-
Question 1
Incorrect
-
Samantha is a 58-year-old woman who has been experiencing symptoms of urinary urgency and frequency. She is curious about the accuracy of the PSA test and would like to know what percentage of patients with an elevated PSA level (for their age) do not actually have prostate cancer.
Approximately what percentage of patients with a raised PSA level (relative to their age) do not have prostate cancer?Your Answer: 25%
Correct Answer: 75%
Explanation:PSA Testing for Prostate Cancer
Prostate specific antigen (PSA) is an enzyme produced by the prostate gland, and it is used as a tumour marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. The National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.
The PCRMP has recommended age-adjusted upper limits for PSA, while NICE Clinical Knowledge Summaries suggest a lower threshold for referral. However, PSA levels may also be raised by other conditions such as benign prostatic hyperplasia, prostatitis, urinary tract infection, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract.
PSA testing has poor specificity and sensitivity, and various methods are used to try and add greater meaning to a PSA level, including age-adjusted upper limits and monitoring change in PSA level with time. It is important to note that digital rectal examination may or may not cause a rise in PSA levels, which is a matter of debate.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Incorrect
-
A 50-year-old woman presents to her GP with a complaint of generalised puffiness. She has been feeling lethargic and noticed swelling in her hands, feet, and face over the past few weeks. Additionally, she has been experiencing shortness of breath on exertion and cannot lie flat, frequently waking up at night gasping for air. She also reports tingling and loss of sensation in both feet, which has now extended to her knees. She has no regular medications and is otherwise healthy.
Upon examination, the patient has decreased sensation over the distal lower limbs and hepatomegaly. Urine dipstick reveals protein +++ and urinalysis reveals hyperalbuminuria. Serology shows hypoalbuminaemia and hyperlipidaemia. An outpatient echocardiogram reveals both systolic and diagnostic heart failure, with a restrictive filling pattern. The Mantoux skin test was negative.
What is the probable mechanism behind this patient's condition?Your Answer: Schaumann bodies in Langhans giant cells
Correct Answer: Deposition of light chain fragments
Explanation:The deposition of light chain fragments in various tissues is the most common cause of amyloidosis (AL), which can present with symptoms such as nephrotic syndrome, heart failure, and peripheral neuropathy.
Symptoms in the upper respiratory tract and kidneys are typically seen in granulomatosis with polyangiitis (GPA), which is caused by anti-neutrophil cytoplasmic antibody-induced inflammation. Therefore, this answer is not applicable.
Tuberculosis is caused by Mycobacterium, but the absence of pulmonary features and negative Mantoux skin test make it unlikely in this case. Therefore, this answer is not applicable.
Amyloidosis is a condition that can occur in different forms. The most common type is AL amyloidosis, which is caused by the accumulation of immunoglobulin light chain fragments. This can be due to underlying conditions such as myeloma, Waldenstrom’s, or MGUS. Symptoms of AL amyloidosis can include nephrotic syndrome, cardiac and neurological issues, macroglossia, and periorbital eccymoses.
Another type of amyloidosis is AA amyloid, which is caused by the buildup of serum amyloid A protein, an acute phase reactant. This form of amyloidosis is often seen in patients with chronic infections or inflammation, such as TB, bronchiectasis, or rheumatoid arthritis. The most common symptom of AA amyloidosis is renal involvement.
Beta-2 microglobulin amyloidosis is another form of the condition, which is caused by the accumulation of beta-2 microglobulin, a protein found in the major histocompatibility complex. This type of amyloidosis is often seen in patients who are on renal dialysis.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Incorrect
-
A 45-year-old woman visits her doctor complaining of muscle cramps and fatigue. Upon ruling out any musculoskeletal issues, a blood test is conducted which reveals hyperparathyroidism and low serum phosphate levels. It is suspected that the low phosphate levels are due to the inhibitory effect of parathyroid hormone on renal phosphate reabsorption. Which site in the kidney is most likely affected by parathyroid hormone to cause these blood results?
Your Answer: Distal convoluted tubule
Correct Answer: Proximal convoluted tubule
Explanation:The proximal convoluted tubule is responsible for the majority of renal phosphate reabsorption. This occurs through co-transport with sodium and up to two thirds of filtered water. The thin ascending limb of the Loop of Henle is impermeable to water but highly permeable to sodium and chloride, while reabsorption of these ions occurs in the thick ascending limb. Parathyroid hormone is most effective at the proximal convoluted tubule due to its role in regulating phosphate reabsorption.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Incorrect
-
A 49-year-old man with a history of chronic alcohol abuse presents with abdominal distension and is diagnosed with decompensated alcoholic liver disease with ascites. The consultant initiates treatment with spironolactone to aid in the management of his ascites.
What is the mode of action of spironolactone?Your Answer: Inhibition of the epithelial sodium channel in the distal convoluted tubule
Correct Answer: Inhibition of the mineralocorticoid receptor in the cortical collecting ducts
Explanation:Aldosterone antagonists function as diuretics by targeting the cortical collecting ducts.
By inhibiting the mineralocorticoid receptor in the cortical collecting ducts, spironolactone acts as an aldosterone antagonist.
Loop diuretics like furosemide work by blocking the sodium/potassium/chloride transporter in the loop of Henle.
Thiazide diuretics, such as bendroflumethiazide, block the sodium/chloride transporter in the distal convoluted tubules.
Carbonic anhydrase inhibitors, like dorzolamide, act on the proximal tubules.
Amiloride inhibits the epithelial sodium transporter in the distal convoluted tubules.
Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.
