-
Question 1
Incorrect
-
A 32-year-old single mum has been recommended for genetic testing after her 10-months-old daughter was diagnosed with congenital nephrogenic diabetes insipidus. She has no symptoms and does not know of any family history of this disorder.
Which part of the kidney is frequently impacted in this condition?Your Answer: Aquaporin 1 channel (AQP1)
Correct Answer: Vasopressin receptor
Explanation:Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Correct
-
What is measured to obtain renal plasma flow if the patient is a few years older?
Your Answer: Para-amino hippuric acid (PAH)
Explanation:The normal value for renal plasma flow is 660ml/min, which is calculated by dividing the amount of PAH in urine per unit time by the difference in PAH concentration in the renal artery or vein.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Incorrect
-
You have been requested to evaluate a 45-year-old Caucasian individual who has recently been diagnosed with hypertension. Despite making dietary modifications and engaging in physical activity, their blood pressure remains above 160/100 mmHg, prompting you to recommend medication.
During the consultation, the patient inquires about the drug's mechanism of action. You clarify that the medication obstructs an enzyme responsible for converting a peptide hormone into its active state.
Based on the medication you have prescribed, which of the following alterations is expected to happen?Your Answer: Increased total peripheral resistance
Correct Answer: Reduced ADH release
Explanation:The drug in question is most likely an ACE inhibitor, which is commonly prescribed as first-line therapy for hypertension in older patients of certain races. ACE inhibitors work by inhibiting the enzyme responsible for converting angiotensin I to angiotensin II, which is a key component of the renin-angiotensin-aldosterone system that regulates blood pressure. Angiotensin II has several actions that help to counteract drops in blood pressure, including vasoconstriction, increased aldosterone secretion, and increased ADH release. ACE inhibitors have the opposite effect, leading to reduced levels of ADH. However, ACE inhibitors can also cause a buildup of bradykinin, which may result in a persistent dry cough as a side effect.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Incorrect
-
A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?
Your Answer: Type 4
Correct Answer: Type 2
Explanation:The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.
Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.
Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.
Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.
Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.
The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.
Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Incorrect
-
A 55-year-old man with a medical history of ischaemic heart disease, gout, and diabetes presents with sudden and severe pain in his left renal angle that radiates to his groin. Upon undergoing an urgent CT KUB, it is confirmed that he has nephrolithiasis with hydronephrosis. As a result, he is admitted under the urology team for immediate intervention due to acute kidney injury.
What is the most common material that makes up these calculi in the general population?Your Answer: Calcium phosphate
Correct Answer: Calcium oxalate
Explanation:Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Correct
-
A patient with compromised kidney function is given a new medication that is typically eliminated through renal excretion. What factors might impact the excretion of the medication?
Your Answer: Diffusivity across the basement membrane and tubular secretion/reabsorption
Explanation:The clearance of a substance in the kidneys is influenced by two important factors: diffusivity across the basement membrane and tubular secretion/reabsorption. Additionally, the Loop of Henle plays a crucial role in generating a significant osmotic gradient, while the primary function of the collecting duct is to facilitate the reabsorption of water.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin treatment half a year ago. She expresses worry about the potential long-term impact of diabetes on her kidneys, based on information she read online.
What is the primary mechanism through which kidney damage occurs in this demographic of patients?Your Answer: Osmotic damage
Correct Answer: Non-enzymatic glycosylation
Explanation:The non-enzymatic glycosylation of the basement membrane is responsible for the complications of diabetes nephropathy.
Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease
Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.
There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 49-year-old man with a history of chronic alcohol abuse presents with abdominal distension and is diagnosed with decompensated alcoholic liver disease with ascites. The consultant initiates treatment with spironolactone to aid in the management of his ascites.
What is the mode of action of spironolactone?Your Answer: Inhibition of the sodium/potassium/chloride transporter in the loop of Henle
Correct Answer: Inhibition of the mineralocorticoid receptor in the cortical collecting ducts
Explanation:Aldosterone antagonists function as diuretics by targeting the cortical collecting ducts.
By inhibiting the mineralocorticoid receptor in the cortical collecting ducts, spironolactone acts as an aldosterone antagonist.
Loop diuretics like furosemide work by blocking the sodium/potassium/chloride transporter in the loop of Henle.
Thiazide diuretics, such as bendroflumethiazide, block the sodium/chloride transporter in the distal convoluted tubules.
