00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 42-year-old man is brought to the Emergency department from a rehabilitation center...

    Correct

    • A 42-year-old man is brought to the Emergency department from a rehabilitation center where he is receiving treatment for alcohol addiction. Upon examination, he is diagnosed with hypomagnesaemia. What are the possible symptoms that can arise due to this condition?

      Your Answer: Palpitations

      Explanation:

      Hypomagnesaemia: Causes, Symptoms, and Treatment

      Hypomagnesaemia, or low levels of magnesium in the blood, is a common electrolyte disturbance among inpatients. It can lead to serious complications, particularly cardiac arrhythmia, which can result in cardiac arrest. The condition is often caused by gastrointestinal loss of magnesium due to vomiting, high output stomas, fistulae, and malabsorption disorders. Poor nutritional input, renal losses of magnesium, and primary renal diseases can also contribute to hypomagnesaemia.

      Mild magnesium deficiency usually results in few or no symptoms, but severe deficiency can cause hypokalaemia and hypocalcaemia, as well as overlapping clinical features with hypocalcaemia and hypokalaemia. These symptoms include tetany, neuromuscular excitability, hypertonicity, palpitations, fatigue, and cardiac arrhythmias.

      Mild hypomagnesaemia can be treated with oral magnesium salts, while severe cases require cautious intravenous correction. It is important to monitor and correct magnesium levels to prevent the development of cardiac dysrhythmia and cardiac arrest.

    • This question is part of the following fields:

      • Clinical Sciences
      11
      Seconds
  • Question 2 - Which statement about the subclavian vein and its relationships is accurate? ...

    Incorrect

    • Which statement about the subclavian vein and its relationships is accurate?

      Your Answer: Forms the axillary vein

      Correct Answer: Begins at the lateral border of the first rib

      Explanation:

      The Subclavian Vein and its Connections

      The subclavian vein is a continuation of the axillary vein, which starts at the lateral border of the first rib. It passes in front of the scalenus anterior muscle. The subclavian vein and the internal jugular vein come together to form the brachiocephalic vein. This vein then joins with the left and right brachiocephalic veins to create the superior vena cava. The thoracic duct enters the left subclavian vein. The brachiocephalic trunk is a branch of the aortic arch, which divides to form the right subclavian and right common carotid arteries.

      In summary, the subclavian vein is an important vessel that connects to other major veins and arteries in the body. Its connections with the brachiocephalic vein and superior vena cava make it a crucial part of the circulatory system. The thoracic duct also enters the left subclavian vein, which plays a role in the lymphatic system. the subclavian vein and its connections is important for medical professionals and anyone interested in the human body.

    • This question is part of the following fields:

      • Clinical Sciences
      4.4
      Seconds
  • Question 3 - What is the final product of glucose breakdown in the absence of oxygen?...

    Incorrect

    • What is the final product of glucose breakdown in the absence of oxygen?

      Your Answer: Pyruvate

      Correct Answer: Lactate

      Explanation:

      Anaerobic Metabolism and Lactic Acidosis

      During anaerobic metabolism, glucose can be broken down through the glycolysis pathway without the need for oxygen. This process generates pyruvate, but without oxygen, it cannot be further metabolized through the Kreb cycle or electron transfer chain to produce energy. Instead, pyruvate is converted into lactate, which yields two molecules of ATP. While small periods of anaerobic respiration are tolerable, excessive accumulation of lactate can lead to lactic acidosis, which reduces cellular pH. This reduction in pH can cause enzyme dysfunction, compromising cell function and ultimately leading to cell death.

      During intense exercise, muscle tissue relies on lactate as a quick source of ATP. The lactate produced can diffuse out of the cells and into the bloodstream, where it is taken up by other cells that can regenerate pyruvate from it. This pyruvate can then enter the Kreb cycle to produce more energy.

      However, in patients with serious illnesses where oxygen delivery to the body’s tissues is compromised, lactic acidosis can occur. This includes conditions such as pneumonia, heart failure, and chronic obstructive pulmonary disease. In these cases, the body may rely more heavily on anaerobic metabolism, leading to an accumulation of lactate and a decrease in cellular pH, which can have serious consequences for cell function and survival.

    • This question is part of the following fields:

      • Clinical Sciences
      4.8
      Seconds
  • Question 4 - A 17-year-old girl is scheduled for surgery to remove a thyroglossal cyst, which...

    Incorrect

    • A 17-year-old girl is scheduled for surgery to remove a thyroglossal cyst, which will involve removing a part of the hyoid bone. Can you identify the cervical level where the hyoid bone is located?