However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Incorrect
-
A 28-year-old woman with autosomal dominant polycystic kidney disease type 1 is seeking guidance from her general practitioner regarding family planning. She recently lost her father to a subarachnoid haemorrhage, which prompted her to undergo genetic testing to confirm her diagnosis. Despite her desire to start a family with her husband, she is worried about the possibility of passing on the renal disease to her children. On which chromosome is the genetic defect for this condition most commonly found?
Your Answer: Chromosome 21
Correct Answer: Chromosome 16
Explanation:The patient’s autosomal dominant polycystic kidney disease type 1 is not caused by a gene on chromosomes 13, 18, or 21. It is important to note that nondisjunction of these chromosomes can lead to other genetic disorders such as Patau syndrome, Edward’s syndrome, and Down’s syndrome. The chance of the patient passing on the autosomal dominant polycystic kidney disease type 1 to her children would depend on the inheritance pattern of the specific gene mutation causing the disease.
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.
To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.
For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Correct
-
A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the past 6 days. He complains of abdominal pain and has been urinating very little. His mother has also noticed multiple bruises on his body without any known cause. What is the most probable organism responsible for his symptoms?
Your Answer: E. coli
Explanation:The patient’s symptoms suggest that they may be suffering from haemolytic uraemic syndrome (HUS), which is often caused by an infection with E.coli 0157:H7.
HUS is characterized by a combination of haemolytic anaemia, thrombocytopaenia, and acute kidney injury, which can ultimately lead to renal failure.
The presence of bloody diarrhoea in the patient’s medical history is a significant indicator of HUS. Additionally, the reduced urine output is likely due to the acute kidney injury, while the bruising may be a result of the thrombocytopaenia associated with HUS.
Understanding Haemolytic Uraemic Syndrome
Haemolytic uraemic syndrome (HUS) is a condition that primarily affects young children and is characterized by a triad of symptoms, including acute kidney injury, microangiopathic haemolytic anaemia, and thrombocytopenia. The most common cause of HUS in children is Shiga toxin-producing Escherichia coli (STEC) 0157:H7, which accounts for over 90% of cases. Other causes of HUS include pneumococcal infection, HIV, systemic lupus erythematosus, drugs, and cancer.
To diagnose HUS, doctors may perform a full blood count, check for evidence of STEC infection in stool culture, and conduct PCR for Shiga toxins. Treatment for HUS is supportive and may include fluids, blood transfusion, and dialysis if required. Antibiotics are not recommended, despite the preceding diarrhoeal illness in many patients. The indications for plasma exchange in HUS are complicated, and as a general rule, plasma exchange is reserved for severe cases of HUS not associated with diarrhoea. Eculizumab, a C5 inhibitor monoclonal antibody, has shown greater efficiency than plasma exchange alone in the treatment of adult atypical HUS.
In summary, HUS is a serious condition that primarily affects young children and is characterized by a triad of symptoms. The most common cause of HUS in children is STEC 0157:H7, and diagnosis may involve various tests. Treatment is supportive, and antibiotics are not recommended. The indications for plasma exchange are complicated, and eculizumab may be more effective in treating adult atypical HUS.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
In a 70 Kg person, what percentage of the entire body fluid will be provided by plasma?
Your Answer: 35%
Correct Answer: 5%
Explanation:Understanding the Physiology of Body Fluid Compartments
Body fluid compartments are essential components of the human body, consisting of intracellular and extracellular compartments. The extracellular compartment is further divided into interstitial fluid, plasma, and transcellular fluid. In a typical 70 Kg male, the intracellular compartment comprises 60-65% of the total body fluid volume, while the extracellular compartment comprises 35-40%. The plasma volume is approximately 5%, while the interstitial fluid volume is 24%. The transcellular fluid volume is approximately 3%. These figures are only approximate and may vary depending on the individual’s weight and other factors. Understanding the physiology of body fluid compartments is crucial in maintaining proper fluid balance and overall health.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 72-year-old man, with a past medical history of diabetes, hypertension and stable angina visits his family physician for a routine check-up. He is currently taking metoprolol, daily aspirin and insulin glargine. He lives alone and is able to manage his daily activities. He used to work as a teacher and his wife passed away from a stroke 5 years ago. During the examination, his heart rate is 60 beats per minute, respiratory rate is 14 breaths per minute and blood pressure is 125/80 mmHg. What is the direct effect of the metoprolol medication on this patient?
Your Answer: Dilation of arterioles
Correct Answer: Decrease in renin secretion
Explanation:During the patient’s regular follow-up for diabetes and hypertension management, it was noted that both conditions increase the risk of cardiovascular complications and other related complications such as kidney and eye problems. To manage hypertension, the patient was prescribed metoprolol, a beta-blocker that reduces blood pressure by decreasing heart rate and cardiac output. Additionally, metoprolol blocks beta-1 adrenergic receptors in the juxtaglomerular apparatus of the kidneys, leading to a decrease in renin secretion. Renin is responsible for converting angiotensinogen to angiotensin I, which is further converted to angiotensin II, a hormone that increases blood pressure through vasoconstriction and sodium retention. By blocking renin secretion, metoprolol causes a decrease in blood pressure. Other antihypertensive medications work through different mechanisms, such as calcium channel blockers that dilate arterioles, ACE inhibitors that decrease angiotensin II secretion, and beta-blockers that decrease renin secretion.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Correct
-
A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?
Your Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta
Explanation:The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.
The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.
If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Incorrect
-
A 32-year-old single mum has been recommended for genetic testing after her 10-months-old daughter was diagnosed with congenital nephrogenic diabetes insipidus. She has no symptoms and does not know of any family history of this disorder.
Which part of the kidney is frequently impacted in this condition?Your Answer: Aquaporin 1 channel (AQP1)
Correct Answer: Vasopressin receptor
Explanation:Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)