Carbonic anhydrase inhibitors, like dorzolamide, act on the proximal tubules.
Amiloride inhibits the epithelial sodium transporter in the distal convoluted tubules.
Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.
However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Correct
-
A 75-year-old male is brought to the emergency department after falling at home. Upon admission, his blood tests reveal a sodium level of 128 mmol/l. Which medication is the most probable cause of this?
Your Answer: Sertraline
Explanation:Hyponatremia is a common side effect of SSRIs, including Sertraline, which can cause SIADH. However, medications such as Statins, Levothyroxine, and Metformin are not typically linked to hyponatremia.
SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Incorrect
-
A 15-year-old boy presents to the ED with severe left flank pain that extends to his groin. He describes his symptoms as 'passing stones,' which he has been experiencing 'since he was a child.' His father also reports having similar issues since childhood. Upon urinalysis, hexagonal crystals are detected, and the urinary cyanide nitroprusside test is positive.
What is the most probable reason for this patient's condition?Your Answer: Abnormality of uric acid metabolism
Correct Answer: Amino acid transport abnormality
Explanation:Recurrent kidney stones from childhood and positive family history for nephrolithiasis suggest cystinuria, which is characterized by impaired transport of cystine and dibasic amino acids. The urinary cyanide-nitroprusside test can confirm the diagnosis. Other causes of kidney stones include excess uric acid excretion (gout), excessive intestinal reabsorption of oxalate (Crohn’s disease), infection with urease-producing microorganisms (struvite stones), and primary hyperparathyroidism (calcium oxalate stones).
Understanding Cystinuria: A Genetic Disorder Causing Recurrent Renal Stones
Cystinuria is a genetic disorder that causes recurrent renal stones due to a defect in the membrane transport of cystine, ornithine, lysine, and arginine. This autosomal recessive disorder is caused by mutations in two genes, SLC3A1 on chromosome 2 and SLC7A9 on chromosome 19.
The hallmark feature of cystinuria is the formation of yellow and crystalline renal stones that appear semi-opaque on x-ray. To diagnose cystinuria, a cyanide-nitroprusside test is performed.
Management of cystinuria involves hydration, D-penicillamine, and urinary alkalinization. These treatments help to prevent the formation of renal stones and reduce the risk of complications.
In summary, cystinuria is a genetic disorder that causes recurrent renal stones. Early diagnosis and management are crucial to prevent complications and improve outcomes for individuals with this condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 11
Correct
-
A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash. He is limping and complaining of abdominal pain. He had a recent bout of tonsillitis but is typically healthy. Upon examination, there are numerous palpable purpura in a symmetrical pattern, mainly on his buttocks and the backs of his legs. A urine dipstick reveals mild proteinuria and 2+ blood.
What is the probable underlying pathophysiology of this presentation?Your Answer: IgA mediated small vessel vasculitis
Explanation:The correct answer is IgA mediated small vessel vasculitis, specifically Henoch-Schonlein purpura (HSP). This condition is characterized by palpable purpura, arthralgia, abdominal pain, and haematuria, and typically affects children aged 4-6 years. HSP is often triggered by infections such as streptococcal pharyngitis, but can also be caused by other infections like Mycoplasma pneumoniae, Epstein-Barr virus, and adenovirus.
The other options are incorrect. ANCA-associated vasculitis typically involves the respiratory and ENT systems, which this child does not have. Cryoglobulinaemic vasculitis is associated with hepatitis C, haematological malignancies, and autoimmune disease, none of which are present in this case. Deficiency of von Willebrand factor cleaving protein is a feature of TTP, which is rare in children and typically presents with a low platelet count. ITP is another autoimmune condition that can present similarly to HSP, but can be differentiated by a low platelet count.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 12
Correct
-
A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent urinary tract infections. The paediatric consultant on CAU orders a group of investigations to find out the underlying cause.
What are the risk factors for UTIs in children, as the paediatrics trainee has asked the medical student?Your Answer: Posterior urethral valves
Explanation:The risk of urinary tract infection is higher in individuals with posterior urethral valves.
Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.
-
This question is part of the following fields:
- Renal System
-
-
Question 13
Incorrect
-
During a small bowel resection, the anaesthetist decides to administer an electrolyte-rich intravenous fluid to a 47-year-old man. What is the most suitable option for this requirement?
