00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a...

    Incorrect

    • A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?

      Na+ 142 mmol/l
      K+ 4.2 mmol/l
      Urea 6 mmol/l
      Creatinine 68 µmol/l

      Your Answer: Acts predominantly on beta-2 receptors in the heart causing a negative lusitropy effect

      Correct Answer: Inhibits the release of renin from the kidneys

      Explanation:

      Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.

      It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.

      While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.

      Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.

      Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.

      Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.

      Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.

    • This question is part of the following fields:

      • Cardiovascular System
      75.1
      Seconds
  • Question 2 - You are attending a cardiology clinic one morning. A 54-year-old man presents for...

    Incorrect

    • You are attending a cardiology clinic one morning. A 54-year-old man presents for a medication review. He is currently taking a beta-blocker but is still frequently symptomatic. From his medication history, it is evident that he does not tolerate calcium channel blockers.

      The consultant considers the option of starting him on a new drug called nicorandil. The patient is hesitant to try it out as he believes it is a calcium channel blocker. You have been asked to explain the mechanism of action of nicorandil to this patient.

      What is the way in which the new drug exerts its effect?

      Your Answer: Causes vasodilation by inactivating ATP-sensitive potassium channels

      Correct Answer: Causes vasodilation by activating guanylyl cyclase which causes an increase in cGMP

      Explanation:

      Nicorandil induces vasodilation by activating guanylyl cyclase, leading to an increase in cyclic GMP. This results in the relaxation of vascular smooth muscles through the prevention of calcium ion influx and dephosphorylation of myosin light chains. Additionally, nicorandil activates ATP-sensitive potassium channels, causing hyperpolarization and preventing intracellular calcium overload, which plays a cardioprotective role.

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      40.8
      Seconds
  • Question 3 - A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux...

    Incorrect

    • A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux disease. While the procedure is ongoing, the patient experiences several coughing episodes.

      Which two cranial nerves are responsible for this reflex action?

      Your Answer: Cranial nerves X and XII

      Correct Answer: Cranial nerves IX and X

      Explanation:

      The glossopharyngeal and vagus nerves, which are cranial nerves IX and X respectively, mediate the cough reflex. The facial nerve, or cranial nerve VII, is responsible for facial movements and taste in the anterior 2/3 of the tongue. The vestibulocochlear nerve, or cranial nerve VIII, is responsible for hearing and balance. Cranial nerve XI, also known as the spinal accessory nerve, innervates the sternocleidomastoid muscle and the trapezius muscle. The hypoglossal nerve, or cranial nerve XII, is responsible for the motor innervation of most of the tongue, and damage to this nerve can cause the tongue to deviate towards the side of the lesion when protruded.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      13.5
      Seconds
  • Question 4 - A 57-year-old man presents to the emergency department with a severe headache that...

    Incorrect

    • A 57-year-old man presents to the emergency department with a severe headache that started 3 weeks ago and is localised to the back of the head. He rates it 8/10 on a pain scale and reports that it has gradually become worse. The patient has a medical history of Ehlers-Danlos syndrome.

      Unfortunately, the patient passes away after suffering a brainstem stroke.

      During the autopsy, a vertebral artery dissection is discovered at the point of entry into the cranial cavity.

      Where is this location?

      Your Answer: Foramen spinosum

      Correct Answer: Foramen magnum

      Explanation:

      The vertebral arteries pass through the foramen magnum to enter the cranial cavity.

      Other foramina and their corresponding arteries include the stylomastoid foramen for the posterior auricular artery (stylomastoid branch), the foramen ovale for the accessory meningeal artery, and the foramen spinosum for the middle meningeal artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      34.7
      Seconds
  • Question 5 - A 70-year-old male inpatient, three days post myocardial infarction, has a sudden onset...

    Incorrect

    • A 70-year-old male inpatient, three days post myocardial infarction, has a sudden onset of intense crushing chest pain.
      What is the most effective cardiac enzyme to determine if this patient has experienced a recurrent heart attack?

      Your Answer: Troponin T

      Correct Answer: Creatine kinase

      Explanation:

      The Most Useful Enzyme to Measure in Diagnosing Early Re-infarction

      In diagnosing early re-infarction, measuring the levels of creatine kinase is the most useful enzyme to use. This is because the levels of creatine kinase return to normal relatively quickly, unlike the levels of troponins which remain elevated at this stage post MI and are therefore not useful in diagnosing early re-infarction.

      The table above shows the rise, peak, and fall of various enzymes in the body after a myocardial infarction. As seen in the table, the levels of creatine kinase rise within 4-6 hours, peak at 24 hours, and fall within 3-4 days. On the other hand, troponin levels rise within 4-6 hours, peak at 12-16 hours, and fall within 5-14 days. This indicates that measuring creatine kinase levels is more useful in diagnosing early re-infarction as it returns to normal levels faster than troponins.

      In conclusion, measuring the levels of creatine kinase is the most useful enzyme to use in diagnosing early re-infarction. Its levels return to normal relatively quickly, making it a more reliable indicator of re-infarction compared to troponins.

    • This question is part of the following fields:

      • Cardiovascular System
      11.1
      Seconds
  • Question 6 - A 72-year-old male with a history of severe aortic stenosis undergoes valve replacement...