      Your Answer: C6

      Correct Answer: C3

      Explanation:

      Levels of Hyoid Bone, Thyroid Cartilage, and Cricoid Cartilage in the Neck

      The neck contains several important structures, including the hyoid bone, thyroid cartilage, and cricoid cartilage. These structures are located at specific levels in the cervical spine. The hyoid bone is situated at the level of the third cervical vertebrae (C3). The thyroid cartilage, which forms the Adam’s apple in males, is located at the level of the fourth and fifth cervical vertebrae (C4 and C5). Finally, the cricoid cartilage, which is the only complete ring of cartilage in the trachea, is situated at the level of the sixth cervical vertebrae (C6). the location of these structures is important for medical professionals who may need to perform procedures or surgeries in the neck region.

    • This question is part of the following fields:

      • Clinical Sciences
      2.7
      Seconds
  • Question 5 - A 37-year-old pregnant woman has experienced premature rupture of membranes (PROM) four hours...

    Incorrect

    • A 37-year-old pregnant woman has experienced premature rupture of membranes (PROM) four hours prior to the onset of labour. What is the most significant predictor of PROM?

      Your Answer: Chlamydia trachomatis infection

      Correct Answer: Second trimester haemorrhage

      Explanation:

      Premature Rupture of Membranes: Causes and Complications

      Premature rupture of membranes (PROM) is a condition where the amniotic sac ruptures more than an hour before the onset of labor. This sudden loss of amniotic fluid vaginally is a common symptom experienced by the mother. PROM is often associated with first and second trimester hemorrhage, although smoking is also a predisposing factor. Infection is a rare cause of PROM, but Chlamydia trachomatis and B haemolytic Streptococci are among the implicated organisms.

      Complications of PROM include infection, which can affect both the mother and infant. Additionally, fetal pulmonary dysplasia may occur if there is insufficient remaining amniotic fluid. It is important to monitor and manage PROM to prevent these complications.

    • This question is part of the following fields:

      • Clinical Sciences
      36.3
      Seconds
  • Question 6 - What is the hormone that controls the levels of calcium in the blood?...

    Incorrect

    • What is the hormone that controls the levels of calcium in the blood?

      Your Answer: Thyroid hormone

      Correct Answer: Parathyroid hormone

      Explanation:

      The Importance of Parathyroid Hormone in Regulating Blood Calcium Levels

      Calcium plays a crucial role in various bodily functions, including bone support, blood clotting, muscle contraction, nervous transmission, and hormone production. However, excessively high or low levels of calcium in the blood and interstitial fluid can lead to serious health issues such as arrhythmias and cardiac arrest. This is where parathyroid hormone comes in.

      Parathyroid hormone is responsible for regulating blood calcium levels. It works directly on the bone, stimulating bone production or resorption depending on the concentration and duration of exposure. It also acts on the kidney, increasing the loss of phosphate in the urine, decreasing the loss of calcium in the urine, and promoting the activity of the enzyme 1-alpha hydroxylase, which activates vitamin D. Additionally, parathyroid hormone indirectly affects the gut through the action of activated vitamin D.

      Overall, the regulation of blood calcium levels is crucial for maintaining optimal bodily functions. Parathyroid hormone plays a vital role in this process by directly and indirectly affecting various organs and systems in the body.

    • This question is part of the following fields:

      • Clinical Sciences
      6.8
      Seconds
  • Question 7 - A 38-year-old obese woman presents to the Emergency department complaining of sharp cramping...

    Incorrect

    • A 38-year-old obese woman presents to the Emergency department complaining of sharp cramping pains in the right upper quadrant of her abdomen. The pain started this afternoon after a large meal, but she has experienced similar problems over the past few weeks and ignored them, hoping they would go away. She denies any vomiting or diarrhea and is apyrexial. Upon examination, her abdomen is soft, but there is tenderness in the right upper quadrant. Her FBC and U&Es are normal. What is the most likely diagnosis?

      Your Answer: Cholecystitis

      Correct Answer: Cholelithiasis

      Explanation:

      Cholecystitis and Other Digestive Conditions

      Cholecystitis is a condition characterized by inflammation of the gallbladder, which can cause mild fever and vomiting. On the other hand, cholelithiasis, or the presence of gallstones, can lead to cramping pains after eating as the gallbladder contracts to expel bile. This condition is more common in women who are fair, fat, and fertile.

      Dyspepsia, or indigestion, typically causes central pain that is not severe enough to warrant a hospital visit. Gastroenteritis, which is characterized by diarrhea and vomiting, is unlikely if these symptoms are not present. Peptic ulcers, which can cause pain related to eating, are usually accompanied by vomiting and bloating.

      these different digestive conditions can help individuals identify and seek appropriate treatment for their symptoms. It is important to consult a healthcare professional for an accurate diagnosis and treatment plan.