Your Answer: 5% Dextrose with added potassium 20 mmol/ L
Correct Answer: Hartmans
Explanation:While Hartmans solution has the highest electrolyte content, pentastarch and gelofusine contain a greater number of macromolecules.
Intraoperative Fluid Management: Tailored Approach and Goal-Directed Therapy
Intraoperative fluid management is a crucial aspect of surgical care, but it does not have a rigid algorithm due to the unique requirements of each patient. The latest NICE guidelines in 2013 did not specifically address this issue, but the concept of fluid restriction has been emphasized in enhanced recovery programs for the past decade. In the past, patients received large volumes of saline-rich solutions, which could lead to tissue damage and poor perfusion. However, a tailored approach to fluid administration is now practiced, and goal-directed therapy is used with the help of cardiac output monitors. The composition of commonly used intravenous fluids varies in terms of sodium, potassium, chloride, bicarbonate, and lactate. Therefore, it is important to consider the specific needs of each patient and adjust fluid administration accordingly. By doing so, the risk of complications such as ileus and wound breakdown can be reduced, and optimal surgical outcomes can be achieved.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Incorrect
-
A 46-year-old patient visits his doctor 5 days after his last appointment, worried about passing very small amounts of urine for the past 4 days. He was prescribed gentamicin for an infection during his last visit. The doctor suspects gentamicin-induced nephrotoxicity and conducts an examination, finding no abnormalities and normal blood pressure and temperature. The patient's fractional excretion of urine is greater than 4%, and a urine sample is sent to the lab for microscopy, culture, and sensitivity. What would be observed on microscopy if the doctor's suspicion is correct?
Your Answer: Red cell casts
Correct Answer: Brown granular casts
Explanation:The clinical significance of various laboratory findings is summarized in the table below:
Laboratory Finding Clinical Significance
Elevated creatinine and BUN Indicates impaired kidney function
Low serum albumin Indicates malnutrition or liver disease
Elevated liver enzymes Indicates liver damage or disease
Elevated glucose Indicates diabetes or impaired glucose tolerance
Elevated potassium Indicates kidney dysfunction or medication side effect
Elevated sodium Indicates dehydration or excessive sodium intake
Elevated nitrites Indicates urinary tract infection
Elevated white blood cells Indicates infection or inflammation
Elevated red blood cells Indicates dehydration or kidney disease
Elevated platelets Indicates clotting disorder or inflammationDifferent Types of Urinary Casts and Their Significance
Urine contains various types of urinary casts that can provide important information about the underlying condition of the patient. Hyaline casts, for instance, are composed of Tamm-Horsfall protein that is secreted by the distal convoluted tubule. These casts are commonly seen in normal urine, after exercise, during fever, or with loop diuretics. On the other hand, brown granular casts in urine are indicative of acute tubular necrosis.
In prerenal uraemia, the urinary sediment appears ‘bland’, which means that there are no significant abnormalities in the urine. Lastly, red cell casts are associated with nephritic syndrome, which is a condition characterized by inflammation of the glomeruli in the kidneys. By analyzing the type of urinary casts present in the urine, healthcare professionals can diagnose and manage various kidney diseases and disorders. Proper identification and interpretation of urinary casts can help in the early detection and treatment of kidney problems.
-
This question is part of the following fields:
- Renal System
-
-
Question 15
Incorrect
-
A 7-year-old child presents with subepithelial humps at the glomerular basement membrane on electron microscopy. The child has a history of recent upper respiratory tract infection and no significant past medical or family history. They are not taking any regular medications.
What is the most probable diagnosis?Your Answer: IgA nephropathy
Correct Answer: Post-streptococcal glomerulonephritis
Explanation:Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.
It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.
Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Incorrect
-
A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?
Your Answer: Hyperosmolar non-ketotic state
Correct Answer: Sepsis
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Renal System
-
-
Question 17
Incorrect
-
A 23-year-old male presents to the emergency department with decreased level of consciousness after a night of excessive alcohol intake. He is observed to have increased urine output. There is no history of substance abuse according to his companions.
What is the probable cause of the patient's polyuria?Your Answer: Osmotic diuresis
Correct Answer: antidiuretic hormone inhibition
Explanation:Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria. This occurs because alcohol inhibits ADH, which reduces the insertion of aquaporins in the collecting tubules of the nephron. As a result, water reabsorption is reduced, leading to polyuria. The other options provided are incorrect because they do not accurately describe the mechanism by which alcohol causes polyuria. Central diabetes insipidus is a disorder of ADH production in the brain, while nephrogenic diabetes insipidus is caused by kidney pathology. Osmotic diuresis occurs when solutes such as glucose and urea increase the osmotic pressure in the renal tubules, leading to water retention, but this is not the primary mechanism by which alcohol causes polyuria.
Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.
-
This question is part of the following fields:
- Renal System
-
-
Question 18
Incorrect
-
A 35-year-old man presents to the emergency department with confusion and lethargy. Arterial blood gas results indicate an increased anion gap metabolic acidosis. After identifying the underlying cause, appropriate treatment is initiated. Within a few hours, the patient's mental status significantly improves.
Upon repeat laboratory studies, there is an increase in serum bicarbonate and sodium levels, a decrease in serum osmolarity, and a drop in serum potassium levels.
What is the most probable treatment administered to this patient?Your Answer: Loop diuretics
Correct Answer: Insulin and normal saline
Explanation:Insulin and hydration are the primary treatments for diabetic ketoacidosis (DKA), which causes an increased anion gap metabolic acidosis. Insulin allows cells to use glucose as an energy source, decreasing ketone body production and causing an intracellular shift of potassium. Loop diuretics, mineralocorticoid injections, and opioid antagonists are not appropriate treatments for DKA.
Managing Hyperkalaemia: A Step-by-Step Guide
Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.
ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.
The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.
In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.
-
This question is part of the following fields:
- Renal System
-
-
Question 19
Incorrect
-
Whilst on the ward, you observe that a severely underweight 25-year-old male patient with anorexia nervosa has become acutely drowsy and confused. You are informed that he was artificially fed 30 minutes ago, are given a set of blood tests taken since his new symptoms began and suspect that he has refeeding syndrome.
What are the blood results that you are likely to observe?Your Answer: Hyperkalaemia, hyperphosphataemia and hypermagnesemia
Correct Answer: Hypokalaemia, hypophosphataemia and hypomagnesemia
Explanation:When severely underweight patients are given high levels of artificial feeding, it can trigger refeeding syndrome. This condition is characterized by a sudden surge of insulin, which causes protein channels to move to the apical layer of cell membranes. As a result, glucose and electrolytes like potassium, phosphate, and magnesium are rapidly taken up by cells, leading to a significant drop in their serum levels. This can cause hypokalemia, hypophosphatemia, and hypomagnesemia.
Hypophosphataemia is a medical condition characterized by low levels of phosphate in the blood. This condition can be caused by various factors such as alcohol excess, acute liver failure, diabetic ketoacidosis, refeeding syndrome, primary hyperparathyroidism, and osteomalacia.
Alcohol excess, acute liver failure, and diabetic ketoacidosis are some of the common causes of hypophosphataemia. Refeeding syndrome, which occurs when a malnourished individual is given too much food too quickly, can also lead to this condition. Primary hyperparathyroidism, a condition where the parathyroid gland produces too much hormone, and osteomalacia, a condition where bones become soft and weak, can also cause hypophosphataemia.
Hypophosphataemia can have serious consequences on the body. Low levels of phosphate can lead to red blood cell haemolysis, white blood cell and platelet dysfunction, muscle weakness, and rhabdomyolysis. It can also cause central nervous system dysfunction, which can lead to confusion, seizures, and coma. Therefore, it is important to identify and treat hypophosphataemia promptly to prevent any further complications.
-
This question is part of the following fields:
- Renal System
-
-
Question 20
Correct
-
A 65-year-old male is referred to the cardiology department by his physician due to chest pain during physical activity. The cardiologist plans to evaluate for coronary artery blockage and prescribes a coronary CT angiography. The radiologist will administer a contrast dye intravenously during the imaging. What is the most crucial blood test to conduct before giving the contrast agent?
Your Answer: Urea and electrolytes
Explanation:Before administering contrast medium, it is important to assess renal function by checking the patient’s urea and electrolytes (U&Es) due to the nephrotoxic nature of the contrast medium.
Although cardiac enzymes can be useful in ruling out myocardial infarction, they are not relevant to the administration of contrast medium in this particular clinical scenario where an acute myocardial infarction is not suspected.
While a full blood count may be part of the patient’s regular workup, it is not necessary for assessing the administration of contrast medium.
Liver function does not need to be checked prior to administering contrast medium as it is not known to be hepatotoxic.
