-
Question 1
Incorrect
-
A 16-year-old female arrives at the emergency department accompanied by her father. According to him, she was watching TV when she suddenly complained of a tingling sensation on the left side of her body. She then reported that her leg had gone numb. Her father mentions that both he and his sister have epilepsy. Given her altered spatial perception and sensation, you suspect that she may have experienced a seizure. What type of seizure is most probable?
Your Answer: Absence seizure
Correct Answer: Parietal lobe seizure
Explanation:Paresthesia is a symptom that can help identify a parietal lobe seizure.
When a patient experiences a parietal lobe seizure, they may feel a tingling sensation on one side of their body or even experience numbness in certain areas. This type of seizure is not very common and is typically associated with sensory symptoms.
On the other hand, occipital lobe seizures tend to cause visual disturbances like seeing flashes or floaters. Temporal lobe seizures can lead to hallucinations, which can affect the senses of hearing, taste, and smell. Additionally, they may cause repetitive movements like lip smacking or grabbing.
Absence seizures are more commonly seen in children between the ages of 3 and 10. These seizures are brief and cause the person to stop what they are doing and stare off into space with a blank expression. Fortunately, most children with absence seizures will outgrow them by adolescence.
Finally, frontal lobe seizures often cause movements of the head or legs and can result in a period of weakness after the seizure has ended.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Correct
-
A pregnant woman at 14 weeks gestation arrives at the emergency department after experiencing an epileptiform seizure preceded by deja vu. Her blood pressure is 130/80 mmHg and 24-hour urine protein is 100 mg, but there is no indication of fetal growth restriction. What is the probable diagnosis?
Your Answer: Temporal lobe epilepsy
Explanation:Temporal lobe epilepsy is commonly associated with deja vu, as the hippocampus in the temporal lobe plays a role in memory. The only other possible condition is eclampsia, as pre-eclampsia does not involve seizures and absence seizures are more frequent in children. However, eclampsia is not the correct diagnosis in this case as the patient does not have hypertension, her proteinuria is not significant (which is typically over 300 mg/24 hours), and there is no evidence of fetal growth restriction. Although this last point is not always present in eclampsia, it is a potential indicator.
Epilepsy Classification: Understanding Seizures
Epilepsy is a neurological disorder that affects millions of people worldwide. The classification of epilepsy has undergone changes in recent years, with the new basic seizure classification based on three key features. The first feature is where seizures begin in the brain, followed by the level of awareness during a seizure, which is important as it can affect safety during a seizure. The third feature is other features of seizures.
Focal seizures, previously known as partial seizures, start in a specific area on one side of the brain. The level of awareness can vary in focal seizures, and they can be further classified as focal aware, focal impaired awareness, and awareness unknown. Focal seizures can also be classified as motor or non-motor, or having other features such as aura.
Generalized seizures involve networks on both sides of the brain at the onset, and consciousness is lost immediately. The level of awareness in the above classification is not needed, as all patients lose consciousness. Generalized seizures can be further subdivided into motor and non-motor, with specific types including tonic-clonic, tonic, clonic, typical absence, and atonic.
Unknown onset is a term reserved for when the origin of the seizure is unknown. Focal to bilateral seizure starts on one side of the brain in a specific area before spreading to both lobes, previously known as secondary generalized seizures. Understanding the classification of epilepsy and the different types of seizures can help in the diagnosis and management of this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A 90-year-old man was brought to the clinic by his family due to a decline in his memory over the past 6 months, accompanied by occasional confusion. His personality and behavior remain unchanged. Upon neurological examination, no abnormalities were found. Following further investigations, he was diagnosed with dementia. What is the probable molecular pathology underlying his symptoms?
Your Answer: Abnormal accumulation of cerebrospinal fluid in the brain ventricles
Correct Answer: Presence of neurofibrillary tangles
Explanation:Alzheimer’s disease is the most prevalent cause of dementia, followed by vascular dementia. It is characterized by the accumulation of type A-Beta-amyloid protein, leading to cortical plaques, and abnormal aggregation of the tau protein, resulting in intraneuronal neurofibrillary tangles. Parkinson’s disease is indicated by the loss of dopaminergic neurons in the substantia nigra, while Lewy body dementia is suggested by the presence of Lewy bodies. Vascular dementia is associated with atherosclerosis of cerebral arteries.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A 60-year-old man visits his physician with a complaint of double vision. During the examination, the physician observes that the left eye is in a 'down and out' position and the pupil is dilated. The physician suspects a cranial nerve palsy.
What is the probable reason for his nerve palsy?Your Answer: Vasculitis
Correct Answer: Posterior communicating artery aneurysm
Explanation:Consider compression as the likely cause of surgical third nerve palsy.
When the dilation of the pupil is involved, it is referred to as surgical third nerve palsy. This condition is caused by a lesion that compresses the pupillary fibers located on the outer part of the third nerve. Unlike vascular causes of third nerve palsy, which only affect the nerve and not the pupillary fibers.
Out of the given options, only answer 4 is a compressive cause of third nerve palsy. The other options are risk factors for vascular causes.
Understanding Third Nerve Palsy: Causes and Features
Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.
There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
A 55-year-old man comes to his doctor complaining of sudden back pain that causes sharp shooting sensations down his buttocks and the back of his legs. He reports doing some heavy lifting in his garden just before the onset. After conducting a thorough physical examination, you observe a delayed ankle jerk reflex. You suspect that he may have an intervertebral disk prolapse.
Which level of the spine is most likely affected by this disk prolapse?Your Answer: L3-L4
Correct Answer: L5-S1
Explanation:L5-S1 disk prolapses often result in a delayed ankle reflex, which can also compress the L5 nerve root and cause sciatic nerve pain in the buttocks and posterior legs. On the other hand, the knee jerk reflex is primarily controlled by the L2-L4 segments.
The ankle reflex is a test that checks the function of the S1 and S2 nerve roots by tapping the Achilles tendon with a tendon hammer. This reflex is often delayed in individuals with L5 and S1 disk prolapses.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
Which one of the following nerves is the primary source of innervation to the anterior skin of the scrotum?
Your Answer: Obturator nerve
Correct Answer: Ilioinguinal nerve
Explanation:The pudendal nerve innervates the posterior skin of the scrotum, while the ilioinguinal nerve primarily innervates the anterior scrotum. The genital branch of the genitofemoral nerve also provides some innervation.
Scrotal Sensation and Nerve Innervation
The scrotum is a sensitive area of the male body that is innervated by two main nerves: the ilioinguinal nerve and the pudendal nerve. The ilioinguinal nerve originates from the first lumbar vertebrae and passes through the internal oblique muscle before reaching the superficial inguinal ring. From there, it provides sensation to the anterior skin of the scrotum.
The pudendal nerve, on the other hand, is the primary nerve of the perineum. It arises from three nerve roots in the pelvis and passes through the greater and lesser sciatic foramina to enter the perineal region. Its perineal branches then divide into posterior scrotal branches, which supply the skin and fascia of the perineum. The pudendal nerve also communicates with the inferior rectal nerve.
Overall, the innervation of the scrotum is complex and involves multiple nerves. However, understanding the anatomy and function of these nerves is important for maintaining proper scrotal sensation and overall male health.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 28-year-old man with a history of Marfan's syndrome arrives at the emergency department complaining of sudden, painless vision loss in his left eye. He reports no prior symptoms or injuries.
What is the probable diagnosis?Your Answer: Lens dislocation
Explanation:In Marfan’s syndrome, painless loss of vision in one eye may be caused by lens dislocation, which is a common ocular symptom of the condition. The dislocation usually occurs in the upper outer part of the eye and can affect one or both eyes. While retinal detachment can also cause sudden vision loss without pain, it is less common than lens dislocation and is often preceded by visual disturbances such as flashes, floaters, or blind spots.
Causes of Lens Dislocation
Lens dislocation can occur due to various reasons. One of the most common causes is Marfan’s syndrome, which causes the lens to dislocate upwards. Another cause is homocystinuria, which leads to the lens dislocating downwards. Ehlers-Danlos syndrome is also a contributing factor to lens dislocation. Trauma, uveal tumors, and autosomal recessive ectopia lentis are other causes of lens dislocation. It is important to identify the underlying cause of lens dislocation to determine the appropriate treatment plan. Proper diagnosis and management can prevent further complications and improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
An 88-year-old man is brought by his daughter to see his family physician. The daughter reports that her father has been getting lost while driving and forgetting important appointments. She also notices that he has been misplacing items around the house and struggling to recognize familiar faces. These symptoms have been gradually worsening over the past 6 months.
Upon examination, the doctor finds that a recent MRI scan shows increased sulci depth consistent with Alzheimer's disease. The man has not experienced any falls or motor difficulties. He has no significant medical history.
What is the most likely brain pathology in this patient?Your Answer: Intracellular Pick bodies
Correct Answer: Extracellular amyloid plaques and intracellular neurofibrillary tangles
Explanation:Alzheimer’s disease is characterized by the deposition of type A-Beta-amyloid protein in cortical plaques and abnormal aggregation of the tau protein in intraneuronal neurofibrillary tangles. A patient presenting with memory problems and decreased ability to recognize faces is likely to have Alzheimer’s disease, with Lewy body dementia and vascular dementia being the main differential diagnoses. Lewy body dementia can be ruled out as the patient does not have any movement symptoms. Vascular dementia typically occurs on a background of vascular risk factors and presents with sudden deteriorations in cognition and memory. The diagnosis of Alzheimer’s disease is supported by MRI findings of increased sulci depth due to brain atrophy following neurodegeneration. Pick’s disease, now known as frontotemporal dementia, is characterized by intracellular tau protein aggregates called Pick bodies and presents with personality changes, language impairment, and emotional disturbances.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
An 8-year-old boy is brought to the general practice by his father. The father has observed several peculiar episodes where his son would stop what he was doing and become unresponsive to sounds and touch for 5-10 seconds. The doctor suspects epilepsy as the cause.
What EEG pattern is typical of the underlying condition?Your Answer: Normal EEG pattern
Correct Answer: 3Hz spike-and-wave
Explanation:An absence seizure is characterized by 3Hz oscillations on EEG, making it a defining feature. Therefore, EEG is the primary diagnostic tool used to detect absence seizures.
Absence seizures, also known as petit mal, are a type of epilepsy that is commonly observed in children. This form of generalised epilepsy typically affects children between the ages of 3-10 years old, with girls being twice as likely to be affected as boys. Absence seizures are characterised by brief episodes that last only a few seconds and are followed by a quick recovery. These seizures may be triggered by hyperventilation or stress, and the child is usually unaware of the seizure. They may occur multiple times a day and are identified by a bilateral, symmetrical 3Hz spike and wave pattern on an EEG.
The first-line treatment for absence seizures includes sodium valproate and ethosuximide. The prognosis for this condition is generally good, with 90-95% of affected individuals becoming seizure-free during adolescence.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
You are reviewing a patient's notes in the clinic and see that they have recently been seen by an ophthalmologist. On ocular examination, they have been noted to have myopia (nearsightedness), with no other obvious pathological change. The specialist recommends spectacles for the treatment of this condition. Your patient mentioned that they do not fully understand why they require glasses. You draw them a diagram to explain the cause of their short-sightedness.
Where is the approximate point that light rays converge in this individual?Your Answer: Anterior to the crystalline lens
Correct Answer: In the vitreous body, anterior to the retina
Explanation:Myopia is a condition where the visual axis of the eye is too long, causing the image to be focused in front of the retina. This is typically caused by an imbalance between the length of the eye and the power of the cornea and lens system.
In a healthy eye, light is first focused by the cornea and then by the crystalline lens, resulting in a clear image on the retina. If the light converges anterior to the crystalline lens, it may indicate severe corneal disruption, which can occur in conditions such as ocular trauma and keratoconus.
Myopia is a common refractive error where the light rays converge posterior to the crystalline lens and anterior to the retina. This occurs when the cornea and lens system are too powerful for the length of the eye. Corrective lenses can be used to refract the light before it enters the eye, with a concave lens being required to correct the refractive error in a myopic eye.
If the light rays converge on the crystalline lens, it may also indicate severe corneal disruption. Conversely, if the light rays converge posterior to the retina, it may indicate hyperopia (hypermetropia).
In an emmetropic eye (no refractive error), the light rays converge on the fovea, resulting in a clear image on the retina.
A gradual decline in vision is a prevalent issue among the elderly population, leading them to seek guidance from healthcare providers. This condition can be attributed to various causes, including cataracts and age-related macular degeneration. Both of these conditions can cause a gradual loss of vision over time, making it difficult for individuals to perform daily activities such as reading, driving, and recognizing faces. As a result, it is essential for individuals experiencing a decline in vision to seek medical attention promptly to receive appropriate treatment and prevent further deterioration.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased appetite, and diarrhea. She frequently experiences a rapid heartbeat and feels hot and sweaty in your office. During examination, you observe lid retraction in her eyes and a pulse rate of 110 beats per minute. You suspect thyrotoxicosis and plan to measure her serum levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Since TSH is secreted by the anterior pituitary, which other hormone is also released by this gland?
Your Answer: Cortisol
Correct Answer: Prolactin
Explanation:The hormone secreted by the anterior pituitary gland that stimulates breast development in puberty and during pregnancy, as well as milk production after delivery, is prolactin. Along with prolactin, the anterior pituitary gland also secretes growth hormone, adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and melanocyte releasing hormone.
antidiuretic hormone (ADH), also known as vasopressin, is secreted by the posterior pituitary gland. It increases water reabsorption in the collecting ducts of the kidneys.
Aldosterone is released by the zona glomerulosa of the adrenal cortex. It is a mineralocorticoid that increases sodium reabsorption in the distal nephron of the kidney, leading to water retention.
Cortisol is released by the zona fasiculata of the adrenal gland. It is a glucocorticoid that has various actions, including increasing protein catabolism, glycogenolysis, and gluconeogenesis.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
You examine a patient who suffered a severe stroke two years prior.
