00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 35-year-old female patient complains of chronic flank pain. Her family history reveals...

    Incorrect

    • A 35-year-old female patient complains of chronic flank pain. Her family history reveals a brother with similar symptoms and a mother who died from a subarachnoid haemorrhage. Bilateral renal ultrasound shows multiple cysts. Which chromosome is most likely to be affected in this genetic disorder?

      Your Answer: 21

      Correct Answer: 16

      Explanation:

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      24.9
      Seconds
  • Question 2 - A 6-year-old girl presents with proteinuria, oedema, hypoalbuminaemia, hyperlipidaemia. A diagnosis of nephrotic...

    Incorrect

    • A 6-year-old girl presents with proteinuria, oedema, hypoalbuminaemia, hyperlipidaemia. A diagnosis of nephrotic syndrome secondary to minimal change disease is made.

      What is the most suitable medication for treatment in this case?

      Your Answer: Calcium channel blockers

      Correct Answer: Steroids

      Explanation:

      Prednisolone is the optimal treatment for minimal change glomerulonephritis presenting with nephrotic syndrome, while the other medications mentioned are not appropriate options.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      44.1
      Seconds
  • Question 3 - A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent...

    Incorrect

    • A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent urinary tract infections. The paediatric consultant on CAU orders a group of investigations to find out the underlying cause.

      What are the risk factors for UTIs in children, as the paediatrics trainee has asked the medical student?

      Your Answer: Male gender

      Correct Answer: Posterior urethral valves

      Explanation:

      The risk of urinary tract infection is higher in individuals with posterior urethral valves.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      41.7
      Seconds
  • Question 4 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Hyperosmolar non-ketotic state

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Renal System
      81.1
      Seconds
  • Question 5 - A 28-year-old man is on day 9 of his cycle from Land's End...

    Incorrect

    • A 28-year-old man is on day 9 of his cycle from Land's End to John O'Groats. He made a wrong turn and ran out of fluids. After getting back on track, he found a shop and purchased a 2L bottle of water.

      Which part of the nephron is responsible for reabsorbing the majority of this water?

      Your Answer: Collecting duct

      Correct Answer: Proximal tubule

      Explanation:

      The correct answer is the proximal tubule. This is where the majority of filtered water is reabsorbed, due to the osmotic force generated by Na+ reabsorption. Bowman’s capsule only allows for ultrafiltration, while the collecting duct allows for variable water reabsorption, but not to the same extent as the proximal tubule. The distal tubule also plays a role in Na+ reabsorption, but water reabsorption is dependent on this mechanism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      19.3
      Seconds
  • Question 6 - Which one of the following statements relating to the regulation of cardiac blood...

    Incorrect

    • Which one of the following statements relating to the regulation of cardiac blood flow is not true?

      Your Answer: In a healthy 70Kg male, the glomerular filtration rate will be the same at a systolic blood pressure of 120mmHg as a systolic blood pressure of 95 mmHg

      Correct Answer: Systolic blood pressures of less than 65mmHg will cause the mesangial cells to secrete aldosterone

      Explanation:

      The kidney has the ability to regulate its own blood supply within a certain range of systolic blood pressures. If the arterial pressure drops, the juxtaglomerular cells detect this and release renin, which activates the renin-angiotensin system. Mesangial cells, which are located in the tubule, do not have any direct endocrine function but are able to contract.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      53.6
      Seconds
  • Question 7 - A 23-year-old male presents to the emergency department with decreased level of consciousness...

    Correct

    • A 23-year-old male presents to the emergency department with decreased level of consciousness after a night of excessive alcohol intake. He is observed to have increased urine output. There is no history of substance abuse according to his companions.

      What is the probable cause of the patient's polyuria?

      Your Answer: antidiuretic hormone inhibition

      Explanation:

      Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria. This occurs because alcohol inhibits ADH, which reduces the insertion of aquaporins in the collecting tubules of the nephron. As a result, water reabsorption is reduced, leading to polyuria. The other options provided are incorrect because they do not accurately describe the mechanism by which alcohol causes polyuria. Central diabetes insipidus is a disorder of ADH production in the brain, while nephrogenic diabetes insipidus is caused by kidney pathology. Osmotic diuresis occurs when solutes such as glucose and urea increase the osmotic pressure in the renal tubules, leading to water retention, but this is not the primary mechanism by which alcohol causes polyuria.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      59.8
      Seconds
  • Question 8 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Correct

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      44.4
      Seconds
  • Question 9 - A 36-year-old woman is suspected to have a postpartum haemorrhage a few hours...

    Incorrect

    • A 36-year-old woman is suspected to have a postpartum haemorrhage a few hours after delivery. Conservative and medical measures fail to stop the bleeding, resulting in a loss of over 2000mls of blood. The woman is urgently taken to the operating room.

      During the procedure, the consultant obstetrician attempts to perform an internal iliac artery ligation. This artery is significant as it gives rise to several smaller vessels that supply nearby structures.

      Which of the following correctly identifies a pair of arteries that branch off the internal iliac artery?

      Your Answer: Deep circumflex and cremasteric artery

      Correct Answer: Superior and inferior vesical arteries

      Explanation:

      The branches of the internal iliac artery can be easily remembered using the mnemonic I Love Going Places In My Very Own Soiled Underwear! These branches include the iliolumbar artery, lateral sacral artery, superior and inferior gluteal arteries, internal pudendal artery, inferior vesical (or uterine in females) artery, middle rectal artery, vaginal artery, obturator artery, and umbilical artery. On the other hand, the external iliac artery gives rise to the inferior epigastric, cremasteric, and deep circumflex arteries.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      65.4
      Seconds
  • Question 10 - A 42-year-old man visits the clinic complaining of a tickly cough that has...

    Incorrect

    • A 42-year-old man visits the clinic complaining of a tickly cough that has been bothering him for the past two weeks. He reports no other symptoms and his respiratory exam appears normal. The patient recently began taking an ACE inhibitor, which you suspect may be the cause of his cough. You decide to switch him to an angiotensin receptor blocker instead. Many antihypertensive medications target components of the renin-angiotensin-aldosterone system. Which enzyme catalyzes the hydrolysis of angiotensinogen to produce the hormone angiotensin I, an important player in this system?

      Your Answer: Cyclooxygenase-2

      Correct Answer: Renin

      Explanation:

      The kidneys produce renin in their juxtaglomerular cells, which plays a crucial role in the renin-angiotensin-aldosterone system. This enzyme converts angiotensinogen into angiotensin I through a hydrolysis reaction. More information on this system can be found below.

      Another important enzyme in this system is angiotensin-converting-enzyme (ACE), which is primarily located in the lungs but can also be found in smaller quantities in endothelial cells of the vasculature and kidney epithelial cells. ACE converts angiotensin I to angiotensin II and is the target of ACE inhibitors.

      Carbonic anhydrase is an enzyme that facilitates the reaction between water and carbon dioxide to form bicarbonate, and it can also catalyze the reverse reaction. Carbonic anhydrase inhibitors target this enzyme.

      Cyclooxygenase-2 (COX-2) is involved in the synthesis of prostaglandins, and NSAIDs are believed to work by inhibiting both COX-1 and COX-2 enzymes.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      60.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (2/10) 20%
Passmed