-
Question 1
Correct
-
A 72-year-old man undergoes a carotid endarterectomy and appears to be recovering well after the surgery. During a ward review after the operation, he reports experiencing hoarseness in his voice. What is the probable reason for this symptom?
Your Answer: Damage to the vagus
Explanation:Carotid surgery poses a risk of nerve injury, with the vagus nerve being the only one that could cause speech difficulties if damaged.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 29-year-old woman has presented herself for review at an antenatal clinic upon discovering her pregnancy.
Your Answer: Warfarin
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
Which one of the following structures lies deepest in the popliteal fossa?
Your Answer: Popliteal lymph nodes
Correct Answer: Popliteal artery
Explanation:Starting from the surface and moving towards the depths, the common peroneal nerve emerges from the popliteal fossa adjacent to the inner edge of the biceps tendon. Subsequently, the tibial nerve runs alongside the popliteal vessels, first posteriorly and then medially. The popliteal vein is situated above the popliteal artery, which is the most internal structure in the fossa.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?
Your Answer: Baroreceptors are stimulated by arterial stretch
Explanation:Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his GP is reviewing his discharge letter. The patient has a history of atrial fibrillation and takes warfarin to reduce the risk of stroke. The GP notices an abnormality in the coagulation screen that was performed before surgery. The discharge letter confirms that this is expected with warfarin use.
What is the most likely abnormality on this patient's coagulation blood results?
Reference ranges:
International normalised ratio (INR) 0.9-1.2
Prothrombin time (PT) 10-14 secsYour Answer: PT 8 secs, INR 0.6
Correct Answer: PT 21 secs, INR 2.5
Explanation:Warfarin causes an increase in prothrombin-time (PT) and international normalised ratio (INR) by inhibiting vitamin K-dependent clotting factors. An increase in PT will cause an increase in INR, and a decrease in PT and INR is a prothrombotic state.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A 65-year-old patient has been discharged from the hospital after experiencing a myocardial infarction. What is the most suitable combination of medication for the patient to be discharged with?
Your Answer: Aspirin, beta blocker, ACE inhibitor and statin
Explanation:Medications for Secondary Prevention of Myocardial Infarction
According to the NICE guidelines on myocardial infarction (MI), patients who have suffered from a heart attack should be discharged with specific medications for secondary prevention. These medications include aspirin, ACE inhibitors, beta-blockers, and statins. The purpose of these medications is to prevent further cardiac events and improve the patient’s overall cardiovascular health.
Aspirin is a blood thinner that helps to prevent blood clots from forming in the arteries, which can lead to another heart attack. ACE inhibitors help to lower blood pressure and reduce the workload on the heart, which can help to prevent further damage to the heart muscle. Beta-blockers also help to lower blood pressure and reduce the workload on the heart, as well as slow down the heart rate. Statins are cholesterol-lowering medications that help to reduce the risk of plaque buildup in the arteries, which can lead to a heart attack.
These medications are prescribed for tertiary prevention, which means they are used in conjunction with cardiac rehabilitation to help prevent future cardiac events. Cardiac rehabilitation typically involves exercise, education, and counseling to help patients make lifestyle changes that can improve their cardiovascular health.
In summary, patients who have suffered from a heart attack should be discharged with aspirin, ACE inhibitors, beta-blockers, and statins for secondary prevention. These medications, along with cardiac rehabilitation, can help to prevent future cardiac events and improve the patient’s overall cardiovascular health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 75-year-old man has been experiencing illness for several years and after his passing, an autopsy is conducted. Microscopic examination of tissue samples reveals the presence of apple green birefringence under polarised light in sections of the myocardium. What is the probable diagnosis?
Your Answer: Amyloidosis
Explanation:When viewed under polarised light, amyloidosis exhibits a distinctive apple green birefringence.
Understanding Amyloid: Protein Deposits that Affect Tissue Structure and Function
Amyloid refers to the accumulation of insoluble protein deposits outside of cells. These deposits can disrupt the normal structure of tissues and, if excessive, can impair their function. Amyloid is composed of a major fibrillar protein that defines its type, along with various minor components. The different types of amyloid are classified with the prefix A and a suffix that corresponds to the fibrillary protein present. The two main clinical types are AA and AL amyloidosis.
Systemic AA amyloidosis is a long-term complication of several chronic inflammatory disorders, such as rheumatoid arthritis, ankylosing spondylitis, Crohn’s disease, malignancies, and conditions that predispose individuals to recurrent infections. On the other hand, AL amyloidosis results from the deposition of fibril-forming monoclonal immunoglobulin light chains, most commonly of lambda isotype, outside of cells. Most patients with AL amyloidosis have evidence of isolated monoclonal gammopathy or asymptomatic myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The kidney and heart are two of the most commonly affected sites.
Diagnosis of amyloidosis is based on surgical biopsy and characteristic histological features, which consist of birefringence under polarised light. Immunohistochemistry is used to determine the subtype. Treatment is usually targeted at the underlying cause. Understanding amyloid and its different types is crucial in the diagnosis and management of patients with amyloidosis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 65-year-old man arrives at the emergency department via ambulance complaining of chest pain. He reports that the pain started suddenly a few minutes ago and describes it as a sharp sensation that extends to his back.
The patient has a history of uncontrolled hypertension.
A CT scan reveals an enlarged mediastinum.
What is the most likely cause of the diagnosis?Your Answer: Tear in the tunica intima of the aorta
Explanation:An aortic dissection is characterized by a tear in the tunica intima of the aortic wall, which is a medical emergency. Patients typically experience sudden-onset, central chest pain that radiates to the back. This condition is more common in patients with hypertension and is associated with a widened mediastinum on a CT scan.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 59-year-old woman presents to a respiratory clinic with worsening breathlessness and a recent diagnosis of pulmonary hypertension. The decision is made to initiate treatment with bosentan. Can you explain the mechanism of action of this medication?
Your Answer: Endothelin antagonist
Explanation:Bosentan, a non-selective endothelin antagonist, is used to treat pulmonary hypertension by blocking the vasoconstrictive effects of endothelin. However, it may cause liver function abnormalities, requiring regular monitoring. Endothelin agonists would worsen pulmonary vasoconstriction and are not suitable for treating pulmonary hypertension. Guanylate cyclase stimulators like riociguat work with nitric oxide to dilate blood vessels and treat pulmonary hypertension. Sildenafil, a phosphodiesterase inhibitor, selectively reduces pulmonary vascular tone to treat pulmonary hypertension.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.
Your Answer: Acute pericarditis
Explanation:Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.
Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.
A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.
A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.
A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)