Although contrast medium can affect thyroid function in some patients due to its iodine content, it is not routinely checked before administration.
Contrast media nephrotoxicity is characterized by a 25% increase in creatinine levels within three days of receiving intravascular contrast media. This condition typically occurs between two to five days after administration and is more likely to affect patients with pre-existing renal impairment, dehydration, cardiac failure, or those taking nephrotoxic drugs like NSAIDs. Procedures that may cause contrast-induced nephropathy include CT scans with contrast and coronary angiography or percutaneous coronary intervention (PCI). Around 5% of patients who undergo PCI experience a temporary increase in plasma creatinine levels of more than 88 µmol/L.
To prevent contrast-induced nephropathy, intravenous 0.9% sodium chloride should be administered at a rate of 1 mL/kg/hour for 12 hours before and after the procedure. Isotonic sodium bicarbonate may also be used. While N-acetylcysteine was previously used, recent evidence suggests it is not effective. Patients at high risk for contrast-induced nephropathy should have metformin withheld for at least 48 hours and until their renal function returns to normal to avoid the risk of lactic acidosis.
-
This question is part of the following fields:
- Renal System
-
-
Question 21
Incorrect
-
A 67-year-old retired farmer presents to the emergency department with complaints of abdominal pain and inability to urinate for the past 24 hours. He reports a history of slow urine flow and difficulty emptying his bladder for the past few years. The patient has a medical history of type 2 diabetes mellitus, hypertension, and lower back pain, and underwent surgery for an inguinal hernia 2 years ago. Ultrasound reveals a distended bladder and hydronephrosis, and the patient undergoes urethral catheterization. Further investigation shows an enlarged prostate and an increase in free prostate-specific antigen (PSA), and a prostate biopsy is scheduled. Which part of the prostate is most likely causing bladder obstruction in this patient?
Your Answer: Anterior and middle lobe
Correct Answer: Lateral and middle lobe lobe
Explanation:A man presented with symptoms of acute urinary retention and a history of poor urine flow and straining to void, suggesting bladder outlet obstruction possibly due to an enlarged prostate. While prostatic adenocarcinoma is common in men over 50, it is unlikely to cause urinary symptoms. However, patients should still be screened for it to allow for early intervention if necessary. The man’s increased levels of free PSA indicate BPH rather than prostatic adenocarcinoma, as the latter would result in decreased free PSA and increased bound-PSA levels.
The lateral and middle lobes of the prostate are closest to the urethra and their hyperplasia can compress it, leading to urinary and voiding symptoms. If the urethra is completely compressed, acute urinary retention and bladder outlet obstruction can occur. The anterior lobe is rarely enlarged in BPH and is not positioned to obstruct the urethra, while the posterior lobe is mostly involved in prostatic adenocarcinoma but does not typically cause urinary symptoms due to its distance from the urethra.
Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.
Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.
-
This question is part of the following fields:
- Renal System
-
-
Question 22
Correct
-
A 65-year-old man comes to the clinic for a medication review. He reports no negative effects and wishes to continue his current treatment. After conducting a blood test, you notice that his serum potassium level is slightly elevated. Which of the following frequently prescribed drugs is linked to an increase in serum potassium?
Your Answer: Ramipril
Explanation:Ramipril is the correct answer. Before starting ACE inhibitor therapy, a baseline potassium level is measured because these drugs can cause an increase in serum potassium.
Loop diuretics like furosemide can cause hypokalaemia and hyponatraemia.
Salbutamol does not lead to hyperkalaemia and can actually be used to lower serum potassium levels in emergency situations.
Taking paracetamol within recommended doses does not affect potassium levels.
Drugs and their Effects on Potassium Levels
Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.
Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.
It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.
Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.
-
This question is part of the following fields:
- Renal System
-
-
Question 23
Incorrect
-
A 25-year-old male presents to his GP with recurrent episodes of haematuria. He reports having a sore throat and mild cough for the past three days. Upon examination, his urine dipstick is negative for leukocytes and nitrates. His vital signs are as follows: SpO2 99%, respiratory rate 16/min, blood pressure 140/90mmHg, heart rate 80bpm, and temperature 37.1ºC. The initial blood results show a Hb of 14.8 g/dL, platelets of 290 * 109/L, WBC of 14.9 * 109/L, Na+ of 138 mmol/L, K+ of 4.5 mmol/L, urea of 7.2 mmol/L, creatinine of 150 µmol/L, and CRP of 1.2 mg/L. What is the most likely mechanism responsible for his haematuria?
