00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 28-year-old man arrives at the emergency department complaining of chest pain. The...

    Correct

    • A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.

      Where is the site of this pathology?

      Your Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins

      Explanation:

      Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.

      Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.

    • This question is part of the following fields:

      • Cardiovascular System
      40.6
      Seconds
  • Question 2 - A 55-year-old man with a recent diagnosis of essential hypertension and prescribed ramipril...

    Correct

    • A 55-year-old man with a recent diagnosis of essential hypertension and prescribed ramipril has returned for a follow-up appointment after 6 weeks. He has a medical history of osteoarthritis and benign prostate hypertrophy. Despite being compliant with his medication, his blood pressure reading is 145/90 mmHg, which is higher than his previous readings at home. What could be the reason for his inadequate blood pressure control despite medical treatment?

      Your Answer: Ibuprofen

      Explanation:

      The patient with osteoarthritis is likely taking NSAIDs, which can diminish the effectiveness of ACE inhibitors in controlling hypertension. Additionally, NSAIDs can worsen the hyperkalemic effects of ACE inhibitors, contributing to the patient’s uncontrolled blood pressure. It is important to note that alcohol can also exacerbate the hypotensive effects of ACE inhibitors. Nitrates, on the other hand, are useful in managing hypertension.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      35.1
      Seconds
  • Question 3 - A 75-year-old diabetic man comes in with a heart attack and undergoes a...

    Correct

    • A 75-year-old diabetic man comes in with a heart attack and undergoes a coronary angiogram. What coronary artery/arteries provide blood supply to the anterior septum of the heart?

      Your Answer: Left Anterior Descending

      Explanation:

      The heart receives blood supply from the coronary arteries, which originate from the left side of the heart at the root of the aorta as it exits the left ventricle.

      The left coronary artery (LCA) provides blood to the left atrium and ventricle, as well as the interventricular septum. The circumflex artery, a branch of the LCA, supplies the lateral aspect of the left heart by following the coronary sulcus to the left. The left anterior descending artery (LAD), another major branch of the LCA, supplies the anteroseptal part of the heart by following the anterior interventricular sulcus around the pulmonary trunk.

      The right coronary artery (RCA) follows the coronary sulcus and supplies blood to the right atrium, portions of both ventricles, and the inferior aspect of the heart. The marginal arteries, which arise from the RCA, provide blood to the superficial portions of the right ventricle. The posterior descending artery, which branches off the RCA on the posterior surface of the heart, runs along the posterior portion of the interventricular sulcus toward the apex of the heart and supplies the interventricular septum and portions of both ventricles.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      27.9
      Seconds
  • Question 4 - An 80-year-old man visits his doctor complaining of dizziness upon standing. He has...

    Incorrect

    • An 80-year-old man visits his doctor complaining of dizziness upon standing. He has recently been diagnosed with heart failure, with a left ventricular ejection fraction of 35%. The doctor diagnoses him with orthostatic hypotension.

      What are the possible causes of this type of heart failure?

      Your Answer: Diastolic dysfunction

      Correct Answer: Systolic dysfunction

      Explanation:

      Types of Heart Failure

      Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      23.3
      Seconds
  • Question 5 - Each of the following increases the production of endothelin, except for which one?...

    Incorrect

    • Each of the following increases the production of endothelin, except for which one?

      Your Answer: ADH

      Correct Answer: Prostacyclin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      17.9
      Seconds
  • Question 6 - Which nerve is most vulnerable to damage when there is a cut on...

    Incorrect

    • Which nerve is most vulnerable to damage when there is a cut on the upper lateral margin of the popliteal fossa in older adults?

      Your Answer: Tibial nerve

      Correct Answer: Common peroneal nerve

      Explanation:

      The lower infero-lateral aspect of the fossa is where the sural nerve exits, and it is at a higher risk during short saphenous vein surgery. On the other hand, the tibial nerve is located more medially and is less susceptible to injury in this area.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      9.5
      Seconds
  • Question 7 - A 59-year-old man presents to the emergency department with pleuritic thoracic pain and...