    • This question is part of the following fields:

      • Clinical Sciences
      12.9
      Seconds
  • Question 8 - A 65-year-old patient is undergoing a selective neck dissection of the posterior triangle...

    Incorrect

    • A 65-year-old patient is undergoing a selective neck dissection of the posterior triangle of the neck. What structures will be identified during the dissection?

      Your Answer: The internal jugular vein

      Correct Answer: The inferior belly of omohyoid

      Explanation:

      Anatomy of the Posterior Triangle of the Neck

      The posterior triangle of the neck is an anatomical region that contains various nerves, arteries, veins, and lymph nodes. The nerves found in this area include the spinal accessory nerve (Xi) and the cervical plexus, which consists of the lesser occipital, greater auricular, transverse cervical, and supraclavicular nerves. The arteries present in the posterior triangle of the neck include the 3rd part of the subclavian artery, the transverse cervical and suprascapular arteries (both branches of the thyrocervical trunk), and the occipital artery. The external jugular vein is also located in this region. Additionally, there are lymph nodes located in the inferior belly of the omohyoid muscle.

      It is important to note that the brachial plexus lies deep to the prevertebral fascia in this area. the anatomy of the posterior triangle of the neck is crucial for medical professionals, as it can aid in the diagnosis and treatment of various conditions that may affect this region.

    • This question is part of the following fields:

      • Clinical Sciences
      3
      Seconds
  • Question 9 - A 10-year-old boy comes to the clinic complaining of an itchy right ear...

    Incorrect

    • A 10-year-old boy comes to the clinic complaining of an itchy right ear that has been bothering him for the past five days. During the examination, he winces in pain when the outer ear is touched. Can you identify which part of the ear is considered the outer ear?

      Your Answer: Stapes

      Correct Answer: Pinna

      Explanation:

      Earache: Types and Anatomy of the Ear

      Earache can be categorized into two types: otitis media and otitis externa. Otitis media refers to the inflammation of the middle ear, while otitis externa is the inflammation of the outer ear and/or canal. Pain on touch or gentle pulling of the outer ear is commonly associated with otitis externa.

      The outer ear is composed of the visible part of the ear, called the pinna, and the external auditory meatus near the tragus. The external auditory meatus extends from the pinna around 26 mm to the tympanic membrane. On the other hand, the middle ear reaches from the tympanic membrane to the oval window of the cochlea. This space contains three ossicles, namely the malleus, incus, and stapes, which transmit sound waves to the inner ear.

      The inner ear is made up of the cochlea, which is responsible for hearing, and the vestibular apparatus, which helps maintain balance. The vestibular apparatus consists of three semicircular canals and the vestibule.

      the anatomy of the ear and the different types of earache can help in identifying and treating ear problems. It is important to seek medical attention if experiencing ear pain or discomfort.

    • This question is part of the following fields:

      • Clinical Sciences
      2.8
      Seconds
  • Question 10 - In which cell types can mesenchymal pluripotent stem cells undergo differentiation? ...

    Incorrect

    • In which cell types can mesenchymal pluripotent stem cells undergo differentiation?

      Your Answer:

      Correct Answer: Osteoblasts, adipocytes and chondrocytes

      Explanation:

      Mesenchymal Stem Cells: A Versatile Type of Connective Tissue

      The mesenchyme is a type of connective tissue that originates from the embryonic mesoderm and is composed of undifferentiated cells. During fetal development, these mesenchymal stem cells differentiate into various types of adult cells, including osteoblasts, adipocytes, and chondrocytes. Mesenchymal stem cells have a remarkable ability to self-renew, making them a valuable resource for regenerative medicine.

      Osteoblasts are cells that generate bone tissue, while adipocytes are responsible for storing fat in the body. Chondrocytes, on the other hand, produce cartilage, which is essential for maintaining healthy joints. These three cell types are the primary products of mesenchymal stem cells.

      It’s important to note that the other answer options are incorrect because they don’t arise from mesenchymal stem cells. Mesenchymal stem cells are a versatile type of connective tissue that holds great promise for treating a wide range of medical conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 11 - What is the alternative name for vitamin A? ...

    Incorrect

    • What is the alternative name for vitamin A?

