blood supply to which of the following structures, except for:

      Your Answer: Olfactory bulb

      Correct Answer: Brocas area

      Explanation:

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      18.2
      Seconds
  • Question 23 - A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux...

    Correct

    • A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux disease. While the procedure is ongoing, the patient experiences several coughing episodes.

      Which two cranial nerves are responsible for this reflex action?

      Your Answer: Cranial nerves IX and X

      Explanation:

      The glossopharyngeal and vagus nerves, which are cranial nerves IX and X respectively, mediate the cough reflex. The facial nerve, or cranial nerve VII, is responsible for facial movements and taste in the anterior 2/3 of the tongue. The vestibulocochlear nerve, or cranial nerve VIII, is responsible for hearing and balance. Cranial nerve XI, also known as the spinal accessory nerve, innervates the sternocleidomastoid muscle and the trapezius muscle. The hypoglossal nerve, or cranial nerve XII, is responsible for the motor innervation of most of the tongue, and damage to this nerve can cause the tongue to deviate towards the side of the lesion when protruded.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      8.7
      Seconds
  • Question 24 - A 67-year-old man comes to the emergency department with concerns of pain in...

    Correct

    • A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?

      Your Answer: Anterior tibial

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      28.9
      Seconds
  • Question 25 - An 80-year-old man visits his GP with complaints of worsening shortness of breath,...

    Correct

    • An 80-year-old man visits his GP with complaints of worsening shortness of breath, dry cough, and fatigue over the past 6 weeks. The patient reports having to stop multiple times during his daily walk to catch his breath and sleeping with an extra pillow at night to aid his breathing. He has a medical history of hypertension and a smoking history of 30 pack-years. His current medications include ramipril, amlodipine, and atorvastatin.

      During the examination, the GP observes end-inspiratory crackles at both lung bases. The patient's oxygen saturation is 94% on room air, his pulse is regular at 110 /min, and his respiratory rate is 24 /min.

      What is the most probable underlying diagnosis?

      Your Answer: Chronic heart failure

      Explanation:

      Orthopnoea is a useful indicator to distinguish between heart failure and COPD.

      The Framingham diagnostic criteria for heart failure include major criteria such as acute pulmonary oedema and cardiomegaly, as well as minor criteria like ankle oedema and dyspnoea on exertion. Other minor criteria include hepatomegaly, nocturnal cough, pleural effusion, tachycardia (>120 /min), neck vein distension, and a third heart sound.

      In this case, the patient exhibits orthopnoea (needing an extra pillow to alleviate breathlessness), rales (crackles heard during inhalation), and dyspnoea on exertion, all of which are indicative of heart failure.

      While COPD can present with similar symptoms such as coughing, fatigue, shortness of breath, and desaturation, the presence of orthopnoea helps to differentiate between the two conditions.

      Pulmonary fibrosis, on the other hand, does not typically present with orthopnoea.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      20.8
      Seconds
  • Question 26 - Where is the site of action of bendroflumethiazide in elderly patients? ...

    Incorrect

    • Where is the site of action of bendroflumethiazide in elderly patients?

      Your Answer: Distal part of the distal convoluted tubules

      Correct Answer: Proximal part of the distal convoluted tubules

      Explanation:

      Thiazides and thiazide-like medications, such as indapamide, work by blocking the Na+-Cl− symporter at the start of the distal convoluted tubule, which inhibits the reabsorption of sodium.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      6.4
      Seconds
  • Question 27 - A 63-year-old woman comes to her doctor for a review of her angina...

    Incorrect

    • A 63-year-old woman comes to her doctor for a review of her angina medication. She expresses worry about her condition and inquires about the cause of the narrowing of her coronary arteries.

      What alteration takes place during the progression of atherosclerosis?

      Your Answer: Phagocytosis of HDLs by macrophages, forming foam cells

      Correct Answer: Fatty infiltration of the subendothelial space

      Explanation:

      The subendothelial space is where fatty infiltration takes place.

      Foam cells are created by the ingestion of LDLs, not HDLs.

      Infiltration does not occur in the tunica externa, but rather in the subendothelial space.

      Smooth muscle proliferation occurs, not hypertrophy.

      Endothelial dysfunction leads to a decrease in nitric oxide bioavailability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      39.6
      Seconds
  • Question 28 - A 57-year-old Asian man arrived at the emergency department with complaints of chest...

    Correct

    • A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?

      Your Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      21.7
      Seconds
  • Question 29 - Following a minor heart attack, how does atorvastatin work to reduce the risk...

    Correct

    • Following a minor heart attack, how does atorvastatin work to reduce the risk of a subsequent MI in a 65-year-old patient?

      Your Answer: Decreases LDLs in the blood by inhibiting HMG-CoA reductase in the liver

      Explanation:

      The primary goal of statins is to lower cholesterol levels in the bloodstream, which in turn reduces the risk of cardiovascular events. This is achieved by inhibiting HMG-CoA reductase in the liver, which prevents the synthesis of mevalonate, a precursor to LDLs. As a result, statins decrease the amount of cholesterol being transported to body tissues by LDLs. However, statins do not affect the levels of HDLs, which transport cholesterol from body tissues back to the liver.

      Statins are drugs that inhibit the action of HMG-CoA reductase, which is the enzyme responsible for cholesterol synthesis in the liver. However, they can cause adverse effects such as myopathy, liver impairment, and an increased risk of intracerebral hemorrhage in patients with a history of stroke. Statins should not be taken during pregnancy or in combination with macrolides. NICE recommends statins for patients with established cardiovascular disease, a 10-year cardiovascular risk of 10% or higher, type 2 diabetes mellitus, or type 1 diabetes mellitus with certain criteria. It is recommended to take statins at night, especially simvastatin, which has a shorter half-life than other statins. NICE recommends atorvastatin 20mg for primary prevention and atorvastatin 80 mg for secondary prevention.

    • This question is part of the following fields:

      • Cardiovascular System
      16.9
      Seconds
  • Question 30 - A 50-year-old man comes in with a lipoma situated at the back of...

    Incorrect

    • A 50-year-old man comes in with a lipoma situated at the back of the posterior border of the sternocleidomastoid muscle, about 4 cm above the middle third of the clavicle. While performing surgery to remove the growth, problematic bleeding is encountered. What is the most probable origin of the bleeding?

      Your Answer: Common carotid artery

      Correct Answer: External jugular vein

      Explanation:

      The superficial fascia of the posterior triangle contains the external jugular vein, which runs diagonally and drains into the subclavian vein. Surgeons must be careful during exploration of this area to avoid injuring the external jugular vein and causing excessive bleeding. The internal jugular vein and carotid arteries are located in the anterior triangle, while the third part of the subclavian artery is found in the posterior triangle, not the second part.

      The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.

    • This question is part of the following fields:

      • Cardiovascular System
      21
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (14/30) 47%
Passmed