What clinical examination features would you anticipate observing?Your Answer: Loss of muscle bulk
Correct Answer: Increased deep tendon reflexes
Explanation:If there is an increased reflex response, it may indicate an upper motor neuron lesion. This type of lesion can be caused by a stroke and can result in spastic weakness and heightened reflex responses. The reason for hyperreflexia is due to the loss of inhibitory signals that normally regulate spinal reflex circuits. On the other hand, a lower motor neuron lesion will cause flaccid weakness, reduced deep tendon reflexes, fasciculations, and muscle atrophy.
Reflexes are automatic responses that our body makes in response to certain stimuli. These responses are controlled by the nervous system and do not require conscious thought. There are several common reflexes that are associated with specific roots in the spinal cord. For example, the ankle reflex is associated with the S1-S2 root, while the knee reflex is associated with the L3-L4 root. Similarly, the biceps reflex is associated with the C5-C6 root, and the triceps reflex is associated with the C7-C8 root. Understanding these reflexes can help healthcare professionals diagnose and treat certain conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
John is a 35-year-old man who was discharged 3 days ago from hospital, after sustaining an injury to his head. Observations and imaging were all normal and there was no neurological deficit on examination. Since then he has noticed difficulty in going upstairs. He says that he can't see where he is going and becomes very unsteady. His wife also told him that he has started to tilt his head to the right, which he was unaware of.
On examination, his visual acuity is 6/6 but he has difficulty looking up and out with his right eye, no other abnormality is revealed.
What is the most likely diagnosis?Your Answer: Abducens nerve palsy
Correct Answer: Trochlear nerve palsy
Explanation:Consider 4th nerve palsy if your vision deteriorates while descending stairs.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Correct
-
A 50-year-old man comes to your clinic complaining of progressive dysarthria, dysphagia, facial and tongue weakness, and emotional lability. During the examination, you observe an exaggerated jaw jerk reflex. Which cranial nerve is responsible for this efferent pathway of the reflex?
Your Answer: Mandibular division of the trigeminal nerve
Explanation:The efferent limb of the jaw jerk reflex is controlled by the mandibular division of the trigeminal nerve (CN V3). This nerve supplies sensation to the lower face and buccal membranes of the mouth, as well as providing secretory-motor function to the parotid gland. In conditions with pathology above the spinal cord, such as pseudobulbar palsy, the jaw jerk reflex can become hyperreflexic as an upper motor sign. The ophthalmic division of the trigeminal nerve (CN V1) and the maxillary division of the trigeminal nerve (CN V2) are not responsible for the efferent limb of the jaw jerk reflex, as they provide sensory function to other areas of the face.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Correct
-
A man in his early fifties comes to the clinic complaining of vomiting undigested food for the past few weeks. He reports no abdominal pain, changes in bowel habits, fever, or vertigo. He has type 2 diabetes that is not well controlled. What could be the probable reason for his vomiting?
Your Answer: Gastric paresis
Explanation:The correct answer is gastric paresis, which is a type of autonomic neuropathy commonly linked to type 2 diabetes. Its symptoms include vomiting undigested food due to the stomach’s inability to digest it properly.
Gastroenteritis, on the other hand, is characterized by vomiting and diarrhea, along with fever and diffuse abdominal pain. It is caused by an infection.
Peptic ulcers typically cause upper abdominal pain and can lead to haematemesis, which is not present in this patient’s case.
Vestibular neuritis may also cause vomiting, but it is usually accompanied by severe vertigo and nystagmus.
Autonomic Neuropathy: Causes and Features
Autonomic neuropathy is a condition that affects the autonomic nervous system, which controls involuntary bodily functions such as heart rate, blood pressure, and sweating. The features of autonomic neuropathy include impotence, inability to sweat, and postural hypotension, which is a sudden drop in blood pressure upon standing up. Other symptoms include a loss of decrease in heart rate following deep breathing and dilated pupils following adrenaline instillation.
There are several causes of autonomic neuropathy, including diabetes, Guillain-Barre syndrome, multisystem atrophy (MSA), Shy-Drager syndrome, Parkinson’s disease, and infections such as HIV, Chagas’ disease, and neurosyphilis. Certain medications, such as antihypertensives and tricyclics, can also cause autonomic neuropathy. In rare cases, a craniopharyngioma, a type of brain tumor, can lead to autonomic neuropathy.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Correct
-
Which of the following characteristics does not increase the risk of refeeding syndrome?
Your Answer: Thyrotoxicosis
Explanation:Understanding Refeeding Syndrome and its Metabolic Consequences
Refeeding syndrome is a condition that occurs when a person is fed after a period of starvation. This can lead to metabolic abnormalities such as hypophosphataemia, hypokalaemia, hypomagnesaemia, and abnormal fluid balance. These metabolic consequences can result in organ failure, making it crucial to be aware of the risks associated with refeeding.
To prevent refeeding problems, it is recommended to re-feed patients who have not eaten for more than five days at less than 50% energy and protein levels. Patients who are at high risk for refeeding problems include those with a BMI of less than 16 kg/m2, unintentional weight loss of more than 15% over 3-6 months, little nutritional intake for more than 10 days, and hypokalaemia, hypophosphataemia, or hypomagnesaemia prior to feeding (unless high). Patients with two or more of the following are also at high risk: BMI less than 18.5 kg/m2, unintentional weight loss of more than 10% over 3-6 months, little nutritional intake for more than 5 days, and a history of alcohol abuse, drug therapy including insulin, chemotherapy, diuretics, and antacids.
To prevent refeeding syndrome, it is recommended to start at up to 10 kcal/kg/day and increase to full needs over 4-7 days. It is also important to start oral thiamine 200-300mg/day, vitamin B co strong 1 tds, and supplements immediately before and during feeding. Additionally, K+ (2-4 mmol/kg/day), phosphate (0.3-0.6 mmol/kg/day), and magnesium (0.2-0.4 mmol/kg/day) should be given to patients. By understanding the risks associated with refeeding syndrome and taking preventative measures, healthcare professionals can ensure the safety and well-being of their patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 60-year-old carpenter comes to your clinic complaining of back pain. He reports that this started a few weeks ago after lifting heavy wood. He experiences a sharp pain that travels from his lower back down the lateral aspect of his left thigh. Despite resting his leg, the pain persists. You suspect that he may have a herniated disc that is compressing his sciatic nerve and want to perform an examination to confirm the presence of sciatic nerve lesion features.
What is the most probable feature that you will discover during the examination?Your Answer: Pain on right knee extension
Correct Answer: Right sided foot drop
Explanation:Foot drop is a possible consequence of sciatic nerve damage. The patient in question may have a herniated disc caused by heavy lifting, which is compressing their sciatic nerve and leading to weakness in the foot dorsiflexors.
If a person experiences pain when they abduct their hip, it could be due to damage to the superior gluteal nerve.
Damage to the femoral nerve can cause pain when extending the knee, as well as pain when flexing the thigh.
Femoral nerve damage can also result in loss of sensation over the medial aspect of the thigh, as well as the anterior aspect of the thigh and lower leg.
Damage to the lateral cutaneous nerve of the thigh can cause loss of sensation over the posterior surface of the thigh, as well as the lateral surface of the thigh.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 20-year-old man is rushed to the emergency department following his ejection from a car during a road accident.
During the examination, the patient responds to simple questions with incomprehensible sounds and opens his eyes in response to pain. There is also an abnormal wrist flexion when a sternal rub is applied, and a positive Battle's sign is observed.
A CT scan of the head is ordered, which reveals a fracture of the petrous temporal bone.
Which nerve is most likely to be affected by the patient's injury?Your Answer: Oculomotor nerve
Correct Answer: Facial nerve
Explanation:The facial nerve passes through the internal acoustic meatus, which is correct. This nerve provides motor innervation to the muscles of facial expression, parasympathetic innervation to salivary and lacrimal glands, and special sensory innervation of taste in the anterior 2/3 of the tongue via the chorda tympani. The patient in question has a Glasgow Coma Score of 7, indicating nonspecific neurotrauma from a recent road traffic accident. It is unlikely that damage to the internal acoustic meatus would affect the glossopharyngeal or hypoglossal nerves, which pass through different structures. Damage to the oculomotor nerve, which passes through the superior orbital fissure, may cause ptosis and a dilated ‘down-and-out’ pupil.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A patient in his mid-50s visits his physician with complaints of difficulty in chewing and tongue movement, leading to eating problems. The patient also reports severe headaches, and the symptoms have been worsening gradually. The doctor decides to conduct an MRI scan to diagnose the condition.
What is the likely location of the lesion within the skull that the doctor will look for?Your Answer: Jugular foramen
Correct Answer: Hypoglossal canal
Explanation:The hypoglossal nerve travels through the hypoglossal canal, which is why damage to this nerve can cause symptoms related to tongue movement and reflexes such as chewing, sucking, and swallowing. The superior orbital fissure is not the correct answer as the nerves that pass through it do not provide motor innervation to the tongue, and the patient in the question does not present with any eye-related symptoms. The jugular foramen and foramen ovale are also incorrect as they do not exclusively house the hypoglossal nerve, and the nerves that pass through them do not provide motor innervation to the tongue. The foramen rotundum is also not the correct answer as only the maxillary branch of the trigeminal nerve passes through it, which does not innervate the tongue.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A teenage boy is on a date with a partner he met on a mobile dating app. After the date, they engage in sexual intercourse. Which neural pathway is responsible for his ejaculation, controlled by the autonomic nervous system?
Your Answer: Parasympathetic output via the vagus nerve
Correct Answer: Sympathetic output from the sympathetic trunk at L1
Explanation:The L1 level of the sympathetic outflow controls ejaculation, while the parasympathetic branch controls the erection of the penis. This can be remembered as ‘Point and Shoot’, with the parasympathetic controlling the ‘point’ of the erection and the sympathetic controlling the ‘shoot’ of ejaculation. If there is damage to the L1 level or lumbar ganglia, it can result in the inability to achieve ejaculation.
Anatomy of the Sympathetic Nervous System
The sympathetic nervous system is responsible for the fight or flight response in the body. The preganglionic efferent neurons of this system are located in the lateral horn of the grey matter of the spinal cord in the thoraco-lumbar regions. These neurons leave the spinal cord at levels T1-L2 and pass to the sympathetic chain. The sympathetic chain lies on the vertebral column and runs from the base of the skull to the coccyx. It is connected to every spinal nerve through lateral branches, which then pass to structures that receive sympathetic innervation at the periphery.
The sympathetic ganglia are also an important part of this system. The superior cervical ganglion lies anterior to C2 and C3, while the middle cervical ganglion (if present) is located at C6. The stellate ganglion is found anterior to the transverse process of C7 and lies posterior to the subclavian artery, vertebral artery, and cervical pleura. The thoracic ganglia are segmentally arranged, and there are usually four lumbar ganglia.
Interruption of the head and neck supply of the sympathetic nerves can result in an ipsilateral Horners syndrome. For the treatment of hyperhidrosis, sympathetic denervation can be achieved by removing the second and third thoracic ganglia with their rami. However, removal of T1 is not performed as it can cause a Horners syndrome. In patients with vascular disease of the lower limbs, a lumbar sympathetomy may be performed either radiologically or surgically. The ganglia of L2 and below are disrupted, but if L1 is removed, ejaculation may be compromised, and little additional benefit is conferred as the preganglionic fibres do not arise below L2.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 25-year-old woman with bothersome axillary hyperhidrosis is scheduled for a thoracoscopic sympathectomy to manage the condition. What anatomical structure must be severed to reach the sympathetic trunk during the procedure?
Your Answer: Intercostal vein
Correct Answer: Parietal pleura
Explanation:The parietal pleura is located anterior to the sympathetic chain. When performing a thoracoscopic sympathetomy, it is necessary to cut through this structure. The intercostal vessels are situated at the back and should be avoided as much as possible to prevent excessive bleeding. Deliberately cutting them will not enhance surgical access.
Anatomy of the Sympathetic Nervous System
The sympathetic nervous system is responsible for the fight or flight response in the body. The preganglionic efferent neurons of this system are located in the lateral horn of the grey matter of the spinal cord in the thoraco-lumbar regions. These neurons leave the spinal cord at levels T1-L2 and pass to the sympathetic chain. The sympathetic chain lies on the vertebral column and runs from the base of the skull to the coccyx. It is connected to every spinal nerve through lateral branches, which then pass to structures that receive sympathetic innervation at the periphery.
The sympathetic ganglia are also an important part of this system. The superior cervical ganglion lies anterior to C2 and C3, while the middle cervical ganglion (if present) is located at C6. The stellate ganglion is found anterior to the transverse process of C7 and lies posterior to the subclavian artery, vertebral artery, and cervical pleura. The thoracic ganglia are segmentally arranged, and there are usually four lumbar ganglia.
Interruption of the head and neck supply of the sympathetic nerves can result in an ipsilateral Horners syndrome. For the treatment of hyperhidrosis, sympathetic denervation can be achieved by removing the second and third thoracic ganglia with their rami. However, removal of T1 is not performed as it can cause a Horners syndrome. In patients with vascular disease of the lower limbs, a lumbar sympathetomy may be performed either radiologically or surgically. The ganglia of L2 and below are disrupted, but if L1 is removed, ejaculation may be compromised, and little additional benefit is conferred as the preganglionic fibres do not arise below L2.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Correct
-
A 82-year-old man presents to falls clinic with a history of four falls in the past four months, despite no previous falls. He also complains of a worsening headache at night over the last three months. During the cranial nerve exam, an inferior homonymous quadrantanopia is observed, but eye movements are intact. The rest of the neurological exam is unremarkable. What area of the brain could be responsible for these symptoms?
Your Answer: Superior optic radiation
Explanation:Superior optic radiation lesions in the parietal lobe are responsible for inferior homonymous quadrantanopias. The location of the lesion can be determined by analyzing the visual field defect pattern. Lesions anterior to the optic chiasm cause incongruous defects, while lesions at the optic chiasm cause bitemporal/binasal hemianopias. Lesions posterior to the optic chiasm result in homonymous hemianopias. The optic radiations carry nerves from the optic chiasm to the occipital lobe. Lesions located inferiorly cause superior visual field defects, and vice versa. Therefore, the woman’s inferior homonymous quadrantanopias indicate a lesion on the superior aspect of the optic radiation in the parietal lobe. Superior homonymous quadrantanopias result from lesions to the inferior aspect of the optic radiations. Compression of the lateral aspects of the optic chiasm causes nasal/binasal visual field defects, while compression of the superior optic chiasm causes bitemporal hemianopias. Lesions to the optic nerve before reaching the optic chiasm cause an incongruous homonymous hemianopia affecting the ipsilateral eye.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Correct
-
A 21-year-old male visits the GP complaining of a sore and itchy eye upon waking up. Upon examination, the right eye appears red with a discharge of mucopurulent nature. The patient has a medical history of asthma and eczema and is currently using a salbutamol inhaler. Based on this information, what is the most probable diagnosis?