      Your Answer:

      Correct Answer: Vitamin A

      Explanation:

      The Different Types and Roles of Vitamin A

      Vitamin A comes in various forms, including retinol, retinal, and retinoic acid. Retinol is found in food and is converted to retinal or retinoic acid in the body. It is commonly found in meat, milk, and dairy products. Retinal is crucial for vision, while retinoic acid plays a role in gene expression and protein production within cells. Beta carotene, which is present in foods like carrots, can also be converted to vitamin A by the body.

      Vitamin A has several important roles in the body. Retinal is highly concentrated in the rod and cone cells of the retina, where it plays a crucial role in vision. Vitamin A also boosts the immune system by increasing antibody production and T cell activity. It helps maintain the integrity of the skin and mucous membranes, creating a barrier against infection. High doses of vitamin A can even be used to treat certain skin conditions. Additionally, vitamin A is involved in the production of steroid hormones and is essential for growth and development in children.

      However, a deficiency in vitamin A can have negative consequences on nerve function, fertility, and fracture healing. It is important to consume enough vitamin A through a balanced diet or supplements to maintain optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 12 - What is the underlying pathological process that leads to the development of Non-alcoholic...

    Incorrect

    • What is the underlying pathological process that leads to the development of Non-alcoholic fatty liver disease?

      Your Answer:

      Correct Answer: B Insulin sensitisation

      Explanation:

      Non-Alcoholic Fatty Liver Disease (NAFLD)

      Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting around 30% of patients in the Western world. A small percentage of these patients (2-4%) will develop non-alcoholic steatohepatitis (NASH) with cirrhosis. The exact cause of NAFLD is not fully understood, but it is linked to the metabolic syndrome and associated with central obesity, insulin resistance, diabetes mellitus, hypertension, and hyperlipidemia.

      NAFLD is characterized by abnormal lipid handling, which leads to fat accumulation in the liver. Inflammatory cytokines, particularly TNF-alpha, produced in adipocytes, contribute to liver inflammation and lobular hepatitis. Additionally, hepatocytes may become swollen and filled with fluid, leading to an increased cytoplasm:nuclei ratio and vacuolated nuclei. As the disease progresses, pericellular fibrosis may develop, increasing the likelihood of NASH and cirrhosis.

      Currently, the primary treatment for NAFLD is risk factor reduction, addressing associated hypertension, diabetes, and hyperlipidemia.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 13 - A 72-year-old male with a BMI of 31 kg/m2 presents with bilateral lower...

    Incorrect

    • A 72-year-old male with a BMI of 31 kg/m2 presents with bilateral lower limb cellulitis. A urine dipstick shows glycosuria ++. What test would be most effective in diagnosing type 2 diabetes?

      Your Answer:

      Correct Answer: Fasting blood glucose and HbA1c

      Explanation:

      Diagnosis of Diabetes

      An infection can often lead to the diagnosis of diabetes. To determine if a patient has diabetes, a standard 75 gram glucose load is given and an oral glucose tolerance test is carried out after random and fasting blood glucose tests. It is important to note that a random blood glucose sample may not provide accurate results, and the best way to diagnose type 2 diabetes in a patient is through a fasting glucose test. However, an HbA1c test is now widely accepted as a standard test for diagnosing diabetes and is used in place of fasting blood glucose by some healthcare professionals. It is important to accurately diagnose diabetes in patients to ensure proper treatment and management of the condition.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 14 - A 55-year-old obese male patient complains of a painful and swollen big toe...

    Incorrect

    • A 55-year-old obese male patient complains of a painful and swollen big toe accompanied by a mild fever. Given his history of gout, it is suspected to be the underlying cause of his current symptoms. Which blood test is the most useful in confirming a diagnosis of gout?

      Your Answer:

      Correct Answer: Serum urate

      Explanation:

      Diagnosing Gout: the Tests and Procedures

      Gout is a condition that occurs when urate crystals accumulate in the joints, leading to an intense inflammatory response. While several blood tests can help rule out other conditions, the most specific test for gout is the measurement of serum urate levels. However, it’s important to note that gout can still be present even without hyperuricemia, especially during an acute attack. Chondrocalcinosis, a condition characterized by calcium pyrophosphate deposition, can also be mistaken for gout.

      To definitively diagnose gout, a joint aspiration procedure is necessary. This involves extracting fluid from the affected joint and examining it under polarized microscopy. Urate crystals are needle-shaped and exhibit negative birefringence, which is a key characteristic of gout.

      In summary, diagnosing gout requires a combination of blood tests and joint aspiration procedures. While serum urate levels are the most specific blood test for gout, joint aspiration is necessary to confirm the presence of urate crystals. By these tests and procedures, healthcare providers can accurately diagnose and treat gout, improving patient outcomes.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 15 - A 24-year-old man has sustained a stab wound to his thigh caused by...

