00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each...

    Incorrect

    • A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each episode is preceded by a change in posture, typically when the patient gets out of bed in the morning. The patient feels dizzy and nauseous and falls. He recovers within seconds after the event. The neurologist states these symptoms are likely a side-effect of the patient's levodopa, and prescribes a medication to treat the condition.

      What medication would be the most appropriate for managing the symptoms of this patient?

      Your Answer: Adenosine

      Correct Answer: Fludrocortisone

      Explanation:

      Orthostatic hypotension can be treated with midodrine or fludrocortisone. Fludrocortisone is a synthetic mineralocorticoid that can replace low levels of aldosterone and is often used as an alternative to midodrine, which can cause side-effects such as hypertension and BPH in some patients. Atenolol is a beta-blocker used to treat angina and hypertension, while losartan is an angiotensin-II-receptor antagonist used to manage hypertension. Adenosine is a medication used to treat supraventricular tachycardias.

      Understanding Orthostatic Hypotension

      Orthostatic hypotension is a condition that is more commonly observed in older individuals and those who have neurodegenerative diseases such as Parkinson’s, diabetes, or hypertension. Additionally, certain medications such as alpha-blockers used for benign prostatic hyperplasia can also cause this condition. The primary feature of orthostatic hypotension is a sudden drop in blood pressure, usually more than 20/10 mm Hg, within three minutes of standing. This can lead to presyncope or syncope, which is a feeling of lightheadedness or fainting.

      Fortunately, there are treatment options available for orthostatic hypotension. Midodrine and fludrocortisone are two medications that can be used to manage this condition. It is important to consult with a healthcare professional to determine the best course of treatment for each individual case. By understanding the causes, symptoms, and treatment options for orthostatic hypotension, individuals can take steps to manage this condition and improve their quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      41.7
      Seconds
  • Question 2 - A 65-year-old man arrives at the emergency department via ambulance complaining of chest...

    Correct

    • A 65-year-old man arrives at the emergency department via ambulance complaining of chest pain. He reports that the pain started suddenly a few minutes ago and describes it as a sharp sensation that extends to his back.

      The patient has a history of uncontrolled hypertension.

      A CT scan reveals an enlarged mediastinum.

      What is the most likely cause of the diagnosis?

      Your Answer: Tear in the tunica intima of the aorta

      Explanation:

      An aortic dissection is characterized by a tear in the tunica intima of the aortic wall, which is a medical emergency. Patients typically experience sudden-onset, central chest pain that radiates to the back. This condition is more common in patients with hypertension and is associated with a widened mediastinum on a CT scan.

      Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.

    • This question is part of the following fields:

      • Cardiovascular System
      39.3
      Seconds
  • Question 3 - A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his...

    Incorrect

    • A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his GP is reviewing his discharge letter. The patient has a history of atrial fibrillation and takes warfarin to reduce the risk of stroke. The GP notices an abnormality in the coagulation screen that was performed before surgery. The discharge letter confirms that this is expected with warfarin use.

      What is the most likely abnormality on this patient's coagulation blood results?

      Reference ranges:
      International normalised ratio (INR) 0.9-1.2
      Prothrombin time (PT) 10-14 secs

      Your Answer: PT 21 secs, INR 0.6

      Correct Answer: PT 21 secs, INR 2.5

      Explanation:

      Warfarin causes an increase in prothrombin-time (PT) and international normalised ratio (INR) by inhibiting vitamin K-dependent clotting factors. An increase in PT will cause an increase in INR, and a decrease in PT and INR is a prothrombotic state.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      56.3
      Seconds
  • Question 4 - A 25-year-old athlete is collaborating with the cardiovascular physiology department to enhance their...

    Correct

    • A 25-year-old athlete is collaborating with the cardiovascular physiology department to enhance their performance. They are observing their heart rate to optimize their training routine. After a rigorous treadmill test, their heart rate rises from 56 beats per minute (BPM) to 184 BPM, leading to an increase in their cardiac output.

      What is the most accurate description of the alterations in stroke volume during the treadmill test?

      Your Answer: Increased venous return from the muscles, increases preload and increases stroke volume

      Explanation:

      When the body is exercising, the heart needs to increase its output to meet the increased demand for oxygen in the muscles. This is achieved by increasing the heart rate, but there is a limit to how much the heart rate can increase. To achieve a total increase in cardiac output, the stroke volume must also increase. This is done by increasing the preload, which is facilitated by an increase in venous return.

      Therefore, an increase in venous return will always result in an increase in preload and stroke volume. Conversely, a decrease in venous return will lead to a decrease in preload and stroke volume, as there is less blood returning to the heart from the rest of the body. It is important to note that an increase in venous return cannot result in a decrease in either stroke volume or preload.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      76.5
      Seconds
  • Question 5 - You are a doctor working in the intensive care unit. A 35-year-old man...

    Incorrect

    • You are a doctor working in the intensive care unit. A 35-year-old man has been admitted to the ward due to suddenly vomiting large volumes of fresh blood. His blood pressure is 90/60 mmHg and his heart rate is 150bpm. He needs urgent intravenous fluids. Several attempts at intravenous cannulation have been made but to no avail. The on-call anaesthetist suggests performing a great saphenous vein cutdown.