Your Answer: Damage from toxins
Correct Answer: Immune complex deposition
Explanation:The likely diagnosis for the man is IgA nephropathy, which is characterized by immune complex deposition in the glomerulus and recurrent macroscopic haematuria following an upper respiratory tract infection. Disseminated intravascular coagulation (DIC) caused by activation of the coagulation cascade and damage from toxins such as Shiga toxin in haemolytic uraemic syndrome are not responsible mechanisms for IgA nephropathy. Benign prostatic hypertrophy (BPH), which is caused by hypertrophy of prostatic cells, can also cause haematuria, but it is unlikely in this patient as it typically affects older men and presents with other urinary symptoms.
Understanding IgA Nephropathy
IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.
Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.
Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.
The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.
Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.
-
This question is part of the following fields:
- Renal System
-
-
Question 24
Incorrect
-
At which of the following locations is the highest amount of water absorbed?
Your Answer: Duodenum
Correct Answer: Jejunum
Explanation:The small bowel, specifically the jejunum and ileum, is the primary location for water absorption in the gastrointestinal tract. While the colon does play a role in water absorption, its contribution is minor in comparison. However, if there is a significant removal of the small bowel, the importance of the colon in water absorption may become more significant.
Water Absorption in the Human Body
Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.
The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Correct
-
A 45-year-old female is admitted to the hospital for investigation of recently developed hypertension, myalgia, and a facial rash. She experiences a decline in kidney function and complains of muscle aches and ankle swelling during her hospital stay. A kidney biopsy and urine sample are taken, revealing a proliferative 'wire-loop' glomerular lesion on histopathological assessment. The urinalysis shows proteinuria but no presence of leukocytes or nitrites. What is the most probable diagnosis?
Your Answer: Systemic lupus erythematosus
Explanation:Lupus nephritis is characterized by proliferative ‘wire-loop’ glomerular histology, proteinuria, and systemic symptoms. This condition occurs when autoimmune processes in SLE cause inflammation and damage to the glomeruli. Symptoms may include oedema, myalgia, arthralgia, hypertension, and foamy-appearing urine due to high levels of protein. Acute tubular necrosis primarily affects the tubules and does not typically present with proteinuria. Congestive heart failure and IgA nephropathy can cause proteinuria, but they do not result in the ‘wire-loop’ glomerular lesion seen in lupus nephritis. Pyelonephritis may also cause proteinuria, but it is an infectious process and would present with additional symptoms such as nitrites, leukocytes, and blood in the urine.
Renal Complications in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.
Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Incorrect
-
A 35-year-old man comes to you with complaints of pedal oedema, frothy urine and decreased urine output. He has no significant medical history. You suspect that the patient's nephrotic syndrome may be caused by a common form of idiopathic glomerulonephritis that affects adults.
What would be the most helpful initial test to confirm this particular diagnosis?Your Answer: Renal function
Correct Answer: Anti-phospholipase A2 antibodies
Explanation:Idiopathic membranous glomerulonephritis is believed to be associated with anti-phospholipase A2 antibodies. This condition is a common cause of nephrotic syndrome in adults, and since the patient has no other relevant medical history, an idiopathic cause is likely. To confirm the diagnosis, measuring anti-phospholipase A2 levels is recommended.
Testing for ASOT would suggest post-streptococcal glomerulonephritis (PSGN), which is more common in children and typically presents with an acute nephritic picture rather than nephrotic syndrome. Therefore, this is not the most likely diagnosis.
While dyslipidaemia is commonly found in nephrotic syndrome, confirming it would not help confirm the suspected diagnosis of idiopathic membranous glomerulonephritis.
Although acute kidney injury (AKI) can occur in individuals with nephrotic syndrome, assessing renal function is unlikely to help diagnose membranous glomerulonephritis.
While assessing the protein content in a sample may be useful in diagnosing nephrotic syndrome, it is not specific to membranous glomerulonephritis.
Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.
Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.
The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.
-
This question is part of the following fields:
- Renal System
-
-
Question 27
Incorrect
-
Which one of the following is not a characteristic of the distal convoluted tubule in the kidney?