    Incorrect

    • A 24-year-old man has sustained a stab wound to his thigh caused by a broken bottle. What sign indicates damage to the femoral nerve?

      Your Answer:

      Correct Answer: Loss of knee reflex

      Explanation:

      Lesion of the Femoral Nerve and its Effects on Sensation and Movement

      A lesion of the femoral nerve, specifically at the L2-4 levels, can result in several noticeable effects. One of the most prominent is weakness of the quadriceps femoris muscle, which leads to difficulty extending the knee. Additionally, there may be a loss of sensation over the front of the thigh and a lack of knee jerk reflex. These symptoms can significantly impact a person’s ability to move and perform daily activities.

      The lateral cutaneous nerve of the thigh, which originates from the L1-2 levels, is responsible for providing sensation to the lateral aspect of the thigh and knee, as well as the lower lateral quadrant of the buttock. Meanwhile, the obturator nerve, which also originates from the L2-4 levels, supplies the adductors of the hip and sensation to the inner part of the thigh. These nerves can also be affected by a lesion, leading to further sensory and motor deficits.

      Overall, a lesion of the femoral nerve can have significant consequences for a person’s mobility and sensation. the specific nerves involved and their functions can help in diagnosing and treating these types of injuries.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 16 - In which section of the digestive system are Brunner's glands located? ...

    Incorrect

    • In which section of the digestive system are Brunner's glands located?

      Your Answer:

      Correct Answer: Duodenum

      Explanation:

      Glands and Structures of the Digestive System

      The digestive system is composed of various glands and structures that play important roles in the digestion and absorption of nutrients. One of these structures is the Brunner’s glands, which are coiled glands found in the submucosa of the duodenum. These glands produce an alkaline fluid that helps neutralize the acidic contents of the stomach as they enter the small intestine.

      In contrast, salivary glands are typical exocrine glands that are composed of acini and ducts. These glands produce saliva, which contains enzymes that begin the process of breaking down carbohydrates in the mouth.

      The stomach has deep pits that contain different cell types, including endocrine cells and goblet cells. These cells secrete various substances that aid in digestion and protect the stomach lining from the corrosive effects of gastric acid.

      The jejunum and ileum are parts of the small intestine that have villi, which are finger-like projections that increase the surface area for absorption. At the base of the villi are the crypts of Lieberkuhn, where new enterocytes are produced and migrate up to the tip of the villi. These enterocytes are responsible for absorbing nutrients from the digested food.

      Overall, the digestive system is a complex network of glands and structures that work together to ensure the proper digestion and absorption of nutrients from the food we eat.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 17 - What is the primary cell-cell interaction necessary for the development of granulomas? ...

    Incorrect

    • What is the primary cell-cell interaction necessary for the development of granulomas?

      Your Answer:

      Correct Answer: Th1 CD4+ T cell and macrophages

      Explanation:

      The Formation of Granulomas

      Granulomas are formed when bacteria that cannot be killed are ingested by macrophages. These macrophages, which are filled with resistant bacteria such as Mycobacterium tuberculosis or Mycobacterium leprae, receive assistance from Th1 CD4+ T cells in the form of IFN-gamma. The macrophage then releases IL-12 to maintain its association with the T cell, and IFN-gamma helps activate the macrophage’s killing mechanisms. However, if this fails to clear the bacteria, the response moves to a more protective role. Fibroblasts seal off the area, forming a capsule that may become calcified. In TB infection, it is common for the macrophages within to undergo necrosis.

      FDC and B cells interact to produce high-affinity antibody, while NK cells and macrophages do not directly interact with any particular response. Th2 CD4+ T cells provide stimulatory signals to B cells for the production of antibody. Th2 CD4+ T cells and CD8+ T cells do not directly interact for any specific response. Th1 CD4+ cells are part of the antiviral response, along with CD8+ T cells.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 18 - What does the first heart sound indicate in terms of cardiac activity? ...

    Incorrect

    • What does the first heart sound indicate in terms of cardiac activity?

      Your Answer:

      Correct Answer: Closing of the mitral/tricuspid valves

      Explanation:

      Valvular Sounds and the Cardiac Cycle

      Valvular sounds are the audible representation of the closure of the heart valves. The first heart sound occurs during systole, when the pressure in the ventricles increases and the mitral and tricuspid valves close, forcing blood through the aorta or pulmonary artery. As the ventricles empty and their pressure drops, the aortic or pulmonary valves close, creating the second heart sound. During diastole, the ventricles relax and their pressure decreases even further. When this pressure falls below that of the atria, the mitral and tricuspid valves open once again.

      the cardiac cycle and the sounds associated with it is crucial in diagnosing and treating heart conditions. By listening to the timing and quality of the valvular sounds, healthcare professionals can identify abnormalities in the heart’s function and structure. Additionally, monitoring changes in these sounds over time can help track the progression of certain conditions and guide treatment decisions.