    Incorrect

    • A 72-year-old male with a history of severe aortic stenosis undergoes valve replacement surgery. Following the procedure, he is prescribed dipyridamole. What is the mechanism of action of this medication?

      Your Answer: P2Y12-receptor antagonist

      Correct Answer: Non-specific phosphodiesterase antagonist

      Explanation:

      Dipyridamole is a non-specific phosphodiesterase antagonist that inhibits platelet aggregation and thrombus formation by elevating platelet cAMP levels. It also reduces cellular uptake of adenosine and inhibits thromboxane synthase.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      23.4
      Seconds
  • Question 7 - A 72-year-old man visits the clinic with complaints of palpitations and dizziness that...

    Incorrect

    • A 72-year-old man visits the clinic with complaints of palpitations and dizziness that started a day ago. He has been experiencing weakness and fatigue for the past month. During the physical examination, you observe generalized hypotonia and hyporeflexia. After conducting an ECG, you notice indications of hypokalemia. What is an ECG manifestation of hypokalemia?

      Your Answer: Short PR interval

      Correct Answer: Prominent U waves

      Explanation:

      Hypokalaemia can be identified by the presence of U waves on an ECG. Other ECG signs of hypokalaemia include small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified by ECG signs such as a long PR interval and a sine wave pattern, as well as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. A prolonged PR interval may be found in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Abnormalities in serum potassium are often discovered incidentally, but symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis. If a patient presents with palpitations and light-headedness, along with a history of weakness and fatigue, and examination findings of hypotonia and hyporeflexia, hypokalaemia should be considered as a possible cause.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      20.2
      Seconds
  • Question 8 - A 72-year-old man is admitted to the renal ward with acute kidney injury...

    Correct

    • A 72-year-old man is admitted to the renal ward with acute kidney injury following 3 days of diarrhoea and vomiting. Laboratory results reveal that his potassium levels are below normal limits, likely due to his gastrointestinal symptoms. You review his medications to ensure that none are exacerbating the situation and discover that he is taking diuretics for heart failure management. Which of the following diuretics is linked to hypokalaemia?

      Your Answer: Bumetanide

      Explanation:

      Hypokalaemia may be caused by loop diuretics such as bumetanide. It is important to note that spironolactone, triamterene, eplerenone, and amiloride are potassium-sparing diuretics and are more likely to cause hyperkalaemia. In this case, the patient has been admitted to the hospital with acute kidney injury (AKI) due to diarrhoea and vomiting, which are also possible causes of hypokalaemia. It is important to manage all of these factors. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      24.6
      Seconds
  • Question 9 - A 73-year-old man presents to the emergency department with complaints of severe cramping...

    Incorrect

    • A 73-year-old man presents to the emergency department with complaints of severe cramping pain in his leg at rest. He has a medical history of peripheral vascular disease, chronic obstructive pulmonary disease, and hypertension.

      During the examination, his blood pressure is measured at 138/92 mmHg, respiratory rate at 22/min, and oxygen saturations at 99%. The healthcare provider performs a neurovascular exam of the lower limbs and palpates the pulses.

      Which area should be palpated first?

      Your Answer: Behind the knee, in the popliteal fossa

      Correct Answer: First metatarsal space on dorsum of foot

      Explanation:

      To assess lower leg pulses, it is recommended to start from the most distal point and move towards the proximal area. This helps to identify the location of any occlusion. The first pulse to be checked is the dorsalis pedis pulse, which is located on the dorsum of the foot in the first metatarsal space, lateral to the extensor hallucis longus tendon. Palpating behind the knee or in the fourth metatarsal space is incorrect, as no pulse can be felt there. The posterior tibial pulse can be felt posteriorly and inferiorly to the medial malleolus, but it should not be assessed first as it is not as distal as the dorsalis pedis pulse.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      23.7
      Seconds
  • Question 10 - A 59-year-old man presents to the emergency department with pleuritic thoracic pain and...

    Incorrect

    • A 59-year-old man presents to the emergency department with pleuritic thoracic pain and fever. His medical history includes an inferior STEMI that occurred 3 weeks ago. During auscultation, a pericardial rub is detected, and his ECG shows diffuse ST segment elevation and PR segment depression. What is the complication of myocardial infarction that the patient is experiencing?

      Your Answer: Ventricular free wall rupture

      Correct Answer: Dressler syndrome

      Explanation:

      The patient’s symptoms strongly suggest Dressler syndrome, which is an autoimmune-related inflammation of the pericardium that typically occurs 2-6 weeks after a heart attack. This condition is characterized by fever, pleuritic pain, and diffuse ST elevation and PR depression on an electrocardiogram. A pleural friction rub can also be heard during a physical exam.

      While another heart attack is a possibility, the absence of diffuse ST elevation and the presence of a pleural friction rub make this diagnosis less likely.

      A left ventricular aneurysm would present with persistent ST elevation but no chest pain.

      Ventricular free wall rupture typically occurs 1-2 weeks after a heart attack and would present with acute heart failure due to cardiac tamponade, which is characterized by raised jugular venous pressure, pulsus paradoxus, and diminished heart sounds.

      A ventricular septal defect usually occurs within the first week and would present with acute heart failure and a pansystolic murmur.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      31.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (1/10) 10%
Passmed