Your Answer: Bacterial conjunctivitis
Explanation:A mucopurulent discharge is indicative of bacterial conjunctivitis, which is likely in this patient presenting with an itchy, red eye. Although the patient has a history of asthma and eczema, allergic rhinitis would not produce a mucopurulent discharge. Viral conjunctivitis, the most common type of conjunctivitis, is associated with a watery discharge. A corneal ulcer, on the other hand, is characterized by pain and a watery eye.
Infective conjunctivitis is a common eye problem that is often seen in primary care. It is characterized by red, sore eyes that are accompanied by a sticky discharge. There are two types of infective conjunctivitis: bacterial and viral. Bacterial conjunctivitis is identified by a purulent discharge and eyes that may be stuck together in the morning. On the other hand, viral conjunctivitis is characterized by a serous discharge and recent upper respiratory tract infection, as well as preauricular lymph nodes.
In most cases, infective conjunctivitis is a self-limiting condition that resolves on its own within one to two weeks. However, patients are often offered topical antibiotic therapy, such as Chloramphenicol or topical fusidic acid. Chloramphenicol drops are given every two to three hours initially, while chloramphenicol ointment is given four times a day initially. Topical fusidic acid is an alternative and should be used for pregnant women. For contact lens users, topical fluoresceins should be used to identify any corneal staining, and treatment should be the same as above. It is important to advise patients not to share towels and to avoid wearing contact lenses during an episode of conjunctivitis. School exclusion is not necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A 10-year-old girl arrives at the emergency department with her father. She complains of a headache followed by seeing flashing lights and floaters. Her father also noticed her eyes moving from side to side. What type of seizure is likely to be associated with these symptoms?
Your Answer: Parietal lobe seizure
Correct Answer: Occipital lobe seizure
Explanation:Visual changes like floaters and flashes are common symptoms of occipital lobe seizures, while hallucinations and automatisms are associated with temporal lobe seizures. Head and leg movements, as well as postictal weakness, are typical of frontal lobe seizures, while paraesthesia is a common symptom of parietal lobe seizures.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
A 21-year-old female is admitted with suspected meningitis. The House Officer is about to perform a lumbar puncture. What is the initial structure that the needle is likely to encounter upon insertion?
Your Answer: Ligamentum flavum
Correct Answer: Supraspinous ligament
Explanation:Lumbar Puncture Procedure
Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s termination at L1.
During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.
Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Correct
-
A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with new-onset double vision. She reports that in the last week, she has noticed double vision when trying to focus on objects on the left side of her visual field. She reports no double vision when looking to the right.
During examination, asking the patient to track the examiner's finger and look to the left (i.e. left horizontal conjugate gaze) elicits double vision, with the patient reporting that images appear 'side by side.' Additionally, there is a failure of the right eye to adduct past the midline, and nystagmus is noted in the left eye. Asking the patient to look to the right elicits no symptoms or abnormal findings. Asking the patient to converge her eyes on a nearby, midline object elicits no abnormalities, and the patient can abduct both eyes.
Which part of the nervous system is most likely responsible for this patient's symptoms?Your Answer: Paramedian area of midbrain and pons
Explanation:The medial longitudinal fasciculus is a pathway located in the paramedian area of the midbrain and pons that coordinates horizontal conjugate gaze by connecting the abducens nerve nucleus (CN VI) with the contralateral oculomotor nerve nucleus (CN III). Lesions in the MLF can result in internuclear ophthalmoplegia (INO), which is commonly caused by demyelinating disorders like multiple sclerosis. Bilateral INO is often associated with multiple sclerosis.
The other options listed in the vignette can also cause visual disturbances, but they are not the cause of the patient’s INO. Lesions in the occipital lobe can cause contralateral homonymous, macular-sparing quadrantanopia or hemianopia. Lateral medullary lesions (Wallenberg syndrome) can cause an ipsilateral Horner’s syndrome marked by ptosis, miosis, and anhidrosis. Optic neuritis, which is common in multiple sclerosis, can cause blurred vision, colour desaturation, and eye pain, but it would not result in binocular diplopia that improves on covering the unaffected eye. Lesions affecting the oculomotor nerve nucleus would also affect the ipsilateral eye’s ability to abduct on horizontal conjugate gaze, but the test of convergence can help distinguish this from an MLF lesion.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 50 year old man comes to the clinic complaining of weakness in his hand. During the examination, he is asked to hold a piece of paper between his thumb and index finger. When the paper is pulled, he struggles to maintain his grip. The patient compensates by flexing his thumb at the interphalangeal joint. What nerve lesion is the most probable cause of his symptoms?
Your Answer: Anterior interosseous nerve
Correct Answer: Deep branch of ulnar nerve
Explanation:Froment’s sign is a test used to assess ulnar nerve palsy, specifically the function of the adductor pollicis muscle which is supplied by the deep branch of the ulnar nerve. It is important to note that the flexor pollicis longus muscle, which is innervated by the anterior interosseous branch of the median nerve and causes flexion of the thumb IP joint, branches off at a more proximal location near the wrist.
The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 48-year-old man arrives at the Emergency Department with facial drooping and slurred speech. You perform a cranial nerves examination and find that his glossopharyngeal nerve has been affected. What sign would you anticipate observing in this patient?
Your Answer: Paralysis of the mastication muscles
Correct Answer: Loss of gag reflex
Explanation:The correct answer is loss of gag reflex, which is caused by a lesion in the glossopharyngeal nerve (CN IX). This nerve is responsible for taste in the posterior 1/3 of the tongue, salivation, and swallowing. Lesions in this nerve may also result in a hypersensitive carotid sinus reflex.
Loss of taste on the anterior 2/3 of the tongue is incorrect, as this is controlled by the facial nerve (CN VII), which also controls facial movements, lacrimation, and salivation. Lesions in this nerve may result in flaccid paralysis of the upper and lower face, loss of corneal reflex, loss of taste on the anterior 2/3 of the tongue, and hyperacusis.
Paralysis of the facial muscles or mastication muscles is also incorrect. The facial nerve controls facial movements, while the trigeminal nerve (CN V) controls the muscles of mastication and facial sensation via its ophthalmic, maxillary, and mandibular branches.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 68-year-old man visits his GP complaining of an 8-week cough and an unintentional weight loss of 7kg. He has a smoking history of 35 pack-years. The GP observes some alterations in his left eye, which are indicative of Horner's syndrome.
The man is referred to the suspected cancer pathway and is subsequently diagnosed with a Pancoast tumour.
What symptom is this individual most likely to exhibit?Your Answer: Exophthalmos
Correct Answer: Anhidrosis
Explanation:Horner’s syndrome is characterized by meiosis, ptosis, and enophthalmos, and may also present with anhidrosis. Anhidrosis is a common symptom in preganglionic and central causes of Horner’s syndrome, while postganglionic causes do not typically result in anhidrosis. Exophthalmos is not associated with Horner’s syndrome, but rather with other conditions. Hypopyon and mydriasis are also not symptoms of Horner’s syndrome.
Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Correct
-
A 45-year-old patient presents with muscle weakness in the proximal lower limbs. Following antibody tests, the diagnosis of Lambert-Eaton syndrome is confirmed. Which receptors are targeted by the autoimmune antibodies in this condition?
Your Answer: Voltage-gated calcium channels
Explanation:The antibodies involved in Lambert-Eaton syndrome attack the voltage-gated calcium channels. This autoimmune disorder is characterized by muscle weakness, but a unique aspect is that muscle strength improves with repeated contractions, unlike in myasthenia gravis.
Understanding Lambert-Eaton Syndrome
Lambert-Eaton syndrome is a rare neuromuscular disorder that is often associated with small cell lung cancer, breast cancer, and ovarian cancer. It can also occur independently as an autoimmune disorder. The condition is caused by an antibody that attacks the presynaptic voltage-gated calcium channel in the peripheral nervous system.
The symptoms of Lambert-Eaton syndrome include limb-girdle weakness, hyporeflexia, and autonomic symptoms such as dry mouth, impotence, and difficulty micturating. Unlike myasthenia gravis, ophthalmoplegia and ptosis are not commonly seen in this condition. Muscle strength may increase with repeated contractions, but this is only seen in 50% of patients and eventually decreases with prolonged muscle use.
An incremental response to repetitive electrical stimulation is seen on electromyography (EMG). Treatment of the underlying cancer is important, and immunosuppression with prednisolone and/or azathioprine may be beneficial. 3,4-diaminopyridine is currently being trialled as a treatment option. Intravenous immunoglobulin therapy and plasma exchange may also be helpful in managing the symptoms of Lambert-Eaton syndrome.
-
This question is part of the following fields:
- Neurological System
-
-
Question 31
Incorrect
-
A 75-year-old-male comes to your neurology clinic accompanied by his wife. She reports that she has observed alterations in his speech over the last six months, with frequent pauses between syllables of words. During the clinical examination, you observe that his speech is jerky and loud, and he has decreased tone in his upper and lower limbs. Considering the most probable diagnosis, what other symptom is he likely to exhibit?
Your Answer: Horizontal diplopia
Correct Answer: Horizontal nystagmus
Explanation:When a person has a cerebellar lesion, they may experience horizontal nystagmus, which is characterized by involuntary eye movements in a horizontal direction. This can be accompanied by other symptoms of cerebellar syndrome, such as scanning dysarthria and hypotonia, as well as ataxia, intention tremor, and dysdiadochokinesia.
In contrast, vertical diplopia is a symptom of fourth nerve palsy, where a person sees one object as two images, one above the other. This condition may also cause a head tilt and the affected eye to deviate up and out. Torsional diplopia, on the other hand, is another symptom of fourth nerve palsy, where a person sees one object as two images that are slightly tilted away from each other. This condition may also cause vertical diplopia and the affected eye to deviate up and rotate outward.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 32
Correct
-
A 65-year-old man presents to the clinic for a follow-up after experiencing a stroke two weeks ago. His strength is 5/5 in all four limbs and his deep muscle reflexes are normal. He has no visual deficits, but he is having difficulty answering questions correctly and his speech is filled with newly invented words, although it is fluent. Additionally, he is unable to read correctly. Which blood vessel is most likely involved in his stroke?
Your Answer: Inferior division of the left middle cerebral artery
Explanation:The correct answer is that Wernicke’s area is supplied by the inferior division of the left middle cerebral artery. This type of stroke can result in Wernicke’s aphasia, which is characterized by poor comprehension but normal fluency of speech. Wernicke’s area is located in the temporal gyrus and is specifically supplied by the inferior division of the left middle cerebral artery.
The other options provided are incorrect. A stroke in the basilar artery can result in the locked-in syndrome, which causes paralysis of the entire body except for eye movement. A stroke in the left anterior cerebral artery can cause behavioral changes, contralateral weakness, and contralateral sensory deficits. A stroke in the right posterior cerebral artery can cause visual deficits.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 33
Correct
-
A 75-year-old man comes to the GP complaining of double vision that has been present for 3 days. He has a medical history of diabetes mellitus. During the examination, it was observed that his right eye was completely drooping and in a 'down and out' position. Additionally, his right pupil was slightly larger than his left pupil.
Based on these findings, which cranial nerve is most likely to be affected in this patient?Your Answer: Oculomotor nerve
Explanation:When the third cranial nerve is affected, it can result in ptosis (drooping of the upper eyelid) and an down and out eye appearance. This is because the oculomotor nerve controls several muscles that are responsible for eye movements. The levator palpebrae superioris muscle, which lifts the upper eyelid, becomes paralyzed, causing ptosis. The pupillary sphincter muscle, which constricts the pupil, also becomes paralyzed, resulting in dilation of the affected pupil. The paralysis of the medial rectus, superior rectus, inferior rectus, and inferior oblique muscles causes the eye to move downward and outward due to the unopposed action of the other muscles controlling eye movements (the lateral rectus and superior oblique muscles, controlled by the sixth and fourth cranial nerves, respectively).
If the optic nerve is damaged, it can lead to vision problems as it is responsible for transmitting visual information from the retina to the brain. A trochlear nerve palsy can cause double vision that is worse when looking downward. Damage to the ophthalmic nerve, which is the first branch of the trigeminal nerve, can cause neuralgia (nerve pain) and an absent corneal reflex. An abducens nerve palsy can cause a horizontal gaze palsy that is more pronounced when looking at objects in the distance.
Understanding Third Nerve Palsy: Causes and Features
Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.
There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 34
Incorrect
-
A 35-year-old male presents to the acute eye clinic with sudden onset of a painful red eye. He denies any history of trauma and has a medical history of ankylosing spondylitis for the past 8 years. On examination, his left eye has a visual acuity of 6/60 while his right eye is 6/6. Mild hypopyon is observed in his left eye during slit lamp examination. The diagnosis is anterior uveitis and he is prescribed steroid eye drops and cycloplegics. Which structure in the eye is affected in this case?
Your Answer: Cornea and iris
Correct Answer: Ciliary body and iris
Explanation:Anterior uveitis, also known as iritis, is a type of inflammation that affects the iris and ciliary body in the front part of the uvea. This condition is often associated with HLA-B27 and may be linked to other conditions such as ankylosing spondylitis, reactive arthritis, ulcerative colitis, Crohn’s disease, Behcet’s disease, and sarcoidosis. Symptoms of anterior uveitis include sudden onset of eye discomfort and pain, small and irregular pupils, intense sensitivity to light, blurred vision, redness in the eye, tearing, and a ring of redness around the cornea. In severe cases, pus and inflammatory cells may accumulate in the front chamber of the eye, leading to a visible fluid level. Treatment for anterior uveitis involves urgent evaluation by an ophthalmologist, cycloplegic agents to relieve pain and photophobia, and steroid eye drops to reduce inflammation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 35
Incorrect
-
A 55-year-old male arrives at the emergency department complaining of a painful red eye. He has vomited once since the onset of pain and reports seeing haloes around lights.