    Correct

    • A 59-year-old man presents to the emergency department with pleuritic thoracic pain and fever. His medical history includes an inferior STEMI that occurred 3 weeks ago. During auscultation, a pericardial rub is detected, and his ECG shows diffuse ST segment elevation and PR segment depression. What is the complication of myocardial infarction that the patient is experiencing?

      Your Answer: Dressler syndrome

      Explanation:

      The patient’s symptoms strongly suggest Dressler syndrome, which is an autoimmune-related inflammation of the pericardium that typically occurs 2-6 weeks after a heart attack. This condition is characterized by fever, pleuritic pain, and diffuse ST elevation and PR depression on an electrocardiogram. A pleural friction rub can also be heard during a physical exam.

      While another heart attack is a possibility, the absence of diffuse ST elevation and the presence of a pleural friction rub make this diagnosis less likely.

      A left ventricular aneurysm would present with persistent ST elevation but no chest pain.

      Ventricular free wall rupture typically occurs 1-2 weeks after a heart attack and would present with acute heart failure due to cardiac tamponade, which is characterized by raised jugular venous pressure, pulsus paradoxus, and diminished heart sounds.

      A ventricular septal defect usually occurs within the first week and would present with acute heart failure and a pansystolic murmur.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      22.5
      Seconds
  • Question 8 - A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate...

    Correct

    • A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate the function of her heart. The goal is to measure her ejection fraction, however, to do this first her stroke volume must be measured.

      What is the formula for stroke volume?

      Your Answer: End diastolic volume - end systolic volume

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      39.9
      Seconds
  • Question 9 - Which of the following is accountable for the swift depolarization phase of the...

    Incorrect

    • Which of the following is accountable for the swift depolarization phase of the cardiac action potential?

      Your Answer: Rapid sodium efflux

      Correct Answer: Rapid sodium influx

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      20.4
      Seconds
  • Question 10 - A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each...

    Incorrect

    • A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each episode is preceded by a change in posture, typically when the patient gets out of bed in the morning. The patient feels dizzy and nauseous and falls. He recovers within seconds after the event. The neurologist states these symptoms are likely a side-effect of the patient's levodopa, and prescribes a medication to treat the condition.

      What medication would be the most appropriate for managing the symptoms of this patient?

      Your Answer: Atenolol

      Correct Answer: Fludrocortisone

      Explanation:

      Orthostatic hypotension can be treated with midodrine or fludrocortisone. Fludrocortisone is a synthetic mineralocorticoid that can replace low levels of aldosterone and is often used as an alternative to midodrine, which can cause side-effects such as hypertension and BPH in some patients. Atenolol is a beta-blocker used to treat angina and hypertension, while losartan is an angiotensin-II-receptor antagonist used to manage hypertension. Adenosine is a medication used to treat supraventricular tachycardias.

      Understanding Orthostatic Hypotension

      Orthostatic hypotension is a condition that is more commonly observed in older individuals and those who have neurodegenerative diseases such as Parkinson’s, diabetes, or hypertension. Additionally, certain medications such as alpha-blockers used for benign prostatic hyperplasia can also cause this condition. The primary feature of orthostatic hypotension is a sudden drop in blood pressure, usually more than 20/10 mm Hg, within three minutes of standing. This can lead to presyncope or syncope, which is a feeling of lightheadedness or fainting.

      Fortunately, there are treatment options available for orthostatic hypotension. Midodrine and fludrocortisone are two medications that can be used to manage this condition. It is important to consult with a healthcare professional to determine the best course of treatment for each individual case. By understanding the causes, symptoms, and treatment options for orthostatic hypotension, individuals can take steps to manage this condition and improve their quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      22.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (5/10) 50%
Passmed