      Where should the anaesthetist make the incision?

      Your Answer: Posterior to the medial malleolus

      Correct Answer: Anterior to the medial malleolus

      Explanation:

      The long saphenous vein is often used for venous cutdown and passes in front of the medial malleolus. Venous cutdown involves surgically exposing a vein for cannulation.

      On the other hand, the short saphenous vein is situated in front of the lateral malleolus and runs up the back of the thigh to drain into the popliteal vein at the popliteal fossa.

      The long saphenous vein originates from the point where the first dorsal digital vein, which drains the big toe, joins the dorsal venous arch of the foot. It then passes in front of the medial malleolus, ascends the medial aspect of the thigh, and drains into the femoral vein by passing through the saphenous opening.

      The femoral vein becomes the external iliac vein at the inferior margin of the inguinal ligament. It receives blood from the great saphenous and popliteal veins, and a deep vein thrombosis that blocks this vein can be life-threatening.

      During a vascular examination of the lower limb, the dorsalis pedis artery is often palpated. It runs alongside the extensor digitorum longus.

      Lastly, the posterior tibial vein is located at the back of the medial malleolus, together with other structures, within the tarsal tunnel.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      33.3
      Seconds
  • Question 6 - A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty...

    Correct

    • A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.

      What is the anticipated sequence of his cardiac electrical activation following the procedure?

      Your Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres

      Explanation:

      The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      44.7
      Seconds
  • Question 7 - A 12-year-old male patient has been diagnosed with Friedreich's ataxia, an autosomal recessive...

    Incorrect

    • A 12-year-old male patient has been diagnosed with Friedreich's ataxia, an autosomal recessive genetic disease that causes difficulty walking, a loss of sensation in the arms and legs and impaired speech that worsens over time. What condition should this patient be screened for as a result of having this disease?

      Your Answer: Haemophilia

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Friedreich’s ataxia is a genetic disorder caused by a deficiency of the frataxin protein, which can lead to cardiac neuropathy and hypertrophic obstructive cardiomyopathy. This condition is not associated with haemophilia, coarctation of the aorta, streptococcal pharyngitis, Kawasaki disease, or coronary artery aneurysm. However, Group A streptococcal infections can cause acute rheumatic fever and chronic rheumatic heart disease, which are autoimmune diseases that affect the heart.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      32.8
      Seconds
  • Question 8 - An 80-year-old woman came in with an acute myocardial infarction. The ECG revealed...

    Correct

    • An 80-year-old woman came in with an acute myocardial infarction. The ECG revealed ST segment elevation in leads II, III, and aVF. Which coronary artery is the most probable to be blocked?

      Your Answer: Right coronary artery

      Explanation:

      Localisation of Myocardial Infarction

      Myocardial infarction (MI) is a medical emergency that occurs when there is a blockage in the blood flow to the heart muscle. The location of the blockage determines the type of MI and the treatment required. An inferior MI is caused by the occlusion of the right coronary artery, which supplies blood to the bottom of the heart. This type of MI can cause symptoms such as chest pain, shortness of breath, and nausea. It is important to identify the location of the MI quickly to provide appropriate treatment and prevent further damage to the heart muscle. Proper diagnosis and management can improve the patient’s chances of survival and reduce the risk of complications.

    • This question is part of the following fields:

      • Cardiovascular System
      12.7
      Seconds
  • Question 9 - A 50-year-old man comes to the cardiac clinic for a follow-up exercise stress...

    Correct

    • A 50-year-old man comes to the cardiac clinic for a follow-up exercise stress test. The physician discusses the cardiac adaptations during physical activity.

      What statement best describes this patient's pulse pressure?

      Your Answer: Their increased stroke volume will increase pulse pressure

      Explanation:

      Increasing stroke volume leads to an increase in pulse pressure, while decreasing stroke volume results in a decrease in pulse pressure. This is because pulse pressure is determined by the difference between systolic and diastolic pressure, and an increase in stroke volume raises systolic pressure. During exercise, stroke volume increases to meet the body’s demands, leading to an increase in pulse pressure. Therefore, it is incorrect to say that a decrease in pulse pressure will increase stroke volume, or that a decrease in stroke volume will not affect pulse pressure.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      29.7
      Seconds
  • Question 10 - A patient in their 50s experiences hypotension, wheezing, and shortness of breath after...

    Incorrect

    • A patient in their 50s experiences hypotension, wheezing, and shortness of breath after undergoing head and neck surgery. The possibility of a significant air embolism is being considered.

      What factors may have contributed to the occurrence of this event?

      Your Answer: Infection

      Correct Answer: Negative atrial pressures

      Explanation:

      Air embolisms can occur during head and neck surgeries due to negative pressures in the venous circulation and atria caused by thoracic wall movement. If a vein is cut during the surgery, air can enter the veins and cause an air embolism. Atherosclerosis may cause other types of emboli, such as clots. It is important to note that a pneumothorax refers to air in the thoracic cavity, not an embolus in the vessels.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      25.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (5/10) 50%
Passmed