      In summary, the valvular sounds of the heart represent the opening and closing of the heart valves during the cardiac cycle. These sounds are important indicators of heart health and can provide valuable information for healthcare professionals in diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 19 - A 30-year-old woman visits her doctor. She had a health assessment for her...

    Incorrect

    • A 30-year-old woman visits her doctor. She had a health assessment for her job's insurance and was informed that she is obese with a BMI of 36 kg/m2. She is in denial and finds it hard to accept that her weight is unhealthy.

      What stage of behavioral change is she demonstrating?

      Your Answer:

      Correct Answer: Pre-contemplation

      Explanation:

      The Importance of Lifestyle Advice in Healthcare

      Giving lifestyle advice to patients is a challenging task for doctors, but it is crucial in helping patients change their unhealthy habits. The behavioural model of change is a useful tool for clinicians to guide patients through the stages of behavioural change. Although it is an oversimplification of a complex process, it can provide guidance on how to approach difficult situations.

      One example of this is when a patient is in the pre-contemplation stage, where they are unwilling to accept that they need to change their behaviour. In this situation, the clinician may choose to encourage the patient towards the contemplation stage by focusing on their attitude towards their weight and any potential problems it may cause in the future. Simply giving the patient a diet plan and exercise regimen is unlikely to be effective if they do not acknowledge the problem.

      In conclusion, providing lifestyle advice is an essential skill for doctors to help patients make positive changes in their lives. The behavioural model of change can be a helpful tool in guiding patients through the stages of behavioural change, but it is important to approach each patient’s situation individually and with empathy.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 20 - A boy dashes to catch a bus.
    What adjustments does his body undergo...

    Incorrect

    • A boy dashes to catch a bus.
      What adjustments does his body undergo for this brief physical activity?

      Your Answer:

      Correct Answer: Increased blood flow to skin

      Explanation:

      Phases of Physiological Response to Exercise

      Regular exercise triggers a series of physiological responses in the body. These responses can be divided into three phases: stress reaction, resistance reaction, and adaptation reaction. The stress reaction is the initial response to short-term exercise. During this phase, the body increases sympathetic activity, reduces parasympathetic activity, and redirects blood flow to muscles and skin for cooling. Respiration becomes deeper and metabolic buffering responds to the generation of lactic acid through anaerobic respiration.

      As exercise continues, the resistance reaction takes over. This phase occurs minutes to hours after the initiation of exercise and involves the release of hormones such as ACTH, cortisol, growth hormone, and adrenaline. Finally, the adaptation reaction develops over days to weeks of regular exercise. During this phase, genes are activated in exercising tissues, promoting increases in strength, speed, and endurance.

      Overall, the phases of physiological response to exercise can help individuals tailor their exercise routines to achieve their desired outcomes. By gradually increasing the intensity and duration of exercise, individuals can promote the adaptation reaction and achieve long-term improvements in their physical fitness.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 21 - A 32-year old woman with asthma presents to the Emergency department with difficulty...

    Incorrect

    • A 32-year old woman with asthma presents to the Emergency department with difficulty breathing. Upon examination, you observe that she is utilizing accessory muscles for respiration. Can you identify which muscle is considered an accessory muscle of respiration?

      Your Answer:

      Correct Answer: Serratus anterior

      Explanation:

      Accessory Muscles of Respiration

      The accessory muscles of respiration are utilized during deep inspiration and consist of several muscles. These muscles include the sternocleidomastoid, scalenus anterior, medius, and posterior, serratus anterior, and pectoralis major and minor. However, there is no consensus on the exact number of muscles that can be classified as ‘accessory’. Some lists include any muscle that can impact chest expansion. It is important to note that the trapezius muscle cannot be considered an accessory muscle of respiration as it is not connected to the ribs. Overall, the accessory muscles of respiration play a crucial role in deep breathing and chest expansion.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 22 - How can cardiac output be defined? ...

    Incorrect

    • How can cardiac output be defined?

      Your Answer:

      Correct Answer: The amount of blood ejected from the heart in one minute

      Explanation:

      Cardiac Output

      Cardiac output refers to the amount of blood that is pumped out of the heart by either ventricle, typically the left ventricle, in one minute. This is calculated by multiplying the stroke volume, which is the amount of blood ejected from the left ventricle in one contraction, by the heart rate, which is the frequency of the cardiac cycle. At rest, the typical adult has a cardiac output of approximately 5 liters per minute. However, during extreme exercise, the cardiac output can increase up to 6 times due to the increased heart rate and need for more blood circulation throughout the body.

