00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A neurologist is consulted for a patient who has displayed limited visual fields...

    Incorrect

    • A neurologist is consulted for a patient who has displayed limited visual fields in one eye during an examination. Upon conducting an MRI, the neurologist discovers a tumor in the right temporal lobe, near the border with the occipital region. What type of visual impairment is the patient most likely experiencing?

      Your Answer: Left inferior homonymous quadrantanopia

      Correct Answer: Left superior homonymous quadrantanopia

      Explanation:

      Temporal lobe lesions result in contralateral homonymous quadrantanopias, with damage to the Meyer’s loop and optic radiations causing this condition. The optic radiations receiving information from the superior quadrants are located more inferiorly while those from the inferior travel more superiorly. As the lesion is located in the lower part of the right temporal lobe near the occipital region, it is likely to affect the left superior quadrant. It is important to note that lesions on the temporal lobe correspond to superior quadrants rather than inferior, and damage to the right side of the brain affects the left visual field. Additionally, temporal lobe lesions cause quadrantanopias and not hemianopias.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      11.3
      Seconds
  • Question 2 - A 20-year-old male with sickle cell disease arrives at the hospital exhibiting symptoms...

    Incorrect

    • A 20-year-old male with sickle cell disease arrives at the hospital exhibiting symptoms of dehydration, infection, and acute kidney injury. What is the direct activator of the renin-angiotensin system in this case?

      Your Answer: High sodium

      Correct Answer: Low blood pressure

      Explanation:

      The RAS is a hormone system that regulates plasma sodium concentration and arterial blood pressure. When plasma sodium concentration is low or renal blood flow is reduced due to low blood pressure, juxtaglomerular cells in the kidneys convert prorenin to renin, which is secreted into circulation. Renin acts on angiotensinogen to form angiotensin I, which is then converted to angiotensin II by ACE found in the lungs and epithelial cells of the kidneys. Angiotensin II is a potent vasoactive peptide that constricts arterioles, increasing arterial blood pressure and stimulating aldosterone secretion from the adrenal cortex. Aldosterone causes the kidneys to reabsorb sodium ions from tubular fluid back into the blood while excreting potassium ions in urine.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      18.4
      Seconds
  • Question 3 - A 55-year-old, ex-smoker, of 25 pack years arrives at the emergency department with...

    Incorrect

    • A 55-year-old, ex-smoker, of 25 pack years arrives at the emergency department with central crushing chest pain that spreads down his left arm. His ECG reveals ST elevation in leads V1, V2 and V3. He has a medical history of asthma, chronic obstructive pulmonary disease (COPD) and type II diabetes. The patient's complete blood count indicates a haemoglobin level of 17.1 g/dL. What is the probable cause of this patient's elevated haemoglobin level?

      Your Answer: Anterior ST elevation myocardial infarction

      Correct Answer: Chronic obstructive pulmonary disease

      Explanation:

      Chronic hypoxia caused by COPD is a secondary factor leading to polycythaemia in this patient. While an anterior ST elevation MI is likely the acute issue, it would not explain the polycythaemia. Asthma is not a cause of polycythaemia and would not be responsible for the ECG changes. An inferior MI would not be associated with polycythaemia and would only cause ST elevation in leads II, III, and aVF.

      Polycythaemia is a condition that can be classified as relative, primary (polycythaemia rubra vera), or secondary. Relative polycythaemia can be caused by dehydration or stress, such as in Gaisbock syndrome. Primary polycythaemia rubra vera is a rare blood disorder that causes the bone marrow to produce too many red blood cells. Secondary polycythaemia can be caused by conditions such as COPD, altitude, obstructive sleep apnoea, or excessive erythropoietin production due to certain tumors or growths. To distinguish between true polycythaemia and relative polycythaemia, red cell mass studies may be used. In true polycythaemia, the total red cell mass in males is greater than 35 ml/kg and in women is greater than 32 ml/kg. Uterine fibroids may also cause polycythaemia indirectly by causing menorrhagia, but this is rarely a clinical problem.

    • This question is part of the following fields:

      • Haematology And Oncology
      28
      Seconds
  • Question 4 - Whilst on the ward, you observe that a severely underweight 25-year-old male patient...

    Incorrect

    • Whilst on the ward, you observe that a severely underweight 25-year-old male patient with anorexia nervosa has become acutely drowsy and confused. You are informed that he was artificially fed 30 minutes ago, are given a set of blood tests taken since his new symptoms began and suspect that he has refeeding syndrome.

