-
Question 1
Incorrect
-
A 78-year-old man comes to your clinic with a complaint of hoarseness in his voice for the past 2 months. He is unsure if he had a viral infection prior to this and has attempted using over-the-counter remedies with no improvement. How would you approach managing this patient?
Your Answer: Routine referral to ENT
Correct Answer: Red flag referral to ENT
Explanation:An urgent referral to an ENT specialist is necessary when a person over the age of 45 experiences persistent hoarseness without any apparent cause. In this case, the patient has been suffering from a hoarse voice for 8 weeks, which warrants an urgent referral. A routine referral would not be sufficient as it may not be quick enough to address the issue. Although it could be a viral or bacterial infection, the duration of the hoarseness suggests that there may be an underlying serious condition. Merely informing the patient that their voice may not return is not helpful and may overlook the possibility of a more severe problem.
Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.
If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 3-year-old male toddler of Asian descent is referred to a paediatrician by his GP due to recurrent respiratory infections and failure to thrive. The doctor orders a sweat test, which comes back positive. What are the potential complications associated with the likely diagnosis?
Your Answer: Sensorineural hearing loss
Correct Answer: Steatorrhea
Explanation:Cystic fibrosis can lead to steatorrhea, which is caused by the malabsorption of fat in the intestines. This is a common symptom of the disease and requires specialist management. While patients with CF may have a slightly increased risk of sensorineural hearing loss, this is mainly due to the side effects of certain drugs used to treat the disease. Melaena, which is the passage of dark faeces due to partially digested blood from the upper gastrointestinal system, is a rare symptom in patients with CF. There is no association between CF and intellectual disability. Although some studies suggest an increased incidence of pulmonary emboli in patients with CF, the associated risk is small and mainly due to the use of central venous catheters and liver dysfunction or vitamin K deficiency.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
A 78-year-old man comes to the emergency department complaining of increasing difficulty in breathing over the past two days. He has a medical history of squamous cell lung cancer.
Upon examination, the trachea is observed to have shifted towards the left side, with dull percussion and absence of breath sounds throughout the left chest.
What is the probable diagnosis?Your Answer: Right pneumothorax
Correct Answer: Left lung collapse
Explanation:When a lung collapses, it can cause the trachea to shift towards the affected side, and there may be dullness on percussion and reduced breath sounds throughout the lung field. This is because the decrease in pressure on the affected side causes the mediastinum and trachea to move towards it.
A massive pleural effusion, on the other hand, would cause widespread dullness and absent breath sounds, but it would push the trachea away from the affected side due to increased pressure.
Pneumonia typically only affects one lung zone, so there would not be widespread dullness or absent breath sounds throughout the hemithorax. It also does not usually affect the position of the mediastinum or trachea.
Pneumothorax would be hyperresonant on percussion, not dull, and it may push the trachea away from the affected side in severe cases, but this is more common in tension pneumothoraces that occur after trauma.
A lobectomy may cause the trachea to shift towards the same side as the surgery due to decreased pressure, but it would not cause dullness or absent breath sounds throughout the lung fields.
Understanding White Lung Lesions on Chest X-Rays
When examining a chest x-ray, white shadowing in the lungs can indicate a variety of conditions. These may include consolidation, pleural effusion, collapse, pneumonectomy, specific lesions such as tumors, or fluid accumulation such as pulmonary edema. In cases where there is a complete white-out of one side of the chest, it is important to assess the position of the trachea. If the trachea is pulled towards the side of the white-out, it may indicate pneumonectomy, lung collapse, or pulmonary hypoplasia. If the trachea is pushed away from the white-out, it may indicate pleural effusion, a large thoracic mass, or a diaphragmatic hernia. Other signs of a positive mass effect may include leftward bowing of the azygo-oesophageal recess and splaying of the ribs on the affected side. Understanding the potential causes of white lung lesions on chest x-rays can aid in accurate diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 67-year-old female smoker with a two-month history of worsening shortness of breath presents for evaluation. On examination, she appears comfortable at rest with a regular pulse of 72 bpm, respiratory rate of 16/min, and blood pressure of 128/82 mmHg. Physical findings include reduced expansion on the left lower zone, dullness to percussion over this area, and absent breath sounds over the left lower zone with bronchial breath sounds just above this region. What is the likely clinical diagnosis?
Your Answer: Pulmonary fibrosis
Correct Answer: Pleural effusion
Explanation:Pleural Effusion and its Investigation
Pleural effusion is a condition where there is an abnormal accumulation of fluid in the pleural space, which is the space between the lungs and the chest wall. This can be caused by various factors such as post-infection, carcinoma, or emboli. To determine the cause of the pleural effusion, a pleural tap is the most appropriate investigation. The sample obtained from the pleural tap is sent for cytology, protein concentration, and culture.