      The heart rate is the speed at which the heart beats per minute, while the stroke volume is the amount of blood ejected from the heart in one beat or contraction. The total peripheral resistance is the force that the ventricles must work against to pump an adequate volume of blood around the body. cardiac output is important in diagnosing and treating various cardiovascular conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 23 - What is the location of the Billroth cords? ...

    Incorrect

    • What is the location of the Billroth cords?

      Your Answer:

      Correct Answer: Splenic red pulp

      Explanation:

      Anatomy and Function of the Spleen

      The spleen is composed of two types of tissue: red pulp and white pulp. The red pulp consists of cords and sinusoids, while the white pulp contains B-zones and marginal zones similar to a lymph node. Blood enters the red pulp through branches of the splenic arterioles and flows into the cords. These cords are filled with blood and contain numerous macrophages, and they are lined by sinusoids. Red blood cells pass through the cords and enter the sinusoids by squeezing through gaps between endothelial cells. This process requires a stable red cell membrane.

      If red blood cells are damaged, they will lyse and be phagocytosed by macrophages in the cords. Red cells that do pass into the sinusoids continue into the splenic venules and eventually exit the spleen through the splenic vein. The spleen plays an important role in filtering blood and removing damaged red blood cells.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 24 - In what location is LDL produced? ...

    Incorrect

    • In what location is LDL produced?

      Your Answer:

      Correct Answer: Liver

      Explanation:

      The Formation and Function of LDL Particles

      Low density lipoprotein (LDL) particles are created in the liver through the conversion of intermediate density lipoprotein (IDL) particles. The liver receives triglycerides and cholesterol esters from chylomicrons, which are then repackaged and secreted into the bloodstream as very low density lipoproteins (VLDL). Lipoprotein lipase on endothelial walls converts VLDL to IDL, which is then converted to LDL by the hepatic tricylglycerol lipase enzyme in the liver.

      LDL particles transport triglycerides to cells that express the LDL receptor on their surfaces, which includes most normal body cells. The LDL binds to the LDL receptor, allowing cholesterol to enter the cells and maintain their cell membrane. While most body cells can produce cholesterol, if an excess amount is received from the bloodstream, endogenous cholesterol production is slowed.

      Macrophages have scavenger receptors that can take up LDL particles from the bloodstream, especially when the particles are modified or oxidized. Lipid-laden macrophages enter the arterial wall and become foam cells, which accumulate in fatty streaks and can become atherosclerotic plaques. the formation and function of LDL particles is crucial in preventing the development of atherosclerosis and related cardiovascular diseases.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 25 - Which type of cell is found in the hepatic space of Disse? ...

    Incorrect

    • Which type of cell is found in the hepatic space of Disse?

      Your Answer:

      Correct Answer: Stellate cells

      Explanation:

      The Cell Types in the Liver

      The liver is composed of different types of cells that perform various functions. The main epithelial cell type in the liver is the hepatocyte, which is arranged in plates and flanked by sinusoids. The sinusoids are lined by endothelial cells, and there is a small space between the endothelial cells and hepatocytes called the space of Disse. Stellate cells, also known as Ito cells, are found in this space. They store vitamin A when inactive, but when inflammation occurs, they become activated and secrete cytokines and extracellular matrix, which contribute to hepatic fibrosis. Macrophages, known as Kupffer cells, are located within the lumen of the hepatic sinusoids. On the other hand, cholangiocytes are the epithelial cells that line the bile ducts, but not the bile canaliculi, which are made from the lateral walls of hepatocytes. the different cell types in the liver is crucial in diagnosing and treating liver diseases.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 26 - What structures are palpable in the anatomical snuff box? ...

    Incorrect

    • What structures are palpable in the anatomical snuff box?

      Your Answer:

      Correct Answer: Radial artery

      Explanation:

      Radial Artery Entry Point in the Hand

      The point of entry for the radial artery in the hand is through a specific area known as the anatomical snuff box. This is located on the dorsum of the hand and serves as a passageway for the artery to enter. The anatomical snuff box is a triangular depression that is formed by the tendons of the abductor pollicis longus and extensor pollicis brevis muscles. It is named after its historical use as a place to hold and sniff tobacco snuff. The radial artery is an important blood vessel that supplies oxygenated blood to the hand and fingers. Its entry point through the anatomical snuff box is a crucial aspect of hand anatomy and physiology.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 27 - A 20-year-old man in India is attacked by a wild dog and subsequently...