      What are the blood results that you are likely to observe?

      Your Answer:

      Correct Answer: Hypokalaemia, hypophosphataemia and hypomagnesemia

      Explanation:

      When severely underweight patients are given high levels of artificial feeding, it can trigger refeeding syndrome. This condition is characterized by a sudden surge of insulin, which causes protein channels to move to the apical layer of cell membranes. As a result, glucose and electrolytes like potassium, phosphate, and magnesium are rapidly taken up by cells, leading to a significant drop in their serum levels. This can cause hypokalemia, hypophosphatemia, and hypomagnesemia.

      Hypophosphataemia is a medical condition characterized by low levels of phosphate in the blood. This condition can be caused by various factors such as alcohol excess, acute liver failure, diabetic ketoacidosis, refeeding syndrome, primary hyperparathyroidism, and osteomalacia.

      Alcohol excess, acute liver failure, and diabetic ketoacidosis are some of the common causes of hypophosphataemia. Refeeding syndrome, which occurs when a malnourished individual is given too much food too quickly, can also lead to this condition. Primary hyperparathyroidism, a condition where the parathyroid gland produces too much hormone, and osteomalacia, a condition where bones become soft and weak, can also cause hypophosphataemia.

      Hypophosphataemia can have serious consequences on the body. Low levels of phosphate can lead to red blood cell haemolysis, white blood cell and platelet dysfunction, muscle weakness, and rhabdomyolysis. It can also cause central nervous system dysfunction, which can lead to confusion, seizures, and coma. Therefore, it is important to identify and treat hypophosphataemia promptly to prevent any further complications.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 5 - Liam, a 4-year-old boy, is brought to the emergency department by his parents....

    Incorrect

    • Liam, a 4-year-old boy, is brought to the emergency department by his parents. They report that Liam has been holding his left arm close to his body and not using it much since they were playing catch in the backyard.

      During examination, the doctor observes that Liam's left arm is slightly bent at the elbow and turned inward. The doctor diagnoses a pulled elbow and successfully reduces it.

      What is the anomaly associated with this condition?

      Your Answer:

      Correct Answer: Subluxation of radial head

      Explanation:

      In children, the annular ligament is weaker, which can result in subluxation of the radial head during a pulled elbow. It’s important to note that a subluxation is a partial dislocation, meaning there is still some joint continuity, whereas a dislocation is a complete disruption of the joint. Additionally, a fracture refers to a break in the bone itself. It’s worth noting that the ulnar is not implicated in a pulled elbow.

      Subluxation of the Radial Head in Children

      Subluxation of the radial head, also known as pulled elbow, is a common upper limb injury in children under the age of 6. This is because the annular ligament covering the radial head has a weaker distal attachment in children at this age group. The signs of this injury include elbow pain and limited supination and extension of the elbow. However, children may refuse examination on the affected elbow due to the pain.

      To manage this injury, analgesia is recommended to alleviate the pain. Additionally, passively supinating the elbow joint while the elbow is flexed to 90 degrees can help alleviate the subluxation. It is important to seek medical attention if the pain persists or worsens.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 6 - A 45-year-old female with a one-month history of shoulder and pelvic girdle pain...

    Incorrect

    • A 45-year-old female with a one-month history of shoulder and pelvic girdle pain has been diagnosed with polymyalgia rheumatica. She has been prescribed a course of oral prednisolone. Can you identify the location of the target receptor for this drug within the cell?

      Your Answer:

      Correct Answer: Within the nucleus

      Explanation:

      Pharmacodynamics refers to the effects of drugs on the body, as opposed to pharmacokinetics which is concerned with how the body processes drugs. Drugs typically interact with a target, which can be a protein located either inside or outside of cells. There are four main types of cellular targets: ion channels, G-protein coupled receptors, tyrosine kinase receptors, and nuclear receptors. The type of target determines the mechanism of action of the drug. For example, drugs that work on ion channels cause the channel to open or close, while drugs that activate tyrosine kinase receptors lead to cell growth and differentiation.

