00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux...

    Incorrect

    • A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux disease. While the procedure is ongoing, the patient experiences several coughing episodes.

      Which two cranial nerves are responsible for this reflex action?

      Your Answer: Cranial nerve VII and VIII

      Correct Answer: Cranial nerves IX and X

      Explanation:

      The glossopharyngeal and vagus nerves, which are cranial nerves IX and X respectively, mediate the cough reflex. The facial nerve, or cranial nerve VII, is responsible for facial movements and taste in the anterior 2/3 of the tongue. The vestibulocochlear nerve, or cranial nerve VIII, is responsible for hearing and balance. Cranial nerve XI, also known as the spinal accessory nerve, innervates the sternocleidomastoid muscle and the trapezius muscle. The hypoglossal nerve, or cranial nerve XII, is responsible for the motor innervation of most of the tongue, and damage to this nerve can cause the tongue to deviate towards the side of the lesion when protruded.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      16.5
      Seconds
  • Question 2 - A man in his 50s arrives at the emergency department exhibiting signs of...

    Correct

    • A man in his 50s arrives at the emergency department exhibiting signs of a stroke. After undergoing a CT angiogram, it is revealed that there is a constriction in the artery that provides blood to the right common carotid.

      What is the name of the affected artery?

      Your Answer: Brachiocephalic artery

      Explanation:

      The largest branch from the aortic arch is the brachiocephalic artery, which originates from it. This artery gives rise to both the right subclavian artery and the right common carotid arteries. The brachiocephalic artery is supplied by the aortic arch, while the coronary arteries are supplied by the ascending aorta. Additionally, the coeliac trunk is a branch that stems from the abdominal aorta.

      The Brachiocephalic Artery: Anatomy and Relations

      The brachiocephalic artery is the largest branch of the aortic arch, originating at the apex of the midline. It ascends superiorly and posteriorly to the right, lying initially anterior to the trachea and then on its right-hand side. At the level of the sternoclavicular joint, it divides into the right subclavian and right common carotid arteries.

      In terms of its relations, the brachiocephalic artery is anterior to the sternohyoid, sterno-thyroid, thymic remnants, left brachiocephalic vein, and right inferior thyroid veins. Posteriorly, it is related to the trachea, right pleura, right lateral, right brachiocephalic vein, superior part of the SVC, left lateral, thymic remnants, origin of left common carotid, inferior thyroid veins, and trachea at a higher level.

      The brachiocephalic artery typically has no branches, but it may have the thyroidea ima artery. Understanding the anatomy and relations of the brachiocephalic artery is important for medical professionals, as it is a crucial vessel in the human body.

    • This question is part of the following fields:

      • Cardiovascular System
      32.9
      Seconds
  • Question 3 - A 52-year-old woman has come to you with her ambulatory blood pressure monitor...

    Incorrect

    • A 52-year-old woman has come to you with her ambulatory blood pressure monitor readings, which are consistently high. You suggest starting her on ramipril and advise her to avoid certain things that could impact the absorption of the medication.

      What should she avoid?

      Your Answer: Low dose aspirin

      Correct Answer: Antacids

      Explanation:

      ACE-inhibitors’ therapeutic effect is reduced by antacids as they interfere with their absorption. However, low dose aspirin is safe to use alongside ACE-inhibitors. Coffee and tea do not affect the absorption of ACE-inhibitors. Patients taking ACE-inhibitors need not avoid high-intensity exercise, unlike those on statins who have an increased risk of muscle breakdown due to rhabdomyolysis.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      12.1
      Seconds
  • Question 4 - A 78-year-old ex-smoker comes to the clinic complaining of chest discomfort and shortness...

    Correct

    • A 78-year-old ex-smoker comes to the clinic complaining of chest discomfort and shortness of breath. He had a history of ST-elevation myocardial infarction 10 days ago, which was treated with thrombolysis. During the examination, a high-pitch holosystolic murmur is heard at the apex. The ECG shows widespread ST elevation. Unfortunately, the patient experiences cardiac arrest and passes away. What is the probable histological finding in his heart?