    Incorrect

    • A 20-year-old man in India is attacked by a wild dog and subsequently shows symptoms of rabies, including irritability, drooling, and seizures. The virus responsible for rabies is a rhabdovirus, which uses RNA polymerase to create a complementary RNA strand from a single strand of RNA. This newly-synthesised strand then acts as messenger-RNA (mRNA). What is the best description of the rhabdovirus genome?

      Your Answer:

      Correct Answer: Negative-sense RNA (−RNA)

      Explanation:

      Virus Classification Based on Genome

      Viruses are categorized based on their genome, which can either be DNA or RNA. The RNA or DNA can be single or double-stranded. The genome of a virus determines its classification. The rhabdovirus, for instance, contains a single strand of RNA initially, which means that the first, second, and last answer options cannot be correct.

      Positive-sense RNA viruses, such as picornavirus, flavivirus, coronavirus, and calicivirus, use the RNA strand directly as mRNA. On the other hand, negative-sense RNA viruses require RNA polymerase to copy the RNA strand and generate a complementary RNA strand, which then acts as mRNA. The rhabdovirus falls under this category. virus classification based on genome is crucial in developing effective treatments and vaccines.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 28 - What is the compound that results from the skin's exposure to sunlight and...

    Incorrect

    • What is the compound that results from the skin's exposure to sunlight and serves as the active form of vitamin D?

      Your Answer:

      Correct Answer: 1,25(OH)2 Vitamin D3

      Explanation:

      The Activation of Vitamin D

      Vitamin D is essential for maintaining healthy bones and can be obtained through exposure to sunlight or from the diet. The body can activate either vitamin D2 or vitamin D3 through the same pathway. The activation process involves hydroxylation, which adds a hydroxyl group to the vitamin D molecule at position 25 in the liver. This step is not rate limiting and occurs rapidly.

      The next step in activation is further hydroxylation at carbon number 1 on the vitamin D molecule, which creates 1,25(OH)2 vitamin D. This step is rate limiting and requires the enzyme 1-alpha hydroxylase. If there is an abundance of activated vitamin D, the activity of the 1-alpha hydroxylase enzyme will decrease to prevent excessive activation of vitamin D. Instead, an inactive form called 24,25(OH)2 vitamin D can be produced. the activation process of vitamin D is crucial for maintaining healthy bones and overall health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 29 - A 55-year-old man with a BMI of 32 kg/m2 has been experiencing indigestion...

    Incorrect

    • A 55-year-old man with a BMI of 32 kg/m2 has been experiencing indigestion for a long time. He recently had an endoscopy, during which biopsy samples of his oesophagus were taken. The pathology report revealed abnormal columnar epithelium in the distal samples. Can you identify the best answer that describes this adaptive cellular response to injury?

      Your Answer:

      Correct Answer: Metaplasia

      Explanation:

      There are four adaptive cellular responses to injury: atrophy, hypertrophy, hyperplasia, and metaplasia. Metaplasia is the reversible change of one fully differentiated cell type to another, usually in response to irritation. Examples include Barrett’s esophagus, bronchoalveolar epithelium undergoing squamous metaplasia due to cigarette smoke, and urinary bladder transitional epithelium undergoing squamous metaplasia due to a urinary calculi. Atrophy refers to a loss of cells, hypertrophy refers to an increase in cell size, and hyperplasia refers to an increase in cell number. Apoptosis is a specialized form of programmed cell death.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 30 - What is a true statement about baroreceptor impulses? ...

    Incorrect

    • What is a true statement about baroreceptor impulses?

      Your Answer:

      Correct Answer: Inhibit the sympathetic nervous system

      Explanation:

      Baroreceptors and their role in regulating blood pressure

      Baroreceptors are specialized stretch receptors located in the walls of the internal carotid arteries. These receptors are activated when there is an increase in arterial pressure, which sends signals to the brain to inhibit the sympathetic nervous system. This, in turn, leads to a reduction in blood pressure and heart contractility.

      When blood pressure increases, the baroreceptors within the luminal wall stretch, triggering a negative feedback loop that helps to regulate blood pressure. However, it is important to note that baroreceptors do not work via the parasympathetic system or inhibit the vagal nerve, nor do they increase heart rate.

      Overall, baroreceptors play a crucial role in maintaining blood pressure homeostasis by detecting changes in pressure and sending signals to the brain to regulate the sympathetic nervous system. the function of these receptors can help in the development of treatments for hypertension and other cardiovascular diseases.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (1/9) 11%
Passmed