      It is also important to consider whether a drug has a positive or negative impact on the receptor. Agonists activate the receptor, while antagonists block the receptor preventing activation. Antagonists can be competitive or non-competitive, depending on whether they bind at the same site as the agonist or at a different site. The binding affinity of a drug refers to how readily it binds to a specific receptor, while efficacy measures how well an agonist produces a response once it has bound to the receptor. Potency is related to the concentration at which a drug is effective, while the therapeutic index is the ratio of the dose of a drug resulting in an undesired effect compared to that at which it produces the desired effect.

      The relationship between the dose of a drug and the response it produces is rarely linear. Many drugs saturate the available receptors, meaning that further increased doses will not cause any more response. Some drugs do not have a significant impact below a certain dose and are considered sub-therapeutic. Dose-response graphs can be used to illustrate the relationship between dose and response, allowing for easy comparison of different drugs. However, it is important to remember that dose-response varies between individuals.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 7 - A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot...

    Incorrect

    • A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?

      Your Answer:

      Correct Answer: Reduce the peripheral breakdown of incretins

      Explanation:

      Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine...

    Incorrect

    • A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.

      Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.

      However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A woman is advised to start taking folic acid supplements before getting pregnant...

    Incorrect

    • A woman is advised to start taking folic acid supplements before getting pregnant to prevent neural tube defects. At what stage of pregnancy are these defects most likely to occur?

      Your Answer:

      Correct Answer: Week 4

      Explanation:

      The closure of the neural tube takes place in the 4th week of embryonic development. Prior to this, during the first three weeks of pregnancy, the trilaminar disc has not yet formed, making it too early for neural tube closure to occur. The neural tube originates from a specialized part of the ectoderm.

      During the fourth week, the embryo becomes a trilaminar germ disc, marking the beginning of primary neurulation. At this stage, folds develop at the lateral edges of the neural plate, which then rise and fold at hinge points, ultimately meeting and fusing in the midline.

      In the fifth week, secondary neurulation occurs at the caudal end of the embryo. This process is distinct from neural tube closure and involves a rearrangement of cells and canalisation.

      Embryology is the study of the development of an organism from the moment of fertilization to birth. During the first week of embryonic development, the fertilized egg implants itself into the uterine wall. By the second week, the bilaminar disk is formed, consisting of two layers of cells. The primitive streak appears in the third week, marking the beginning of gastrulation and the formation of the notochord.

      As the embryo enters its fourth week, limb buds begin to form, and the neural tube closes. The heart also begins to beat during this time. By week 10, the genitals are differentiated, and the embryo exhibits intermittent breathing movements. These early events in embryonic development are crucial for the formation of the body’s major organs and structures. Understanding the timeline of these events can provide insight into the complex process of human development.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 10 - A 50-year-old male is admitted with sepsis caused by a urinary tract infection...

    Incorrect

    • A 50-year-old male is admitted with sepsis caused by a urinary tract infection from Escherichia coli. Despite taking trimethoprim for six days as prescribed by his doctor, he has not shown any improvement. He assures that he has followed the treatment regimen. What could be the probable reason for this lack of response?

      Your Answer:

      Correct Answer: The strain of the likely causative agent has developed extrinsic (acquired) resistance to the antibiotic

      Explanation:

      Understanding Trimethoprim: Mechanism of Action, Adverse Effects, and Use in Pregnancy

      Trimethoprim is an antibiotic that is commonly used to treat urinary tract infections. Its mechanism of action involves interfering with DNA synthesis by inhibiting dihydrofolate reductase. This may cause an interaction with methotrexate, which also inhibits dihydrofolate reductase. However, the use of trimethoprim may also lead to adverse effects such as myelosuppression and a transient rise in creatinine. The drug competitively inhibits the tubular secretion of creatinine, resulting in a temporary increase that reverses upon stopping the medication. Additionally, trimethoprim blocks the ENaC channel in the distal nephron, causing a hyperkalaemic distal RTA (type 4). It also inhibits creatinine secretion, which often leads to an increase in creatinine by around 40 points, but not necessarily causing AKI.

      When it comes to the use of trimethoprim in pregnancy, caution is advised. The British National Formulary (BNF) warns of a teratogenic risk in the first trimester due to its folate antagonist properties. Manufacturers advise avoiding the use of trimethoprim during pregnancy. It is important to consult with a healthcare provider before taking any medication, especially during pregnancy, to ensure the safety of both the mother and the developing fetus.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (0/1) 0%
Renal System (0/1) 0%
Haematology And Oncology (0/1) 0%
Passmed