-
Question 1
Incorrect
-
A 15-year-old girl is brought to her pediatrician by her father who is worried that his daughter has not yet had a menstrual period. The girl reports that she has been unable to smell for as long as she can remember but is otherwise in good health. During the examination, the girl is found to have underdeveloped breasts and no pubic hair. Her vital signs and body mass index are within normal limits.
What is the probable reason for the girl's condition?Your Answer: Congenital adrenal hypoplasia
Correct Answer: Kallman syndrome
Explanation:The most likely diagnosis for this girl is Kallmann syndrome, which is characterized by a combination of hypogonadotropic hypogonadism and anosmia. This genetic disorder occurs due to a failure in neuron migration, resulting in deficient hypothalamic gonadotropin releasing hormone (GnRH) and a lack of secondary sexual characteristics. Anosmia is a distinguishing feature of Kallmann syndrome compared to other causes of hypogonadotropic hypogonadism. Congenital adrenal hypoplasia, which results in insufficient cortisol production due to adrenal cortex enzyme deficiency, can also cause hypogonadotropic hypogonadism but is less likely in this case due to the presence of anosmia. Imperforate hymen, which presents with lower abdominal/pelvic pain without vaginal bleeding, is not consistent with this patient’s symptoms. Malnutrition is not indicated as a possible diagnosis.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Incorrect
-
A 64-year-old man comes in for a follow-up of his type 2 diabetes. Despite being on metformin therapy, his HbA1c levels are at 62mmol/mol. To address this, you plan to initiate sitagliptin for dual hypoglycemic therapy.
What is the mechanism of action of sitagliptin?Your Answer: Mimics GLP-1
Correct Answer: Decreases GLP-1 breakdown
Explanation:Sitagliptin, a DPP-4 inhibitor, reduces the breakdown of GLP-1 and GIP incretins, leading to increased levels of these hormones and potentiation of the incretin effect, which is typically reduced in diabetes.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Incorrect
-
A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.
What is the reason for the facial muscle twitching observed during the examination?Your Answer:
Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia
Explanation:Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.
Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.
Understanding Hypoparathyroidism
Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.
Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
As a medical student in community care, while shadowing a health visitor, I observed her measuring the height and weight of children to monitor their growth. What factors drive growth during the developmental stage of 4 to 10 years old?
Your Answer:
Correct Answer: Growth and thyroid hormones
Explanation:Understanding Growth and Factors Affecting It
Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.
In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.
In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.
It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 39-year-old male presents to an endocrine clinic with acromegaly caused by a growth hormone-secreting tumor. The patient is prescribed Octreotide, a somatostatin analogue, to suppress growth hormone release.
What additional hormonal effects can be attributed to somatostatin?Your Answer:
Correct Answer: Decreases secretion of glucagon
Explanation:Somatostatin has an inhibitory effect on the secretion of glucagon, but it does not affect the secretion of estrogen. It also decreases the secretion of insulin, and overproduction of somatostatin can lead to diabetes mellitus. Additionally, somatostatin reduces the secretion of gastrin, which in turn decreases the production of gastric acid by parietal cells. It also decreases the secretion of thyroid stimulating hormone (TSH), resulting in a decrease in the production of thyroxine in the thyroid.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
The medical team at a pediatric unit faces difficulty in determining the sex of a newborn baby as the external genitalia appear ambiguous. The suspected condition is linked to an excess of androgen and a deficiency of mineralocorticoid. Can you explain the underlying pathophysiology?
Your Answer:
Correct Answer: Deficiency of 21-alphahydroxylase
Explanation:The clinical scenario described in the question is indicative of congenital adrenal hyperplasia, which is caused by a deficiency of the enzyme 21-alphahydroxylase. This leads to an increase in androgen production, resulting in virilization of genitalia in XX females, making them appear as males at birth.
On the other hand, a deficiency of 5-alpha reductase causes the opposite situation, where genetically XY males have external female genitalia.
Type 1 diabetes mellitus may be associated with the presence of autoantibodies against glutamic acid decarboxylase.
A defect in the AIRE gene can lead to APECED, which is characterized by hypoparathyroidism, adrenal failure, and candidiasis.
Similarly, a defect in the FOXP3 gene can cause IPEX, which presents with immune dysregulation, polyendocrinopathy, and enteropathy.
Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.
Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
A 35-year-old woman is referred to the endocrine clinic due to missed periods and lactation. She has also gained weight and experiences vaginal dryness. The endocrinologist decides to measure her prolactin levels. What hormone is responsible for suppressing the release of prolactin from the pituitary gland?
Your Answer:
Correct Answer: Dopamine
Explanation:Dopamine consistently prevents the release of prolactin.
Understanding Prolactin and Its Functions
Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.
The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.
Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Incorrect
-
A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).
He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/m². He is also prone to recurrent urinary tract infections.
You intend to intensify treatment by adding a second medication.
What is the mechanism of action of the most appropriate anti-diabetic drug for him?Your Answer:
Correct Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels
Explanation:Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and diarrhoea. The kidneys detect reduced renal perfusion, leading to activation of the renin-angiotensin-aldosterone system. What is the specific part of the adrenal gland required for this system?
Your Answer:
Correct Answer: Zona glomerulosa
Explanation:Aldosterone is produced in the zona glomerulosa of the adrenal gland.
Renin is released by juxtaglomerular cells located in the nephron.
ACE is produced by the pulmonary endothelium in the lungs.
The adrenal gland is composed of the zona glomerulosa, fasciculata, and reticularis.
Glucocorticoids are produced in the zona fasciculata.
Adrenal Physiology: Medulla and Cortex
The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.
The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.
Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 70-year-old man with chronic back pain and renal failure presents with the following blood test results:
Reference range
Ca2+ 2.10 2.15-2.55 mmol/l
Parathyroid hormone 9.8 1-6.5 pmol/l
Phosphate 0.75 0.6-1.25 mmol/l
What is the probable diagnosis?Your Answer:
Correct Answer: Secondary hyperparathyroidism
Explanation:Secondary hyperparathyroidism is characterized by elevated levels of PTH, while calcium levels are either normal or low. This condition occurs due to the parathyroid glands’ hyperplasia in response to chronic hypocalcemia or hyperphosphatemia, which is a natural physiological reaction. The body releases calcium from the kidneys, gastrointestinal system, and bones.
Parathyroid Glands and Disorders of Calcium Metabolism
The parathyroid glands play a crucial role in regulating calcium levels in the body. Hyperparathyroidism is a disorder that occurs when these glands produce too much parathyroid hormone (PTH), leading to abnormal calcium metabolism. Primary hyperparathyroidism is the most common form and is usually caused by a solitary adenoma. Secondary hyperparathyroidism occurs as a result of low calcium levels, often in the setting of chronic renal failure. Tertiary hyperparathyroidism is a rare condition that occurs when hyperplasia of the parathyroid glands persists after correction of underlying renal disorder.
Diagnosis of hyperparathyroidism is based on hormone profiles and clinical features. Treatment options vary depending on the type and severity of the disorder. Surgery is usually indicated for primary hyperparathyroidism if certain criteria are met, such as elevated serum calcium levels, hypercalciuria, and nephrolithiasis. Secondary hyperparathyroidism is typically managed with medical therapy, while surgery may be necessary for persistent symptoms such as bone pain and soft tissue calcifications. Tertiary hyperparathyroidism may resolve on its own within a year after transplant, but surgery may be required if an autonomously functioning parathyroid gland is present. It is important to consider differential diagnoses, such as benign familial hypocalciuric hypercalcaemia, which is a rare but relatively benign condition.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)