      Your Answer: Macrophages and granulation tissue at margins

      Explanation:

      The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, there is evidence of early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage is associated with a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.

      Between 1-3 days post-MI, there is extensive coagulative necrosis and an influx of neutrophils, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are present at the margins, and there is a high risk of complications such as free wall rupture (which can cause mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm.

      After 2 weeks to several months, the scar tissue has contracted and is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus. It is important to note that the risk of complications decreases as time passes, but long-term management and monitoring are still necessary for patients who have experienced an MI.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      65.7
      Seconds
  • Question 5 - An individual who has been a lifelong smoker and is 68 years old...

    Correct

    • An individual who has been a lifelong smoker and is 68 years old arrives at the Emergency Department with a heart attack. During the explanation of his condition, a doctor mentions that the arteries supplying his heart have been narrowed and damaged. What substance is increased on endothelial cells after damage or oxidative stress, leading to the recruitment of monocytes to the vessel wall?

      Your Answer: Vascular cell adhesion molecule-1

      Explanation:

      VCAM-1 is a protein expressed on endothelial cells in response to pro-atherosclerotic conditions. It binds to lymphocytes, monocytes, and eosinophils, causing adhesion to the endothelium. Its expression is upregulated by cytokines and is critical in the development of atherosclerosis.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      25
      Seconds
  • Question 6 - A 50-year-old man has a long femoral line inserted to measure CVP. The...

    Incorrect

    • A 50-year-old man has a long femoral line inserted to measure CVP. The catheter travels from the common iliac vein to the inferior vena cava. At what vertebral level does this occur?

      Your Answer: L4

      Correct Answer: L5

      Explanation:

      At the level of L5, the common iliac veins join together to form the inferior vena cava (IVC).

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      12.7
      Seconds
  • Question 7 - A 67-year-old male arrives at the emergency department with an abrupt onset of...

    Correct

    • A 67-year-old male arrives at the emergency department with an abrupt onset of intense chest pain that he describes as tearing through his body. He is promptly diagnosed with a Stanford Type A aortic dissection and immediately undergoes surgical repair. What embryonic structure is responsible for the region where the dissection occurred?

      Your Answer: Truncus arteriosus

      Explanation:

      The truncus arteriosus is responsible for giving rise to both the ascending aorta and the pulmonary trunk during embryonic development.

      When a Stanford Type A aortic dissection occurs, it typically affects the ascending aorta, which originates from the truncus arteriosus.

      During fetal development, the ductus arteriosus allows blood to bypass the pulmonary circuit by shunting it from the pulmonary arteries back into the aortic arch. In adults, the remnant of this structure is known as the ligamentum arteriosum, which serves as an anchor for the aortic arch.

      The bulbus cordis plays a role in the formation of the ventricles, while the common cardinal vein ultimately becomes the superior vena cava.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      19.7
      Seconds
  • Question 8 - A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his...

    Incorrect

    • A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his heart function, he undergoes a transthoracic echocardiogram.

      What is the method used to determine his cardiac output from the echocardiogram?

      Your Answer: (end systolic LV volume - end diastolic LV volume) x heart rate

      Correct Answer: (end diastolic LV volume - end systolic LV volume) x heart rate

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      24.2
      Seconds
  • Question 9 - A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling...

    Incorrect

    • A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?

      Your Answer: Left bundle branch block

      Correct Answer: Accessory pathway

      Explanation:

      The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.

      Understanding Wolff-Parkinson White Syndrome

      Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.

      The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.

    • This question is part of the following fields:

      • Cardiovascular System
      17.2
      Seconds
  • Question 10 - Which one of the following is typically not provided by the right coronary...

    Correct

    • Which one of the following is typically not provided by the right coronary artery?

      Your Answer: The circumflex artery

      Explanation:

      The left coronary artery typically gives rise to the circumflex artery.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      11.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (5/10) 50%
Passmed