What is the mechanism of action of pilocarpine?
Immediate management involves administering latanoprost and pilocarpine, and an urgent referral to ophthalmology is necessary.Your Answer: Adrenergic receptor agonist
Correct Answer: Muscarinic receptor agonist
Explanation:Pilocarpine stimulates muscarinic receptors, leading to constriction of the pupil and increased uveoscleral outflow. However, muscarinic receptor antagonists like atropine and hyoscine are not used in treating glaucoma. Nicotine and acetylcholine are examples of nicotinic receptor agonists, while succinylcholine, atracurium, vecuronium, and bupropion are nicotinic receptor antagonists.
Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.
-
This question is part of the following fields:
- Neurological System
-
-
Question 36
Incorrect
-
A 73-year-old man arrives at the emergency department with complaints of sudden onset weakness on the right side of his face and arm. He has a medical history of atrial fibrillation and admits to occasionally forgetting to take his anticoagulant medication. During a complete neurological examination, you assess the corneal reflex. What nerves are involved in the corneal reflex test?
Your Answer: Optic nerve and ophthalmic nerve
Correct Answer: Ophthalmic nerve and facial nerve
Explanation:The corneal reflex involves the afferent limb of the nasociliary branch of the ophthalmic nerve and the efferent impulse of the facial nerve. The optic nerve carries visual information, the oculomotor nerve supplies motor innervation to extra-ocular muscles, the ophthalmic nerve carries sensation from the orbit, and the facial nerve innervates muscles of facial expression and carries taste and parasympathetic fibers.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 37
Incorrect
-
A 55-year-old woman is brought to the emergency department by her family members after experiencing a funny turn at home, lasting approximately 3 minutes. She reported a metallic taste in her mouth and a metallic smell, as well as hearing her father's voice speaking to her.
What is the probable site of the pathology?Your Answer: Cerebellum
Correct Answer: Temporal lobe
Explanation:Temporal lobe seizures can lead to hallucinations.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 38
Correct
-
Which one of the following statements regarding cerebral palsy is inaccurate?
Your Answer: Less than 5% of children will have epilepsy
Explanation:Understanding Cerebral Palsy
Cerebral palsy is a condition that affects movement and posture due to damage to the motor pathways in the developing brain. It is the most common cause of major motor impairment and affects 2 in 1,000 live births. The causes of cerebral palsy can be antenatal, intrapartum, or postnatal. Antenatal causes include cerebral malformation and congenital infections such as rubella, toxoplasmosis, and CMV. Intrapartum causes include birth asphyxia or trauma, while postnatal causes include intraventricular hemorrhage, meningitis, and head trauma.
Children with cerebral palsy may exhibit abnormal tone in early infancy, delayed motor milestones, abnormal gait, and feeding difficulties. They may also have associated non-motor problems such as learning difficulties, epilepsy, squints, and hearing impairment. Cerebral palsy can be classified into spastic, dyskinetic, ataxic, or mixed types.
Managing cerebral palsy requires a multidisciplinary approach. Treatments for spasticity include oral diazepam, oral and intrathecal baclofen, botulinum toxin type A, orthopedic surgery, and selective dorsal rhizotomy. Anticonvulsants and analgesia may also be required. Understanding cerebral palsy and its management is crucial in providing appropriate care and support for individuals with this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 39
Incorrect
-
A 20-year-old man is assaulted outside a nightclub and struck with a baseball bat, resulting in a blow to the right side of his head. He is taken to the emergency department and placed under observation. As his Glasgow Coma Scale score declines, he falls into a coma. What is the most probable haemodynamic parameter that will be present?
Your Answer: Normotension and bradycardia
Correct Answer: Hypertension and bradycardia
Explanation:Before coning, hypertension and bradycardia are observed. The brain regulates its own blood supply by managing the overall blood pressure.
Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 40
Correct
-
A 45-year-old female comes to see you with concerns about her vision. She reports experiencing blurred vision for the past few weeks, which she first noticed while descending stairs. She now sees two images when looking at one object, with one image appearing below and tilted away from the other. She denies any changes in her taste or hearing. Upon examination, her pupils are equal and reactive to light, and there is no evidence of nystagmus. Based on these findings, which cranial nerve is most likely affected?
Your Answer: Trochlea
Explanation:Torsional diplopia is a symptom that is commonly associated with a fourth nerve palsy, also known as a trochlear nerve palsy. This condition is characterized by the perception of tilted objects, as the affected individual sees one object as two images, with one image appearing slightly tilted in relation to the other. Fourth nerve palsy can also cause vertical diplopia, where two images of one object are seen, with one image appearing above the other. The affected eye may be deviated upwards and rotated outwards.
Lesions in the eighth cranial nerve, also known as the vestibulocochlear nerve, can lead to symptoms such as hearing loss, vertigo, and nystagmus.
Sixth nerve palsy, or abducens nerve palsy, can cause horizontal diplopia, where two images of one object are seen side by side. This is due to defective abduction, which prevents the eye from moving laterally.
Third nerve palsy, or oculomotor nerve palsy, can result in diplopia, as well as a down and out eye with a fixed, dilated pupil.
Seventh nerve palsy, or facial nerve palsy, can cause flaccid paralysis of the upper and lower face, loss of corneal reflex, loss of taste, and hyperacusis.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 41
Correct
-
A 62-year-old male is brought to the emergency room by the police. He has a two-day history of increasing confusion, sweats, and aggression. He resides in a homeless hostel and has a history of alcohol abuse. However, he claims to have stopped drinking since being at the hostel in the last week.
Upon examination, he appears markedly agitated, sweaty, and confused. He reports seeing things on the wall. Additionally, he exhibits slightly hyperreflexia and flexor plantar responses. What is the likely diagnosis?Your Answer: Delirium tremens
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Neurological System
-
-
Question 42
Incorrect
-
A 25-year-old man is scheduled for an open appendicectomy via a lanz incision. The surgeon plans to place the incision at the level of the anterior superior iliac spine to improve cosmesis. However, during the procedure, the appendix is found to be retrocaecal, and the incision is extended laterally. What is the nerve that is at the highest risk of injury during this surgery?
Your Answer: Obturator
Correct Answer: Ilioinguinal
Explanation:The Ilioinguinal Nerve: Anatomy and Function
The ilioinguinal nerve is a nerve that arises from the first lumbar ventral ramus along with the iliohypogastric nerve. It passes through the psoas major and quadratus lumborum muscles before piercing the internal oblique muscle and passing deep to the aponeurosis of the external oblique muscle. The nerve then enters the inguinal canal and passes through the superficial inguinal ring to reach the skin.
The ilioinguinal nerve supplies the muscles of the abdominal wall through which it passes. It also provides sensory innervation to the skin and fascia over the pubic symphysis, the superomedial part of the femoral triangle, the surface of the scrotum, and the root and dorsum of the penis or labia majora in females.
Understanding the anatomy and function of the ilioinguinal nerve is important for medical professionals, as damage to this nerve can result in pain and sensory deficits in the areas it innervates. Additionally, knowledge of the ilioinguinal nerve is relevant in surgical procedures involving the inguinal region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 43
Incorrect
-
John Smith, a 81-year-old man, arrives at the emergency department after falling down a few steps. He complains of 7/10 groin pain and is administered pain relief.
During the assessment, the doctor conducts a neurovascular examination and observes decreased sensation in the right medial thigh, indicating a possible nerve injury.
Further investigations reveal a pubic rami fracture.
Which nerve is likely to be affected in this situation, and which muscle compartment of the thigh does it supply?Your Answer: Femoral nerve, adductor compartment of the thigh
Correct Answer: Obturator nerve, ADductor compartment of the thigh
Explanation:The adductor compartment of the thigh is innervated by the obturator nerve, which enters the thigh through the obturator canal after running laterally along the pelvic wall towards the obturator foramen. The muscles innervated by the obturator nerve include the adductor brevis, adductor longus, adductor magnus, gracilis, and obturator externus. The sciatic nerve also innervates the adductor magnus, while the femoral nerve innervates the anterior compartment of the thigh and the sciatic nerve innervates the posterior compartment of the thigh.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 44
Correct
-
A 25-year-old male is at the doctor's office with his girlfriend, reporting that she sleepwalks at night. During which stage of the sleep cycle is this most likely to happen?
Your Answer: Non-REM stage 3 (N3)
Explanation:Understanding Sleep Stages: The Sleep Doctor’s Brain
Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.
N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.
REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 → N2 → N3 → REM, with each stage lasting for different durations throughout the night.
Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.
-
This question is part of the following fields:
- Neurological System
-
-
Question 45
Incorrect
-
An 80-year-old man is recuperating after undergoing a right total hip replacement. During a session with the physiotherapists, it is observed that his right foot is dragging on the ground while walking.
Upon conducting a neurological examination of his lower limbs, it is found that his left leg is completely normal. However, his right leg has 0/5 power of dorsiflexion and knee flexion, a reduced ankle and plantar reflex, and no sensation over the lateral calf, sole, and dorsum of the foot.
What is the nerve lesion that has occurred?Your Answer: Femoral nerve
Correct Answer: Sciatic nerve
Explanation:Foot drop can be caused by a lesion to the sciatic nerve.
When the sciatic nerve is damaged, it can result in various symptoms such as foot drop, loss of power below the knee, loss of knee flexion, loss of ankle jerk and plantar response. The sciatic nerve innervates the hamstring muscles in the posterior thigh and indirectly innervates other muscles via its two terminal branches: the tibial nerve and the common fibular nerve. The tibial nerve supplies the calf muscles and some intrinsic muscles of the foot, while the common fibular nerve supplies the muscles of the anterior and lateral leg, as well as the remaining intrinsic foot muscles. Although the sciatic nerve has no direct sensory inputs, it receives information from its two terminal branches, which supply the skin of various areas of the leg and foot.
Sciatic nerve lesions can occur due to various reasons, such as neck of femur fractures and total hip replacement trauma. However, it is important to note that a femoral nerve lesion would cause different symptoms, such as weakness in anterior thigh muscles, reduced hip flexion and knee extension, and loss of sensation to the anteromedial thigh and medial leg and foot. Similarly, lesions to the lower gluteal nerve or superior gluteal nerve would cause weakness in specific muscles and no sensory loss.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 46
Incorrect
-
Which of the following cranial venous sinuses is singular?
Your Answer: Inferior petrosal sinus
Correct Answer: Superior sagittal sinus
Explanation:The superior sagittal sinus is a single structure that starts at the crista galli and may connect with the veins of the frontal sinus and nasal cavity. It curves backwards within the falx cerebri and ends at the internal occipital protuberance, typically draining into the right transverse sinus. The parietal emissary veins provide a connection between the superior sagittal sinus and the veins on the outside of the skull.
Overview of Cranial Venous Sinuses
The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.
There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.
To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.
Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 47
Incorrect
-
A 29-year-old man is stabbed outside a nightclub in the upper arm. The median nerve is transected. Which one of the following muscles will demonstrate impaired function as a result?
Your Answer: Palmaris brevis
Correct Answer: Abductor pollicis brevis
Explanation:Palmaris brevis is innervated by the ulnar nerve, as are the palmar interossei and adductor pollicis. The abductor pollicis longus, on the other hand, is innervated by the posterior interosseous nerve.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 48
Incorrect
-
A 25 year old male arrives at the Emergency Department after being struck in the back of the head with a baseball bat. He reports a headache and has a laceration on his occiput. He is alert and oriented, following commands and able to provide a detailed description of the incident.
What is his Glasgow coma scale (GCS)?Your Answer: 14
Correct Answer: 15
Explanation:The GCS score for this patient is 654, which stands for Motor (6 points), Verbal (5 points), and Eye opening (4 points). This scoring system is used to evaluate a patient’s level of consciousness by assessing their response to voice, eye movements, and motor function.
GCS is frequently used in patients with head injuries to monitor changes in their neurological status, which may indicate swelling or bleeding.
In this case, the patient’s eyes are open (4 out of 4), she is fully oriented in time, place, and person (5 out of 5), and she is able to follow commands (6 out of 6).
Understanding the Glasgow Coma Scale for Adults
The Glasgow Coma Scale (GCS) is a tool used to assess the level of consciousness in adults who have suffered a brain injury or other neurological condition. It is based on three components: motor response, verbal response, and eye opening. Each component is scored on a scale from 1 to 6, with a higher score indicating a better level of consciousness.
The motor response component assesses the patient’s ability to move in response to stimuli. A score of 6 indicates that the patient is able to obey commands, while a score of 1 indicates no movement at all.
The verbal response component assesses the patient’s ability to communicate. A score of 5 indicates that the patient is fully oriented, while a score of 1 indicates no verbal response at all.
The eye opening component assesses the patient’s ability to open their eyes. A score of 4 indicates that the patient is able to open their eyes spontaneously, while a score of 1 indicates no eye opening at all.
The GCS score is expressed as a combination of the scores from each component, with the motor response score listed first, followed by the verbal response score, and then the eye opening score. For example, a GCS score of 13, M5 V4 E4 at 21:30 would indicate that the patient had a motor response score of 5, a verbal response score of 4, and an eye opening score of 4 at 9:30 pm.
Overall, the Glasgow Coma Scale is a useful tool for healthcare professionals to assess the level of consciousness in adults with neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 49
Incorrect
-
A patient has been diagnosed with amyotrophic lateral sclerosis (ALS). This condition leads to the selective degeneration of motor neurons, leading to progressive muscle weakness and spasticity.
Understanding the development of motor neurons (MN) is crucial in the hope of using embryonic stem cells to cure ALS. What is true about the process of MN development?Your Answer: Retinoic acid inhibits motor neuron development
Correct Answer: Motor neurons develop from the basal plates
Explanation:The development of sensory and motor neurons is determined by the alar and basal plates, respectively.
Transcription factor expression in motor neurons is regulated by SHH signalling, which plays a crucial role in their development.
Hox genes are essential for the proper positioning of motor neurons along the cranio-caudal axis.
Motor neurons originate from the basal plates.
Interestingly, retinoic acid appears to facilitate the differentiation of motor neurons.
It is not possible for motor neurons to develop during week 4 of development, as the neural tube is still in the process of closing.