Your Answer: It is responsible for absorbing more than 50% of filtered water
Correct Answer: Its secretory function is most effective at low systolic blood pressures (typically less than 100 mmHg)
Explanation:Compartment syndrome can lead to necrosis of the proximal convoluted tubule, which plays a crucial role in reabsorbing up to two thirds of filtered water. Acute tubular necrosis is more likely to occur when systolic blood pressure falls below the renal autoregulatory range, particularly if it is low. However, within this range, the absolute value of systolic BP has minimal impact.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 28
Correct
-
In individuals experiencing abdominal discomfort and nausea, along with recurrent kidney stones and urinary tract infections, what structural anomaly might be detected on imaging?
Your Answer: Fused kidneys crossing anterior to the aorta
Explanation:The presence of abdominal pain, nausea, and recurrent kidney stones and urinary tract infections raises the possibility of a horseshoe kidney, where two kidneys are fused in the midline and pass in front of the aorta. This is a congenital condition that is more prevalent in males and is linked to a higher incidence of urinary tract infections. Unfortunately, there is no cure for this condition, and treatment is focused on managing symptoms.
Moreover, the identification of numerous cysts in the kidneys suggests the presence of polycystic kidney disease, which is associated with diverticulosis and cerebral aneurysms.
Understanding the Risk Factors for Renal Stones
Renal stones, also known as kidney stones, are solid masses that form in the kidneys and can cause severe pain and discomfort. There are several risk factors that can increase the likelihood of developing renal stones. Dehydration is a significant risk factor, as it can lead to concentrated urine and the formation of stones. Other factors include hypercalciuria, hyperparathyroidism, hypercalcaemia, cystinuria, high dietary oxalate, renal tubular acidosis, medullary sponge kidney, polycystic kidney disease, and exposure to beryllium or cadmium.
Urate stones, a type of renal stone, are caused by the precipitation of uric acid. Risk factors for urate stones include gout and ileostomy, which can result in acidic urine due to the loss of bicarbonate and fluid.
In addition to these factors, certain medications can also contribute to the formation of renal stones. Loop diuretics, steroids, acetazolamide, and theophylline can promote the formation of calcium stones, while thiazides can prevent them by increasing distal tubular calcium resorption.
It is important to understand these risk factors and take steps to prevent the formation of renal stones, such as staying hydrated, maintaining a healthy diet, and avoiding medications that may contribute to their formation.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Incorrect
-
An 80-year-old man visits his GP for a follow up appointment after starting trimethoprim for a urinary tract infection 7 days ago. He mentions that his urinary symptoms have gone but that he has been feeling generally tired and weak for the last 4 weeks (before the urinary tract infection). He asks if this could be related to the new medication he started 5 weeks ago. Upon reviewing his medical history, you see that he was started on ramipril 5 weeks ago. He also mentions that his osteoarthritic pain has been quite bad recently, which caused him to miss his most recent medication review appointment, but he has been taking more paracetamol and ibuprofen than usual. Due to the combination of medication and his vague symptoms, you decide to perform an ECG. The ECG shows tall, tented T waves, prolonged PR interval, and bradycardia. What is the underlying cause of these ECG changes?
Your Answer: Hypercalcaemia
Correct Answer: Hyperkalaemia
Explanation:The patient is most likely suffering from hyperkalaemia, as evidenced by their medication history which includes an increase in potassium-raising drugs such as trimethoprim, ramipril, and ibuprofen. The ECG results also show classic signs of hyperkalaemia, including tall tented T waves, bradycardia, and a prolonged PR interval.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 30
Incorrect
-
What is the effect of vasodilation of the efferent arterioles of the kidney?
Your Answer: Glomerular filtration rate
Correct Answer: Renal blood flow
Explanation:Effects of Dilatation of Efferent Arterioles on Renal Function
Dilatation of the efferent arterioles results in a decrease in glomerular capillary hydrostatic pressure, which in turn reduces the resistance to flow through the afferent arterioles. This leads to an increase in renal blood flow, although to a lesser extent than if the afferent arterioles were dilated. However, the reduction in glomerular capillary hydrostatic pressure causes a decrease in glomerular filtration rate. The peritubular capillary oncotic pressure is influenced by the filtration fraction, which increases with a rise in GFR and no change in renal blood flow. Consequently, a greater filtration fraction would result in an increase in peritubular capillary oncotic pressure. Therefore, dilatation of the efferent arterioles causes a decrease in peritubular capillary oncotic pressure. Although urine volume is not significantly affected by this change, a sustained reduction in GFR may lead to a decrease in urine volume.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)