A normal pleural tap would have clear appearance, pH of 7.60-7.64, protein concentration of less than 2%, white blood cells count of less than 1000/mm³, glucose level similar to that of plasma, LDH level of less than 50% of plasma concentration, amylase level of 30-110 U/L, triglycerides level of less than 2 mmol/l, and cholesterol level of 3.5-6.5 mmol/l.
A transudative tap is associated with conditions such as congestive heart failure, liver cirrhosis, severe hypoalbuminemia, and nephrotic syndrome. On the other hand, an exudative tap is associated with malignancy, infection (such as empyema due to bacterial pneumonia), trauma, pulmonary infarction, and pulmonary embolism.
In summary, pleural effusion can be caused by various factors and a pleural tap is the most appropriate investigation to determine the cause. The results of the pleural tap can help differentiate between transudative and exudative effusions, which can provide important information for diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A woman in her 30s is stabbed in the chest to the right of the manubriosternal angle. Which structure is least likely to be injured in this scenario?
Your Answer: The trachea
Correct Answer: Right recurrent laryngeal nerve
Explanation:The right vagus nerve gives rise to the right recurrent laryngeal nerve at a more proximal location, which then curves around the subclavian artery in a posterior direction. Therefore, out of the given structures, it is the least susceptible to injury.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A 67-year-old man visits his doctor complaining of dyspnoea. He experiences shortness of breath after walking just a few meters, whereas he can usually walk up to 200m. The man appears cyanosed in his extremities and his pulse oximeter shows a reading of 83%. What is the primary mode of carbon dioxide transportation in the bloodstream?
Your Answer: Bound to haemoglobin as bicarbonate ions
Explanation:Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Correct
-
A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?
Your Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Correct
-
A 56-year-old man has been diagnosed with small cell lung carcinoma. The tumor measures 4 centimeters in its largest dimension and is not invading any surrounding structures. However, there are metastases in the ipsilateral hilar lymph nodes, and no distant metastases have been found. What is the TNM score for this patient, considering the primary tumor (T), regional lymph nodes (N), and distant metastases (M)?
Your Answer: T2 N1 M0
Explanation:It is crucial to have knowledge about the TNM system for staging lung cancer. The absence of distant metastases eliminates one of the options immediately (as M must be 0).
The size and invasion of the tumor are significant factors:
– T1 is less than 3 cm
– T2 is between 3 cm and 7 cm
– T3 is more than 7 cm and/or involves invasion of the chest wall, parietal pleura, diaphragm, phrenic nerve, mediastinal pleura, or parietal pericardium
– T4 can be any size but involves invasion of other structuresTo differentiate between N1 and N2, remember that N1 involves ipsilateral hilar or peribronchial lymph nodes, while N2 involves ipsilateral mediastinal and/or subcarinal lymph nodes.
Small Cell Lung Cancer: Characteristics and Management
Small cell lung cancer is a type of lung cancer that usually develops in the central part of the lungs and arises from APUD cells. This type of cancer is often associated with the secretion of hormones such as ADH and ACTH, which can cause hyponatremia and Cushing’s syndrome, respectively. In addition, ACTH secretion can lead to bilateral adrenal hyperplasia and hypokalemic alkalosis due to high levels of cortisol. Patients with small cell lung cancer may also experience Lambert-Eaton syndrome, which is characterized by antibodies to voltage-gated calcium channels causing a myasthenic-like syndrome.
Management of small cell lung cancer depends on the stage of the disease. Patients with very early stage disease may be considered for surgery, while those with limited disease typically receive a combination of chemotherapy and radiotherapy. Patients with more extensive disease are offered palliative chemotherapy. Unfortunately, most patients with small cell lung cancer are diagnosed with metastatic disease, making treatment more challenging.
Overall, small cell lung cancer is a complex disease that requires careful management and monitoring. Early detection and treatment can improve outcomes, but more research is needed to better understand the underlying mechanisms of this type of cancer.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
Which one of the following would cause a rise in the carbon monoxide transfer factor (TLCO)?
Your Answer: Pulmonary haemorrhage
Explanation:When alveolar haemorrhage takes place, the TLCO typically rises as a result of the increased absorption of carbon monoxide by haemoglobin within the alveoli.
Understanding Transfer Factor in Lung Function Testing
The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.
KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Correct
-
A 27-year-old man is undergoing respiratory spirometry. He performs a maximal inhalation followed by a maximal exhalation. Which of the following measurements will most accurately depict this process?
Your Answer: Vital capacity
Explanation:The maximum amount of air that can be breathed in and out within one minute is known as maximum voluntary ventilation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)