Embryonic Development of the Nervous System
The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.
The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 50
Incorrect
-
A 32-year-old man is given morphine after an appendicectomy and subsequently experiences constipation. What is the most likely explanation for this occurrence?
Your Answer: Stimulation of serotonin release
Correct Answer: Stimulation of µ receptors
Explanation:Morphine treatment often leads to constipation, which is a prevalent side effect. This is due to the activation of µ receptors.
Morphine is a potent painkiller that belongs to the opiate class of drugs. It works by binding to the four types of opioid receptors in the central nervous system and gastrointestinal tract, resulting in its therapeutic effects. However, it can also cause unwanted side effects such as nausea, constipation, respiratory depression, and addiction if used for a prolonged period.
Morphine can be taken orally or injected intravenously, and its effects can be reversed with naloxone. Despite its effectiveness in managing pain, it is important to use morphine with caution and under the guidance of a healthcare professional to minimize the risk of adverse effects.
-
This question is part of the following fields:
- Neurological System
-
-
Question 51
Incorrect
-
A 30-year-old patient visits their GP with complaints of muscle wasting in their legs, foot drop, and a high-arched foot. The patient has a medical history of type 1 diabetes mellitus. The GP observes that the patient's legs resemble 'champagne bottles'. The patient denies any recent trauma, sensory deficits, or back pain.
What is the probable diagnosis?Your Answer: Cauda equina syndrome
Correct Answer: Charcot-Marie-Tooth disease
Explanation:Charcot-Marie-Tooth syndrome is characterized by classic signs such as foot drop and a high-arched foot. The initial symptom often observed is foot drop, which is caused by chronic motor neuropathy leading to muscular atrophy. This can result in the distinctive champagne bottle appearance of the foot.
Diabetic neuropathy is an incorrect answer as it typically presents with significant sensory deficits in a ‘glove and stocking’ pattern.
Cauda equina syndrome is also an incorrect answer as it typically results in more severe symptoms such as loss of bladder control and significant sensory deficits, as well as back and spine pain. While foot drop may be present, it is unlikely to cause atrophy of the distal muscles.
CIDP is another incorrect answer as patients with this condition typically experience significant proximal and distal atrophy, which would not lead to the champagne bottle appearance. Additionally, sensory symptoms are present but less noticeable than the motor symptoms.
Charcot-Marie-Tooth Disease is a prevalent genetic peripheral neuropathy that primarily affects motor function. Unfortunately, there is no known cure for this condition, and treatment is mainly centered around physical and occupational therapy. Some common symptoms of Charcot-Marie-Tooth Disease include a history of frequent ankle sprains, foot drop, high-arched feet (also known as pes cavus), hammer toes, distal muscle weakness and atrophy, hyporeflexia, and the stork leg deformity.
-
This question is part of the following fields:
- Neurological System
-
-
Question 52
Incorrect
-
Which muscle is innervated by the superficial peroneal nerve?
Your Answer: Sartorius
Correct Answer: Peroneus brevis
Explanation:Anatomy of the Superficial Peroneal Nerve
The superficial peroneal nerve is responsible for supplying the lateral compartment of the leg, specifically the peroneus longus and peroneus brevis muscles which aid in eversion and plantar flexion. It also provides sensation over the dorsum of the foot, excluding the first web space which is innervated by the deep peroneal nerve.
The nerve passes between the peroneus longus and peroneus brevis muscles along the proximal one-third of the fibula. Approximately 10-12 cm above the tip of the lateral malleolus, the nerve pierces the fascia. It then bifurcates into intermediate and medial dorsal cutaneous nerves about 6-7 cm distal to the fibula.
Understanding the anatomy of the superficial peroneal nerve is important in diagnosing and treating conditions that affect the lateral compartment of the leg and dorsum of the foot. Injuries or compression of the nerve can result in weakness or numbness in the affected areas.
-
This question is part of the following fields:
- Neurological System
-
-
Question 53
Incorrect
-
A 50-year-old man comes to the neurology clinic with a tremor on his right side. Additionally, he is diagnosed with dysdiadochokinesia on his right side.
Where is the probable location of a lesion in the brain?Your Answer: Hypothalamus
Correct Answer: Right cerebellum
Explanation:Ipsilateral signs are caused by unilateral lesions in the cerebellum.
The patient is exhibiting symptoms of cerebellar disease, including unilateral dysdiadochokinesia and an intention tremor on the right side, indicating a right cerebellar lesion.
If the lesion were in the basal ganglia, a resting tremor would be more likely.
A hypothalamic lesion would not explain these symptoms.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 54
Incorrect
-
An 87-year-old man has been admitted to the geriatrics ward due to repeated falls at home. He has been experiencing memory problems for the past 5-10 years and has become increasingly aggressive towards his family. Additionally, he has difficulty with self-care and often becomes disoriented.
During examination, there are no noticeable tremors or walking difficulties. The patient does not exhibit any signs of chorea, hallucinations, or vivid dreams. There are no features of disinhibition, and the patient is able to communicate normally.
What type of abnormality would you expect to see on an MRI scan?Your Answer: Atrophy of the frontal and temporal lobes
Correct Answer: Atrophy of the cortex and hippocampus
Explanation:Alzheimer’s disease is characterized by widespread cerebral atrophy, primarily affecting the cortex and hippocampus. This results in symptoms such as memory loss, behavioral changes, poor self-care, and getting lost frequently. The cortex is responsible for motor planning and behavioral issues, while the hippocampus is responsible for memory features. Atrophy of the caudate head and putamen is not consistent with Alzheimer’s disease, but rather with Huntington’s disease, which is a genetic disorder characterized by chorea. Atrophy of the frontal and temporal lobes is more consistent with frontotemporal dementia, which presents with greater language and behavioral issues. Hyper-intensity of the substantia nigra and red nuclei is not a feature of Alzheimer’s disease, but rather of Parkinson’s disease, which is characterized by movement issues such as tremors and shuffling gait, as well as hallucinations and sleep disturbances.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 55
Incorrect
-
A 27-year-old male patient has a pelvic chondrosarcoma excision surgery, resulting in the sacrifice of the obturator nerve. Which muscle is the least likely to be affected by this procedure?
Your Answer: Pectineus
Correct Answer: Sartorius
Explanation:The accessory obturator nerve supplies the pectineus muscle in the population.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 56
Incorrect
-
A 27-year-old male patient visits his doctor complaining of right eye discomfort and a feeling of having a foreign object in it. He mentions that the symptoms have been getting worse for the past 3 days after he went to a concert. He wears contact lenses and did not remove them for several days during the event, opting to wash his eyes with water instead.
What could be the probable reason for his visit?Your Answer: Thyroid eye disease
Correct Answer: Acanthamoeba infection
Explanation:Wearing contact lenses increases the risk of acanthamoeba infection, which can cause keratitis. Symptoms include severe pain, haloes around lights, and blurred vision. Acute angle closure glaucoma may also cause eye pain, but the history of contact lens use makes acanthamoeba infection more likely. Temporal arteritis, chlamydial conjunctivitis, and thyroid eye disease have different symptoms and are less likely to be the cause of eye pain in this case.
Understanding Keratitis: Inflammation of the Cornea
Keratitis is a condition that refers to the inflammation of the cornea, which is the clear, dome-shaped surface that covers the front of the eye. While there are various causes of keratitis, microbial keratitis is a particularly serious form of the condition that can lead to vision loss if left untreated. Bacterial keratitis is often caused by Staphylococcus aureus, while Pseudomonas aeruginosa is commonly seen in contact lens wearers. Fungal and amoebic keratitis are also possible, with acanthamoebic keratitis accounting for around 5% of cases. Other factors that can cause keratitis include viral infections, environmental factors like photokeratitis, and contact lens-related issues like contact lens acute red eye (CLARE).
Symptoms of keratitis typically include a painful, red eye, photophobia, and a gritty sensation or feeling of a foreign body in the eye. In some cases, hypopyon may be seen. If a person is a contact lens wearer and presents with a painful red eye, an accurate diagnosis can only be made with a slit-lamp, meaning same-day referral to an eye specialist is usually required to rule out microbial keratitis.
Management of keratitis typically involves stopping the use of contact lenses until symptoms have fully resolved, as well as the use of topical antibiotics like quinolones and cycloplegic agents for pain relief. Complications of keratitis can include corneal scarring, perforation, endophthalmitis, and visual loss. It is important to seek urgent evaluation and treatment for microbial keratitis to prevent these potential complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 57
Incorrect
-
A 61-year-old male comes to the emergency department with sudden onset double vision. During the examination, you observe that his right eye is in a 'down and out' position. You suspect that he may be experiencing a third nerve palsy.
What is the most probable cause of this condition?Your Answer: Middle cerebral artery stroke
Correct Answer: Posterior communicating artery aneurysm
Explanation:A possible cause of the patient’s third nerve palsy is an aneurysm in the posterior communicating artery. However, diabetes insipidus is not related to this condition, while diabetes mellitus may be a contributing factor. Nystagmus is a common symptom of lateral medullary syndrome, while lateral pontine syndrome may cause facial paralysis and deafness on the same side of the body. A stroke in the middle cerebral artery can result in sensory loss and weakness on the opposite side of the body.
Understanding Third Nerve Palsy: Causes and Features
Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.
There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 58
Incorrect
-
Which nerve among the following is accountable for voluntary control of the urethral sphincter?
Your Answer: Femoral nerve
Correct Answer: Pudendal nerve
Explanation:The bladder is under autonomic control from the hypogastric plexuses, while voluntary control of the urethral sphincter is provided by the pudendal nerve.
The Pudendal Nerve and its Functions
The pudendal nerve is a nerve that originates from the S2, S3, and S4 nerve roots and exits the pelvis through the greater sciatic foramen. It then re-enters the perineum through the lesser sciatic foramen. This nerve provides innervation to the anal sphincters and external urethral sphincter, as well as cutaneous innervation to the perineum surrounding the anus and posterior vulva.
Late onset pudendal neuropathy may occur due to traction and compression of the pudendal nerve by the foetus during late pregnancy. This condition may contribute to the development of faecal incontinence. Understanding the functions of the pudendal nerve is important in diagnosing and treating conditions related to the perineum and surrounding areas.
-
This question is part of the following fields:
- Neurological System
-
-
Question 59
Incorrect
-
You are asked to clerk a 73-year-old-man who presented with a fall. He was seen by the stroke team who requested a CT head. This excluded an intracranial haemorrhage and he was started on aspirin. When you enter the cubicle, you notice the patient has a right-sided facial droop.
What type of speech disturbance does this patient have? You start taking a history but find it difficult to understand what he says. He is unable to get the words out easily and his speech is non-fluent as if hesitating before uttering the words.
During the cranial nerve examination, he understood and followed your instructions well. However, he is unable to repeat words after you.Your Answer: Global aphasia
Correct Answer: Broca's dysphasia
Explanation:This man experienced a stroke that affected Broca’s area, resulting in Broca’s dysphasia. This condition causes non-fluent speech, but normal comprehension, and impaired repetition. Despite knowing what they want to say, patients with Broca’s dysphasia struggle to articulate their words. They can understand instructions, but have difficulty repeating words. This is different from conductive dysphasia, which presents with fluent speech but an inability to repeat words. Dysarthria, on the other hand, is characterized by difficulty articulating words due to a lack of coordination in the muscles of speech. Global aphasia is the inability to understand, repeat, and produce speech, which was not the case for this patient as they were able to understand instructions.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 60
Incorrect
-
A 25-year-old woman complains of pain in the medial aspect of her thigh. Upon investigation, a large ovarian cyst is discovered. Which nerve is most likely being compressed as the underlying cause of her discomfort?
Your Answer: Genitofemoral
Correct Answer: Obturator
Explanation:The cutaneous branch of the obturator nerve is often not present, but it is known to provide sensation to the inner thigh. If there are large tumors in the pelvic area, they may put pressure on this nerve, causing pain that spreads down the leg.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 61
Incorrect
-
A 32-year-old woman visits her doctor complaining of a severe, pulsating headache that began last night and is concentrated at the back of her head. She experiences intense pain when coughing. Her family has a history of Type I Chiari malformation.
The doctor suspects idiopathic intracranial hypertension and conducts a fundoscopy to check for signs of papilloedema. Before using an ophthalmoscope to examine her eyes, the doctor applies a topical medication.
What is the name of the medication used?Your Answer: Topical lidocaine
Correct Answer: Tropicamide
Explanation:Tropicamide is administered before fundoscopy to enlarge the pupils. It functions as a muscarinic receptor antagonist, inhibiting parasympathetic impulses and causing the pupil constrictor response and ciliary muscle to become paralyzed. This results in pupil dilation, which is necessary for optimal visualization of the fundus.
Fluorescein stain is utilized to evaluate the cornea for damage or the presence of foreign objects in the eye.
Pilocarpine, a muscarinic receptor agonist, causes pupillary constriction and should not be used before fundoscopy as it would hinder the visualization of the fundus.
Lidocaine is a local anesthetic that works by blocking fast voltage-gated Na channels in the neuronal cell membrane responsible for signal propagation. There is no need to apply topical lidocaine before fundoscopy.
Mydriasis, which is the enlargement of the pupil, can be caused by various factors such as third nerve palsy, Holmes-Adie pupil, traumatic iridoplegia, phaeochromocytoma, and congenital conditions. Additionally, certain drugs like topical mydriatics such as tropicamide and atropine, sympathomimetic drugs like amphetamines and cocaine, and anticholinergic drugs like tricyclic antidepressants can also cause mydriasis. It is important to note that anisocoria, which is the unequal size of pupils, can also lead to apparent mydriasis when compared to the other pupil.
-
This question is part of the following fields:
- Neurological System
-
-
Question 62
Incorrect
-
A 48-year-old man is referred to a neurology clinic due to experiencing uncontrolled movements of his limbs. The probable diagnosis is Huntington's disease, which results in the deterioration of the basal ganglia.
Which neurotransmitters are expected to be primarily impacted, leading to the manifestation of the man's symptoms?Your Answer: NA and ACh
Correct Answer: ACh and GABA
Explanation:The neurons responsible for producing ACh and GABA are primarily affected by the degeneration of the basal ganglia in Huntington’s disease, which plays a crucial role in regulating voluntary movement.
Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.
Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.
-
This question is part of the following fields:
- Neurological System
-
-
Question 63
Incorrect
-
An 80-year-old woman comes to the emergency department with a painless visual disturbance that started 2 hours ago. She has a medical history of hypertension and dyslipidemia.
During the examination, there is no facial asymmetry, and the patient appears comfortable. The visual field test shows homonymous hemianopia on the right side, and automated perimetry indicates macular sparing. The patient is unable to name familiar objects, such as a pen or a spoon.
Which artery is most likely to have been occluded?Your Answer: Anterior inferior cerebellar artery
Correct Answer: Posterior cerebral artery
Explanation:The correct answer is the posterior cerebral artery. When a lesion occurs in the posterior cerebral artery, it can result in contralateral homonymous hemianopia with macular sparing and visual agnosia. This is because the visual cortex is supplied by the posterior cerebral artery, which is responsible for the patient’s symptoms. The macula is usually spared because the posterior pole of the occipital cortex, which processes visual signals from the macula, receives collateral flow from the middle cerebral artery.
On the other hand, lesions in the anterior cerebral artery, which supplies the frontal cortex, can cause contralateral hemiparesis, altered sensorium, and aphasia. Meanwhile, occlusion of the anterior inferior cerebellar artery, which supplies the lateral pons, can lead to sudden onset vertigo, vomiting, ataxia, nystagmus, and dysarthria.
Lastly, the central retinal artery is not the correct answer as occlusion of this artery typically results in amaurosis fugax, which is a painless transient ‘descending curtain’ visual field defect, rather than homonymous hemianopia.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 64
Incorrect
-
A child with severe hydrocephalus is exhibiting a lack of upward gaze. What specific area of the brain is responsible for this impairment?
Your Answer: Inferior colliculi
Correct Answer: Superior colliculi
Explanation:The superior colliculi play a crucial role in upward gaze and are located on both sides of the tectal or quadrigeminal plate. Damage or compression of the superior colliculi, such as in severe hydrocephalus, can result in the inability to look up, known as sunsetting of the eyes.
The optic chiasm serves as the connection between the anterior and posterior optic pathways. The nasal fibers of the optic nerves cross over at the chiasm, leading to monocular visual field deficits with anterior pathway lesions and binocular visual field deficits with posterior pathway lesions.
The lateral geniculate body in the thalamus is where the optic tract connects with the optic radiations, while the inferior colliculi and medial geniculate bodies are responsible for processing auditory stimuli.
Understanding the Diencephalon: An Overview of Brain Anatomy
The diencephalon is a part of the brain that is located between the cerebral hemispheres and the brainstem. It is composed of several structures, including the thalamus, hypothalamus, epithalamus, and subthalamus. Each of these structures plays a unique role in regulating various bodily functions and behaviors.
The thalamus is responsible for relaying sensory information from the body to the cerebral cortex, which is responsible for processing and interpreting this information. The hypothalamus, on the other hand, is involved in regulating a wide range of bodily functions, including hunger, thirst, body temperature, and sleep. It also plays a role in regulating the release of hormones from the pituitary gland.
The epithalamus is a small structure that is involved in regulating the sleep-wake cycle and the production of melatonin, a hormone that helps to regulate sleep. The subthalamus is involved in regulating movement and is part of the basal ganglia, a group of structures that are involved in motor control.
Overall, the diencephalon plays a crucial role in regulating many of the body’s essential functions and behaviors. Understanding its anatomy and function can help us better understand how the brain works and how we can maintain optimal health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 65
Incorrect
-
As you help the FY1 draft discharge summaries for the care of the elderly ward, you come across a patient who is reported to have profound apraxia. This individual is 89 years old and has significant dementia. Can you explain what apraxia is?
Your Answer: The use of simplified language
Correct Answer: Inability to perform voluntary movements
Explanation:Apraxia refers to the incapacity to execute deliberate movements even when the motor and sensory systems are functioning properly. This condition impacts activities like dressing, eating, artistic endeavors (such as drawing), and ideomotor actions (like waving goodbye).
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 66
Correct
-
A 75-year-old female patient presents to the Emergency Department after experiencing a fall. She has a medical history of hypertension and type 2 diabetes, and is a smoker with a BMI of 34 kg/m². Her family history includes high cholesterol in her father and older sister, who both passed away due to a heart attack.
The patient denies any head trauma from the fall and has a regular pulse of 78 bpm. Upon conducting a full neurological examination, it is discovered that her left arm and left leg have a power of 3/5. Additionally, her smile is asymmetrical and droops on the left side.
What is the most probable underlying cause of her symptoms?Your Answer: Emboli caused by atherosclerosis
Explanation:Intracerebral haemorrhage is not the most probable cause of all strokes. Hence, it is crucial to conduct a CT head scan to eliminate the possibility of haemorrhagic stroke before initiating treatment.
A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.
NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.
Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.
Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater
-
This question is part of the following fields:
- Neurological System
-
-
Question 67
Incorrect
-
Mrs. Johnson presents to her GP with pain in her left eye and a strange feeling that something is bothering her eye. After a corneal reflex test, it is observed that the corneal reflex on the left is impaired, specifically due to a lesion affecting the nerve serving as the afferent limb of the pathway.
What is the name of the nerve that serves as the afferent limb of the corneal pathway, detecting stimuli?Your Answer: Facial nerve
Correct Answer: Ophthalmic branch of the trigeminal nerve
Explanation:The corneal reflex pathway involves the detection of stimuli by the ophthalmic branch of the trigeminal nerve, which then travels to the trigeminal ganglion. The brainstem, specifically the trigeminal nucleus, detects this signal and sends signals to both the left and right facial nerve. This causes the orbicularis oculi muscle to contract, resulting in a bilateral blink. The oculomotor nerve, on the other hand, innervates the extraocular muscles responsible for eye movement and does not provide any sensory function.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 68
Incorrect
-
Which muscle does not attach to the medial side of the greater trochanter?
Your Answer: Piriformis
Correct Answer: Quadratus femoris
Explanation:The mnemonic for muscle attachment on the greater trochanter is POGO, which stands for Piriformis, Obturator internus, and Gemelli.
The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.
The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.
If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 69
Incorrect
-
A 32-year-old woman with a BMI of 32 kg/m² visits her general practitioner complaining of sudden onset diplopia. She reports that she experiences double vision mainly when reading. Apart from a chronic headache that worsens with Valsalva manoeuvres, she has no significant medical history.
During the examination, there is no anisocoria observed. However, her left eye has a slight medial deviation, and there is a defect in abduction on the same side.
Which cranial nerve is most likely affected in this patient?Your Answer: Oculomotor nerve
Correct Answer: Abducens nerve
Explanation:The patient’s symptoms suggest that she may be suffering from idiopathic intracranial hypertension (IIH), which can cause compression of the cranial nerves that supply the eyes. Based on her presentation of horizontal diplopia and difficulty with eye abduction, it is likely that she has a palsy of the abducens nerve (CN VI), which innervates the lateral rectus muscle responsible for eye abduction. This palsy is likely due to the raised intracranial pressure associated with IIH. The other cranial nerves mentioned (CN III, CN I, and CN II) are not involved in the patient’s symptoms.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 70
Incorrect
-
A 25-year-old man is intoxicated and falls, resulting in a transected median nerve by a shard of glass at the proximal border of the flexor retinaculum. Fortunately, his tendons remain unharmed. Which of the following features is unlikely to be present?
Your Answer: Adduction and lateral rotation of the thumb at rest
Correct Answer: Loss of sensation on the dorsal aspect of the thenar eminence
Explanation:If the median nerve is damaged before reaching the flexor retinaculum, it can lead to the loss of certain muscles, including the abductor pollicis brevis, flexor pollicis brevis, opponens pollicis, and the first and second lumbricals. When the patient is asked to slowly close their hand, there may be a delay in the movement of the index and middle fingers due to the impaired lumbrical muscle function. However, there are only minor sensory changes and no impact on the dorsal aspect of the thenar eminence. The abductor pollicis longus muscle, which is innervated by the posterior interosseous nerve, will still contribute to thumb abduction, but it may be weaker than before the injury.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 71
Incorrect
-
A 35-year-old man presents with a gradual onset loss of feeling in his feet. His past medical history includes alcohol misuse.
Upper and lower limb motor examinations identify bilateral extensor plantar reflexes with absent knee jerks. Sensory examination identifies reduced sensation to vibration and proprioception distal to the elbows and knees, and reduced light touch sensation in a stocking distribution.
Blood tests:
Hb 118 g/L Male: (135-180)
Platelets 170 * 109/L (150 - 400)
MCV 112 fL (80 - 100)
Fasting blood glucose 4.5 mmol/L (3.9-5.6)
Serum vitamin B12 125 ng/L (190-950)
Serum folate 2.3 ng/ml (2.7-17.0)
Which affected areas of the nervous system are causing his symptoms?Your Answer: Lateral spinothalamic tracts and dorsal columns
Correct Answer: Lateral corticospinal tracts and dorsal columns
Explanation:The patient is suffering from subacute combined degeneration of the spinal cord, which affects the dorsal columns and lateral corticospinal tracts. This condition is often caused by a vitamin B12 deficiency resulting from alcohol misuse. The patient’s examination reveals upper motor neuron signs, reduced proprioception, and vibration sense. The anterior corticospinal tract, anterior spinocerebellar tract, anterior spinothalamic pathway, and lateral spinothalamic pathway are all unaffected by this condition.
Subacute Combined Degeneration of Spinal Cord
Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.
This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.
-
This question is part of the following fields:
- Neurological System
-
-
Question 72
Incorrect
-
A 50-year-old woman comes to the Emergency Department with facial drooping and slurred speech. You perform a cranial nerves examination and find that her oculomotor nerve has been affected. What sign would you anticipate observing in this patient?
Your Answer: Bitemporal hemianopia
Correct Answer: Ptosis
Explanation:The correct answer is ptosis. Issues with the oculomotor nerve can cause ptosis, a drooping of the eyelid, as well as a dilated, fixed pupil and a down and out eye. The oculomotor nerve is responsible for various functions, including eye movements (such as those controlled by the MR, IO, SR, and IR muscles), pupil constriction, accommodation, and eyelid opening. Arcuate scotoma is an incorrect answer. This condition is caused by damage to the optic nerve, resulting in a blind spot that appears as an arc shape in the visual field. It does not affect extraocular movements. Bitemporal hemianopia is also an incorrect answer. This visual field defect affects the outer halves of both eyes and is caused by lesions of the optic chiasm, such as those resulting from a pituitary adenoma. Horizontal diplopia is another incorrect answer. This condition is caused by problems with the abducens nerve, which controls the lateral rectus muscle responsible for eye abduction. Defective abduction leads to horizontal diplopia, or double vision.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 73
Incorrect
-
A 19-year-old male is brought to the emergency room following ingestion of a significant quantity of cocaine. He is experiencing excessive sweating and heart palpitations. During the examination, his pupils are found to be dilated and he is exhibiting tachycardia and tachypnea.
From which spinal level do the preganglionic neurons of the system responsible for his symptoms originate?Your Answer: Cranial nerves 3,7,9 and 10 and S2-4
Correct Answer: T1-L2/3
Explanation:The lateral horns of grey matter give rise to the preganglionic neurons of the sympathetic nervous system.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 74
Incorrect
-
A 37-year-old woman presents with blurring of vision on lateral gaze. She had a previous episode of pain on eye movement and difficulty seeing red colors six months ago, which resolved on its own after a week.
She sought consultation with a neurologist who conducted an examination. The left eye failed to adduct on rightward gaze, while the right eye exhibited nystagmus. Leftward, upward, and downward gazes were unremarkable. The pupils were equal and reactive to light.
Peripheral examination yielded no significant findings. An MRI brain scan was ordered, and the results are pending.
Based on this presentation, where is the most likely location of the lesion?Your Answer:
Correct Answer: Medial longitudinal fasciculus
Explanation:The patient’s symptoms suggest a diagnosis of multiple sclerosis, as she is presenting with internuclear ophthalmoplegia, which is caused by a lesion in the medial longitudinal fasciculus. This highly myelinated tract coordinates eye movements by communicating information from the vestibular nucleus to the oculomotor, trochlear, and abducens nuclei. Her previous episode of optic neuritis further supports a diagnosis of multiple sclerosis, which affects the axonal myelin sheath and commonly affects highly myelinated areas.
A lesion of the optic chiasm would present with bitemporal hemianopia or tunnel vision, without affecting eye movements. A lesion of the optic radiation would cause homonymous hemianopia or quadrantanopia, but eye movement control is confined to the brainstem nuclei. Periventricular lesions commonly cause numbness and impaired motor function, but do not involve cranial nerves. Lesions of the oculomotor nerve would cause a more significant ophthalmoplegia with ptosis and mydriasis in the affected eye, and the eye in the ‘down and out’ position, but this presentation does not fit the patient’s symptoms.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 75
Incorrect
-
A 50-year-old man is brought to the hospital by the police after being found unconscious on the street. He appears disheveled and smells strongly of alcohol. Despite attempts to gather information about his medical history, none is available. Upon examination, his temperature is 35°C, blood pressure is 106/72 mmHg, and pulse is 52 bpm. He does not respond to commands, but when a venflon is attempted, he tries to grab the arm of the medical professional and makes incomprehensible sounds while keeping his eyes closed. What is his Glasgow coma scale score?
Your Answer:
Correct Answer: 8
Explanation:The Glasgow Coma Scale: A Simple and Reliable Tool for Assessing Brain Injury
The Glasgow Coma Scale (GCS) is a widely used tool for assessing the severity of brain injury. It is simple to use, has a high degree of interobserver reliability, and is strongly correlated with patient outcomes. The GCS consists of three components: Eye Opening (E), Verbal Response (V), and Motor Response (M). Each component is scored on a scale of 1 to 6, with higher scores indicating better function.
The Eye Opening component assesses the patient’s ability to open their eyes spontaneously or in response to verbal or painful stimuli. The Verbal Response component evaluates the patient’s ability to speak and communicate appropriately. The Motor Response component assesses the patient’s ability to move their limbs in response to verbal or painful stimuli.
The GCS score is calculated by adding the scores for each component. A score of 15 indicates normal brain function, while a score of 3 or less indicates severe brain injury. The GCS score is an important prognostic indicator, as it can help predict patient outcomes and guide treatment decisions.
In summary, the Glasgow Coma Scale is a simple and reliable tool for assessing brain injury. It consists of three components that evaluate eye opening, verbal response, and motor response. The GCS score is calculated by adding the scores for each component and can help predict patient outcomes.
-
This question is part of the following fields:
- Neurological System
-
-
Question 76
Incorrect
-
A 23-year-old man is hit in the head while playing rugby. He experiences a temporary concussion but later regains consciousness. After thirty minutes, he begins to exhibit slurred speech, ataxia, and eventually loses consciousness. Upon arrival at the hospital, he is intubated and put on a ventilator. A CT scan reveals the presence of an extradural hematoma. What is the probable cause of this condition?
Your Answer:
Correct Answer: Middle meningeal artery laceration
Explanation:The middle meningeal artery is the vessel most likely to result in an acute Extradural haemorrhage, while the anterior and middle cerebral arteries may cause acute Subdural haemorrhage. It is worth noting that acute Subdural haemorrhages tend to take a bit longer to develop compared to acute Extradural haemorrhages.
The Middle Meningeal Artery: Anatomy and Clinical Significance
The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.
In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.
Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.
-
This question is part of the following fields:
- Neurological System
-
-
Question 77
Incorrect
-
A 79-year-old man with no prior medical history presents with symptoms of an ischaemic stroke. During the neurological examination in the emergency department, he is alert and able to answer questions appropriately. His limbs have normal tone, power, reflexes, and sensation, but he displays some lack of coordination. When asked to perform a finger-nose test, he accuses the examiner of cheating, claiming that he cannot see their finger or read their name tag. Which specific area of his brain is likely to be damaged, causing his visual deficits?
Your Answer:
Correct Answer: Lateral geniculate nucleus
Explanation:Damage to the lateral geniculate nucleus in the thalamus can cause visual impairment, while damage to other brain regions such as the brainstem, medial geniculate nucleus, postcentral gyrus, and prefrontal cortex produce different neurological deficits. Understanding the functions of each brain region can aid in localising strokes.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 78
Incorrect
-
A 39-year-old woman comes to the clinic with her concerned partner due to her recent bizarre behavior. The partner reports an increase in confusion, hypersexuality, putting objects in her mouth, constant eating, and difficulty recognizing her parents. The neurological exam shows only mild neck stiffness, and routine observations are normal except for a high temperature of 38ºC. A CT scan is normal, but a lumbar puncture reveals a high lymphocyte count and slightly elevated protein. T2 weighted MRI shows hyperintensities in which area of the temporal lobe is likely affected?
Your Answer:
Correct Answer: Amygdala
Explanation:The correct option for the brain area affected in the case of herpes simplex meningoencephalitis with Kluver-Bucy syndrome is the amygdala. Lesions in this area may cause Kluver-Bucy syndrome, which can be diagnosed if the patient presents with three or more of the following symptoms: docility, dietary changes and hyperphagia, hyperorality, hypersexuality, and visual agnosia.
The caudate nucleus, hippocampus, and internal capsule are incorrect options as they are not associated with Kluver-Bucy syndrome. The caudate nucleus is involved in motor function and learning processes, the hippocampus is involved in memory, and the internal capsule provides passage to ascending and descending fibres running to and from the cerebral cortex.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 79
Incorrect
-
As a medical student on wards in the endocrinology department, you come across a patient suffering from syndrome of inappropriate antidiuretic hormone secretion. During the ward round, the consultant leading the team decides to test your knowledge and asks about the normal release of antidiuretic hormone (ADH) in the brain.
Can you explain the pathway that leads to the release of this hormone causing the patient's condition?Your Answer:
Correct Answer: ADH is released from the posterior pituitary gland via neural cells which extend from the hypothalamus
Explanation:The posterior pituitary gland is formed by neural cells’ axons that extend directly from the hypothalamus.
In contrast to the anterior pituitary gland, which has separate hormone-secreting cells controlled by hormonal stimulation, the posterior pituitary gland only contains neural cells that extend from the hypothalamus. Therefore, the hormones (ADH and oxytocin) released from the posterior pituitary gland are released from the axons of cells extending from the hypothalamus.
All anterior pituitary hormone release is controlled through hormonal stimulation from the hypothalamus.
The adrenal medulla directly releases epinephrine, norepinephrine, and small amounts of dopamine from sympathetic neural cells.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 80
Incorrect
-
A 78-year-old male presents to the emergency department with a suspected acute ischaemic stroke. Upon examination, the male displays pendular nystagmus, hypotonia, and an intention tremor primarily in his left hand. During testing, he exhibits hypermetria with his left hand. What is the probable site of the lesion?
Your Answer:
Correct Answer: Left cerebellum
Explanation:Unilateral cerebellar damage results in ipsilateral symptoms, as seen in the patient in this scenario who is experiencing nystagmus, hypotonia, intention tremor, and hypermetria on the left side following a suspected ischemic stroke. This contrasts with cerebral hemisphere damage, which typically causes contralateral symptoms. A stroke in the left motor cortex, for example, would result in weakness on the right side of the body and face. The right cerebellum is an incorrect answer as it would cause symptoms on the same side of the body, while a stroke in the right motor cortex would cause weakness on the left side. Damage to the occipital lobes, responsible for vision, on the right side would lead to left-sided visual symptoms.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 81
Incorrect
-
A 30-year-old female visits her GP complaining of visual disturbance that has been ongoing for 2 days. She reports experiencing blurry vision in her left eye and pain when moving it. She denies having any signs of infection. About 4 months ago, she had a brief episode of weakness and tingling in her left arm that resolved on its own.
What is the probable diagnosis for this patient, and which cells are likely to be targeted by her immune system in this condition?Your Answer:
Correct Answer: Oligodendrocytes
Explanation:The production of myelin in the CNS is the responsibility of oligodendrocytes.
The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.
In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 82
Incorrect
-
A 67-year-old man visited his doctor with complaints of weakness in both legs that have been present for the past two months. Initially, he attributed it to his age, but he feels that it is getting worse. The man has difficulty standing up from a seated position, but his arms and shoulders feel fine. He also noticed that the weakness improves slightly when he keeps walking. The patient denies any eye-related symptoms or drooping of the eyelids. According to the patient's wife, he has lost a lot of weight recently despite not dieting or engaging in physical activity. The patient confirms this but says that he feels fine except for a dry cough that has been persistent. The patient has a medical history of diabetes, hypertension, and a smoking history of 40 pack-years. During the examination, the doctor observed slightly decreased air entry on the right side. What is the most likely mechanism underlying this patient's symptoms?
Your Answer:
Correct Answer: Antibodies directed towards presynaptic voltage-gated calcium channels
Explanation:Based on the patient’s symptoms, the two most likely diagnoses are polymyositis and Lambert-Eaton myasthenic syndrome (LEMS), both of which involve weakness in the proximal muscles. However, the patient’s history of smoking, unintentional weight loss, and recent cough suggest a possible diagnosis of lung cancer, particularly small-cell lung cancer which can cause a paraneoplastic syndrome resulting in muscle weakness due to antibodies against presynaptic voltage-gated calcium channels. Unlike myasthenia gravis, muscle weakness in LEMS improves with repetitive use. Dermatomyositis is characterized by CD4 positive T-cells-mediated inflammation of the perimysium and skin symptoms such as a SLE-like malar rash and periorbital rash. Botulism, caused by ingestion of the toxin from Clostridium botulinum, results in dyspnea, dysarthria, dysphagia, and diplopia. Myasthenia gravis, on the other hand, is a neuromuscular junction disorder that causes muscle weakness with repetitive use and is associated with thymoma.
Paraneoplastic Neurological Syndromes and their Associated Antibodies
Paraneoplastic neurological syndromes are a group of disorders that occur in cancer patients and are caused by an immune response to the tumor. One such syndrome is Lambert-Eaton myasthenic syndrome, which is commonly seen in small cell lung cancer patients. This syndrome is characterized by proximal muscle weakness, hyporeflexia, and autonomic features such as dry mouth and impotence. The antibody responsible for this syndrome is directed against voltage-gated calcium channels and has similar features to myasthenia gravis.
Other paraneoplastic neurological syndromes may be associated with detectable antibodies as well. For example, anti-Hu antibodies are associated with small cell lung cancer and can cause painful sensory neuropathy, cerebellar syndromes, and encephalitis. Anti-Yo antibodies are associated with ovarian and breast cancer and can cause a cerebellar syndrome. Anti-Ri antibodies are associated with small cell lung cancer and can cause retinal degeneration.
In summary, paraneoplastic neurological syndromes are a group of disorders that occur in cancer patients and are caused by an immune response to the tumor. These syndromes can be associated with detectable antibodies, which can help with diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 83
Incorrect
-
A 45-year-old woman arrives at the emergency department complaining of a sudden headache. The doctor is evaluating her condition. Her BMI is 33 kgm2.
During the cranial nerve examination, the doctor observes papilloedema on fundoscopy. The patient also reports a loss of taste in the back third of her tongue. Which of the following nerves could be responsible for this loss?Your Answer:
Correct Answer: Glossopharyngeal nerve
Explanation:The glossopharyngeal nerve mediates taste and sensation from the posterior one-third of the tongue, while the anterior two-thirds of the tongue receive taste input from the chorda tympani branch of the facial nerve and sensation input from the lingual branch of the mandibular division of the trigeminal nerve. The base of the tongue receives taste and sensation input from the internal branch of the superior laryngeal nerve, which is a branch of the vagus nerve.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 84
Incorrect
-
A 28-year-old patient arrives at the emergency department with a fever, neck stiffness, photophobia, and a non-blanching rash. Despite being vaccinated, they are experiencing these symptoms. During a lumbar puncture, the fluid obtained is turbid, with low glucose and an elevated opening pressure. What is the probable causative organism responsible for this patient's condition?
Your Answer:
Correct Answer: Streptococcus pneumoniae
Explanation:The most common cause of meningitis in adults is Streptococcus pneumoniae, which is also the likely pathogen in this patient’s case. His symptoms and lumbar puncture results suggest bacterial meningitis, with turbid fluid, raised opening pressure, and low glucose. While Escherichia coli is a common cause of meningitis in infants under 3 months, it is less likely in a 29-year-old. Haemophilus influenzae B is also an unlikely cause in this patient, who is up-to-date with their vaccinations and beyond the age range for this pathogen. Staphylococcus pneumoniae is a rare but serious cause of pneumonia, but not as likely as Streptococcus pneumoniae to be the cause of this patient’s symptoms.
Aetiology of Meningitis in Adults
Meningitis is a condition that can be caused by various infectious agents such as bacteria, viruses, and fungi. However, this article will focus on bacterial meningitis. The most common bacteria that cause meningitis in adults is Streptococcus pneumoniae, which can develop after an episode of otitis media. Another bacterium that can cause meningitis is Neisseria meningitidis. Listeria monocytogenes is more common in immunocompromised patients and the elderly. Lastly, Haemophilus influenzae type b is also a known cause of meningitis in adults. It is important to identify the causative agent of meningitis to provide appropriate treatment and prevent complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 85
Incorrect
-
A 13-year-old boy comes to the clinic with his mother complaining of ear pain. He experienced the pain last night and was unable to sleep. As a result, he stayed home from school today. He reports that sounds are muffled on the affected side. During the examination, he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid level, indicating a middle ear infection. The nerve to tensor tympani arises from which nerve?
Your Answer:
Correct Answer: Mandibular nerve
Explanation:The mandibular nerve is the correct answer. It is the only division of the trigeminal nerve that carries motor fibers. The vestibulocochlear nerve is the eighth cranial nerve and has two components for balance and hearing. The glossopharyngeal nerve is the ninth cranial nerve and has various functions, including taste and sensation from the tongue, pharyngeal wall, and tonsils. The maxillary nerve carries only sensory fibers. The facial nerve is the seventh cranial nerve and supplies the muscles of facial expression and taste from the anterior two-thirds of the tongue. Tensor tympani is a muscle that dampens loud noises and is innervated through the nerve to tensor tympani, which arises from the mandibular nerve. The patient’s ear pain is likely due to otitis media, which is confirmed on otoscopy.
The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 86
Incorrect
-
A 67-year-old man comes to the hospital with a sudden onset of vision changes while watching TV. He has a history of hypertension and atrial fibrillation but admits to poor adherence to his medication regimen.
During the eye exam, there are no apparent changes in the sclera. The visual field test shows a homonymous quadrantanopia with a loss of the left inferior aspect of vision. All eye movements are normal, pupils are equal and reactive to light, and fundoscopy appears normal.
Based on these findings, where is the most likely location of the lesion in this patient?Your Answer:
Correct Answer: Left superior optic radiations in the parietal lobe
Explanation:The patient is likely experiencing an inferior homonymous quadrantanopia due to a lesion in the superior optic radiations of the parietal lobe. This type of visual field defect occurs when there is damage to the opposite side of the brain from where the defect is present. Lesions in the inferior temporal lobe result in superior defects, while lesions in the superior parietal lobe result in inferior defects. It is important to note that the left superior optic radiations are located in the parietal lobe, not the temporal lobe, and therefore a lesion in the left superior optic radiations in the temporal lobe is not possible. Additionally, a lesion in the right inferior optic radiations in the parietal lobe or the right superior optic radiations in the temporal lobe would not cause a defect on the patient’s right side, as the lesion must be on the opposite side of the brain from the defect.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 87
Incorrect
-
A 65-year-old male, with a history of rheumatoid arthritis, visits the doctor with complaints of left ankle pain and tingling sensation in his lower leg. The pain worsens after prolonged standing and improves with rest. Upon examination, the doctor observes swelling in the left ankle and foot. The doctor suspects tarsal tunnel syndrome, which may be compressing the patient's tibial nerve. Can you identify which muscles this nerve innervates?
Your Answer:
Correct Answer: Flexor hallucis longus
Explanation:The tibial nerve provides innervation to the flexor hallucis longus, which is responsible for flexing the big toe, as well as the flexor digitorum brevis, which flexes the four smaller toes. Meanwhile, the superficial peroneal nerve innervates the peroneus brevis, which aids in plantar flexion of the ankle joint, while the deep peroneal nerve innervates the extensor digitorum longus, which extends the four smaller toes and dorsiflexes the ankle joint. Additionally, the deep peroneal nerve innervates the tibialis anterior, which dorsiflexes the ankle joint and inverts the foot, while the superficial peroneal nerve innervates the peroneus longus, which everts the foot and assists in plantar flexion.
The Tibial Nerve: Muscles Innervated and Termination
The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.
The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 88
Incorrect
-
A 35-year-old woman visits her GP after observing alterations in her facial appearance. She realized that the left side of her face was sagging that morning, and she couldn't entirely shut her left eye, and her smile was uneven. She is healthy and not taking any other medications. During the examination of her facial nerve, you observe that the left facial nerve has a complete lower motor neuron paralysis. What is the probable reason for this?
Your Answer:
Correct Answer: Bell's palsy
Explanation:Bells palsy is believed to be caused by inflammation, which leads to swelling and compression of the facial nerve. This results in one-sided paralysis, with the most noticeable symptom being drooping of the mouth corner. The onset of symptoms occurs within 1-3 days and typically resolves within 1-3 months. It is more prevalent in individuals over the age of 40, and while most people recover, some may experience weakness.
Bell’s palsy is a sudden, one-sided facial nerve paralysis of unknown cause. It typically affects individuals between the ages of 20 and 40, and is more common in pregnant women. The condition is characterized by a lower motor neuron facial nerve palsy that affects the forehead, while sparing the upper face. Patients may also experience postauricular pain, altered taste, dry eyes, and hyperacusis.
The management of Bell’s palsy has been a topic of debate, with various treatment options proposed in the past. However, there is now consensus that all patients should receive oral prednisolone within 72 hours of onset. The addition of antiviral medications is still a matter of discussion, with some experts recommending it for severe cases. Eye care is also crucial to prevent exposure keratopathy, and patients may need to use artificial tears and eye lubricants. If they are unable to close their eye at bedtime, they should tape it closed using microporous tape.
Follow-up is essential for patients who show no improvement after three weeks, as they may require urgent referral to ENT. Those with more long-standing weakness may benefit from a referral to plastic surgery. The prognosis for Bell’s palsy is generally good, with most patients making a full recovery within three to four months. However, untreated cases can result in permanent moderate to severe weakness in around 15% of patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 89
Incorrect
-
When conducting minor surgery on the scalp, which region is considered a hazardous area in terms of infection spreading to the central nervous system (CNS)?
Your Answer:
Correct Answer: Loose areolar tissue
Explanation:The risk of infection spreading easily makes this area highly dangerous. The emissary veins that drain this region could facilitate the spread of sepsis to the cranial cavity.
Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 90
Incorrect
-
Which one of the following cranial foramina pairings are incorrect?
Your Answer:
Correct Answer: Optic canal and ophthalmic nerve.
Explanation:The optic nerve is transmitted through the optic canal, while the superior orbital fissure is traversed by the ophthalmic nerve.
Foramina of the Base of the Skull
The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.
The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.
The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 91
Incorrect
-
You are a final year medical student working in the emergency department. You have been asked to see a 25-year-old male presenting with a red, painful eye. He reports a gritty discomfort in his right eye which has been increasing in severity throughout the last day. He has no significant past medical history, although reports having a recent upper respiratory tract infection. He works as a plumber and has been on an active construction site for much of the day without eye protection.
On examination, the right eyelid appears swollen and mildly erythematous. There is a watery discharge from the eye. The conjunctiva is widely injected. The eye has a full range of movements and the pupil is equal and reactive to light. There is no reduction in visual acuity. There is a small dark corneal lesion with an orange halo at the 3-o'clock position with minor fluorescein uptake around its periphery.
What is the most likely cause for the presenting symptoms?Your Answer:
Correct Answer: Iron-containing corneal foreign body
Explanation:When someone presents with a red eye, it is often due to an ocular foreign body. If the foreign body contains iron, it may have a distinctive orange halo. Dendritic corneal ulcers, which have a characteristic shape visible with fluorescein staining, are caused by HSV-1 viruses from the herpesviridae family. It is important to avoid using topical steroids in these cases. Plant-based foreign bodies are more likely to cause infection than inert foreign bodies like plastic or glass, or oxidizing foreign bodies like iron. Viral conjunctivitis typically presents with bilateral, itchy, painful red eyes with watery discharge and small follicles on the tarsal conjunctiva. Acute angle closure crisis is a serious emergency that causes a painful, red eye with a poorly responsive pupil that is mid-dilated. Iron-containing foreign bodies begin to oxidize within six hours of contact with the corneal surface, leading to an orange ring of ferrous material that disperses into the superficial corneal layers and tear film surrounding the foreign body.
Corneal foreign body is a condition characterized by eye pain, foreign body sensation, photophobia, watering eye, and red eye. It is important to refer patients to ophthalmology if there is a suspected penetrating eye injury due to high-velocity injuries or sharp objects, significant orbital or peri-ocular trauma, or a chemical injury has occurred. Foreign bodies composed of organic material should also be referred to ophthalmology as they are associated with a higher risk of infection and complications. Additionally, foreign bodies in or near the centre of the cornea and any red flags such as severe pain, irregular pupils, or significant reduction in visual acuity should be referred to ophthalmology. For further information on management, please refer to Clinical Knowledge Summaries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 92
Incorrect
-
A 55-year-old woman complains of discomfort and pain in her hand. She is employed as a typist and experiences the most pain while working. She also experiences symptoms during the night. The pain is less severe in her little finger. Which nerve is most likely to be affected?
Your Answer:
Correct Answer: Median
Explanation:EIWRTREY
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 93
Incorrect
-
A 67-year-old man presents to his doctor with a one month history of speech difficulty. He reports experiencing pronunciation difficulties which he has never had before. However, his reading ability remains intact.
During the consultation, the doctor observes occasional pronunciation errors when the patient is asked to repeat certain words. Despite this, the patient is able to construct meaningful sentences with minimal grammatical errors. He also demonstrates the ability to comprehend questions and respond appropriately.
The doctor performs a cranial nerve examination which yields normal results.
Which area of the brain may be affected by a lesion to cause this presentation?Your Answer:
Correct Answer: Arcuate fasciculus
Explanation:Conduction dysphasia is characterized by fluent speech but poor repetition ability, with relatively intact comprehension. This is a typical manifestation of conduction aphasia, which is caused by damage to the arcuate fasciculus connecting Broca’s and Wernicke’s areas. Patients with this condition may be aware of their pronunciation difficulties and may become frustrated when attempting to correct themselves.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 94
Incorrect
-
An elderly man, aged 74, is admitted to the acute medical ward due to experiencing shortness of breath. He has no significant medical history except for primary open-angle glaucoma, for which he is taking timolol. What is the mechanism of action of this medication?
Your Answer:
Correct Answer: Reduces aqueous production
Explanation:Timolol, a beta-blocker, is effective in treating primary open-angle glaucoma by decreasing the production of aqueous humour, which in turn reduces intraocular pressure. Prostaglandin analogues like latanoprost, on the other hand, are the preferred first-line treatment for this condition as they increase uveoscleral outflow, but do not affect aqueous production. Miotics such as pilocarpine work by constricting the pupil and increasing uveoscleral outflow. Conversely, pupil dilation can worsen glaucoma by decreasing uveoscleral outflow. Brimonidine, a sympathomimetic, has a dual-action mechanism that reduces ocular pressure by decreasing aqueous production and increasing outflow.
Primary open-angle glaucoma is a type of optic neuropathy that is associated with increased intraocular pressure (IOP). It is classified based on whether the peripheral iris is covering the trabecular meshwork, which is important in the drainage of aqueous humour from the anterior chamber of the eye. In open-angle glaucoma, the iris is clear of the meshwork, but the trabecular network offers increased resistance to aqueous outflow, causing increased IOP. This condition affects 0.5% of people over the age of 40 and its prevalence increases with age up to 10% over the age of 80 years. Both males and females are equally affected. The main causes of primary open-angle glaucoma are increasing age and genetics, with first-degree relatives of an open-angle glaucoma patient having a 16% chance of developing the disease.
Primary open-angle glaucoma is characterised by a slow rise in intraocular pressure, which is symptomless for a long period. It is typically detected following an ocular pressure measurement during a routine examination by an optometrist. Signs of the condition include increased intraocular pressure, visual field defect, and pathological cupping of the optic disc. Case finding and provisional diagnosis are done by an optometrist, and referral to an ophthalmologist is done via the GP. Final diagnosis is made through investigations such as automated perimetry to assess visual field, slit lamp examination with pupil dilatation to assess optic nerve and fundus for a baseline, applanation tonometry to measure IOP, central corneal thickness measurement, and gonioscopy to assess peripheral anterior chamber configuration and depth. The risk of future visual impairment is assessed using risk factors such as IOP, central corneal thickness (CCT), family history, and life expectancy.
The majority of patients with primary open-angle glaucoma are managed with eye drops that aim to lower intraocular pressure and prevent progressive loss of visual field. According to NICE guidelines, the first line of treatment is a prostaglandin analogue (PGA) eyedrop, followed by a beta-blocker, carbonic anhydrase inhibitor, or sympathomimetic eyedrop as a second line of treatment. Surgery or laser treatment can be tried in more advanced cases. Reassessment is important to exclude progression and visual field loss and needs to be done more frequently if IOP is uncontrolled, the patient is high risk, or there
-
This question is part of the following fields:
- Neurological System
-
-
Question 95
Incorrect
-
A 42-year-old man is stabbed in the back. During examination, it is observed that he has a total absence of sensation at the nipple level. Which specific dermatome is accountable for this?
Your Answer:
Correct Answer: T4
Explanation:The dermatome for T4 can be found at the nipples, which can be remembered as Teat Pore.
Understanding Dermatomes: Major Landmarks and Mnemonics
Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.
Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.
Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.
The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.
Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.
-
This question is part of the following fields:
- Neurological System
-
-
Question 96
Incorrect
-
A 40-year-old male visits his doctor with concerns about his family history. His father and paternal grandmother both developed Alzheimer's disease at the age of 68 and 75 respectively. Which allele is associated with an elevated risk, but not a guaranteed factor, for the onset of the disease?
Your Answer:
Correct Answer: E4
Explanation:The primary genetic determinant of sporadic Alzheimer’s disease risk is the presence of polymorphic alleles in the APOE gene. Those who carry the ε4 allele are at the greatest risk.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 97
Incorrect
-
A 35-year-old male who has recently traveled to Nigeria visits the GP complaining of muscle weakness. During the clinical examination, the doctor observes reduced tone in his limbs, diminished reflexes, and fasciculations.
What is the probable diagnosis?Your Answer:
Correct Answer: Poliomyelitis
Explanation:Lower motor neuron signs are a common result of poliomyelitis, which is a viral infection that can cause reduced reflexes and tone. On the other hand, upper motor neuron signs are typically associated with conditions such as multiple sclerosis, stroke, and Huntington’s disease.
Understanding Poliomyelitis and Its Immunisation
Poliomyelitis is a sudden illness that occurs when one of the polio viruses invades the gastrointestinal tract. The virus then multiplies in the gastrointestinal tissues and targets the nervous system, particularly the anterior horn cells. This can lead to paralysis, which is usually unilateral and accompanied by lower motor neuron signs.
To prevent the spread of polio, immunisation is crucial. In the UK, the live attenuated oral polio vaccine (OPV – Sabin) was used for routine immunisation until 2004. However, this vaccine carried a risk of vaccine-associated paralytic polio. As the risk of polio importation to the UK has decreased, the country switched to inactivated polio vaccine (IPV – Salk) in 2004. This vaccine is administered via an intramuscular injection and does not carry the same risk of vaccine-associated paralytic polio as the OPV.
Certain factors can increase the risk of severe paralysis from polio, including being an adult, being pregnant, or having undergone a tonsillectomy. It is important to understand the features and risks associated with poliomyelitis to ensure proper prevention and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 98
Incorrect
-
Which of the following muscles is not innervated by the deep branch of the ulnar nerve?
Your Answer:
Correct Answer: Opponens pollicis
Explanation:The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 99
Incorrect
-
A 38-year-old woman comes to see her GP complaining of increasing fatigue, especially towards the end of the day. During the consultation, she mentions having difficulty swallowing and experiencing two instances of almost choking on her dinner. Her husband has also noticed that her speech becomes quieter in the evenings, almost like a whisper.
Upon examination in the morning, there are no significant findings except for some bilateral eyelid twitching after looking at the floor briefly.
What is the likely diagnosis, and what is the mechanism of action of the first-line treatment?Your Answer:
Correct Answer: Increases the amount of acetylcholine reaching the postsynaptic receptors
Explanation:Pyridostigmine is a medication that inhibits the breakdown of acetylcholine in the neuromuscular junction, leading to an increase in the amount of acetylcholine that reaches the postsynaptic receptors. This temporary improvement in symptoms is particularly beneficial for individuals with myasthenia gravis, who experience increased fatigue following exercise, quiet speech, and difficulty swallowing. Pyridostigmine is considered a first-line treatment for MG, as it directly affects the acetylcholinesterase inhibitors and not the postsynaptic receptors.
Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 100
Incorrect
-
A 45-year-old patient, Maria, arrives at the emergency department (ED) with complaints of right-sided facial weakness upon waking up. Maria's right eyebrow and the right corner of her mouth are drooped. Additionally, Maria is experiencing difficulty tolerating the noise in the ED, stating that everything sounds excessively loud.
What reflex is expected to be absent based on the most probable diagnosis?Your Answer:
Correct Answer: Corneal reflex
Explanation:The corneal reflex is a reflex where the eye blinks in response to corneal stimulation. The afferent limb is the ophthalmic branch of the trigeminal nerve, while the efferent limb is the facial nerve. This reflex is correctly identified in the scenario.
However, the most likely diagnosis for Iole’s symptoms is Bell’s palsy, which is a palsy of the facial nerve (CN VII) that presents with unilateral facial weakness, forehead involvement, and hyperacusis. The gag reflex, jaw jerk reflex, and pupillary light reflex are not relevant to this scenario.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)