00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Sarah, who is in her 50s, has recently undergone a kidney transplant. A...

    Incorrect

    • Sarah, who is in her 50s, has recently undergone a kidney transplant. A few hours after the surgery, she begins to feel extremely sick, experiencing a fever of 39°C and overall discomfort. She also reports pain at the site of the transplant, and the medical staff have noted a significant decrease in her urine output. The consultant suggests that this could be due to pre-existing antibodies, given the timing of the symptoms.

      What is the most probable diagnosis in Sarah's case?

      Your Answer: Acute graft failure

      Correct Answer: Hyperacute transplant rejection

      Explanation:

      Based on the symptoms and timeframe, it is likely that the patient is experiencing hyperacute transplant rejection. This type of rejection is classified as a type II hypersensitivity reaction, which occurs when pre-existing IgG or IgM antibodies attack HLA or ABO antigens. This autoimmune response causes thrombosis in the vascular supply to the transplanted organ, leading to ischemia and necrosis. Unfortunately, the only treatment option is to remove the graft.

      Acute graft failure, on the other hand, typically occurs over several months and is often caused by HLA mismatch. This condition can be treated with immunosuppressants and steroids.

      Chronic graft failure is characterized by antibody- and cell-mediated mechanisms that lead to fibrosis of the transplanted organ over time. This process usually takes more than six months to develop.

      Post-transplant acute tubular necrosis is another possible complication that can cause reduced urine output and muddy brown casts on urinalysis. However, it does not typically present with the hyperacute symptoms described above.

      Lymphocele is a common post-transplant complication that is usually asymptomatic but can cause a mass and compress the ureter if it becomes large enough. It can be drained through percutaneous or intraperitoneal methods.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      674.8
      Seconds
  • Question 2 - A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for...

    Incorrect

    • A 54-year-old man from Egypt has been experiencing repeated episodes of haematuria for several years. He complains of discomfort in the suprapubic region and upon cystoscopy, a mass lesion is discovered in his bladder. What is the probable diagnosis?

      Your Answer: Adenocarcinoma

      Correct Answer: Squamous cell carcinoma

      Explanation:

      Schistosomiasis is more prevalent in Egypt than in the UK and can lead to repeated occurrences of haematuria. If individuals with this condition develop a bladder tumor, the most frequent type is SCC.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      22.7
      Seconds
  • Question 3 - A 50-year-old woman presents to her GP with a complaint of generalised puffiness....

    Incorrect

    • A 50-year-old woman presents to her GP with a complaint of generalised puffiness. She has been feeling lethargic and noticed swelling in her hands, feet, and face over the past few weeks. Additionally, she has been experiencing shortness of breath on exertion and cannot lie flat, frequently waking up at night gasping for air. She also reports tingling and loss of sensation in both feet, which has now extended to her knees. She has no regular medications and is otherwise healthy.

      Upon examination, the patient has decreased sensation over the distal lower limbs and hepatomegaly. Urine dipstick reveals protein +++ and urinalysis reveals hyperalbuminuria. Serology shows hypoalbuminaemia and hyperlipidaemia. An outpatient echocardiogram reveals both systolic and diagnostic heart failure, with a restrictive filling pattern. The Mantoux skin test was negative.

      What is the probable mechanism behind this patient's condition?

      Your Answer:

      Correct Answer: Deposition of light chain fragments

      Explanation:

      The deposition of light chain fragments in various tissues is the most common cause of amyloidosis (AL), which can present with symptoms such as nephrotic syndrome, heart failure, and peripheral neuropathy.

      Symptoms in the upper respiratory tract and kidneys are typically seen in granulomatosis with polyangiitis (GPA), which is caused by anti-neutrophil cytoplasmic antibody-induced inflammation. Therefore, this answer is not applicable.

      Tuberculosis is caused by Mycobacterium, but the absence of pulmonary features and negative Mantoux skin test make it unlikely in this case. Therefore, this answer is not applicable.

      Amyloidosis is a condition that can occur in different forms. The most common type is AL amyloidosis, which is caused by the accumulation of immunoglobulin light chain fragments. This can be due to underlying conditions such as myeloma, Waldenstrom’s, or MGUS. Symptoms of AL amyloidosis can include nephrotic syndrome, cardiac and neurological issues, macroglossia, and periorbital eccymoses.

      Another type of amyloidosis is AA amyloid, which is caused by the buildup of serum amyloid A protein, an acute phase reactant. This form of amyloidosis is often seen in patients with chronic infections or inflammation, such as TB, bronchiectasis, or rheumatoid arthritis. The most common symptom of AA amyloidosis is renal involvement.

      Beta-2 microglobulin amyloidosis is another form of the condition, which is caused by the accumulation of beta-2 microglobulin, a protein found in the major histocompatibility complex. This type of amyloidosis is often seen in patients who are on renal dialysis.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 4 - A fourth year medical student presents to their GP with haemoptysis following a...

    Incorrect

    • A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?

      Your Answer:

      Correct Answer: Type 2

      Explanation:

      The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.

      Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.

      Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.

      Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.

      Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.

      The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.

      Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 5 - A 26-year-old male presents to his general practitioner with polyuria. He complains that...

    Incorrect

    • A 26-year-old male presents to his general practitioner with polyuria. He complains that it has been affecting his social life, as he often has to go to the bathroom in the middle of social situations. The patient mentions that he notices this mostly when he drinks alcohol with his friends. He is otherwise feeling well. There is no significant past medical history and he is not on any regular medication. Clinical examinations are normal. A urine dipstick test shows no abnormalities. Blood results show no electrolyte abnormalities. The general practitioner explains that his symptoms are likely related to alcohol intake, as alcohol can cause polyuria.

      What is the most likely physiological explanation for this patient's polyuria?

      Your Answer:

      Correct Answer: Suppressed antidiuretic hormone secretion

      Explanation:

      Polyuria in the patient is most likely caused by alcohol bingeing, which can suppress ADH secretion in the posterior pituitary gland. This leads to decreased water reabsorption in the kidneys and subsequent polyuria. Other potential causes such as ADH resistance from chronic lithium ingestion, diabetes insipidus, osmotic diuresis from hyperglycemia, and chronic kidney disease are less likely based on the patient’s symptoms and investigative findings.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 6 - A 70-year-old male visits his GP complaining of increased difficulty in breathing. He...

    Incorrect

    • A 70-year-old male visits his GP complaining of increased difficulty in breathing. He has a history of left ventricular heart failure, and his symptoms suggest a worsening of his condition. The doctor prescribes spironolactone as a diuretic. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Aldosterone antagonist

      Explanation:

      The mechanism of action of spironolactone involves blocking the aldosterone receptor in the distal tubules and collecting duct of the kidneys. In contrast, furosemide acts as a loop diuretic by inhibiting the sodium/potassium/2 chloride inhibitor in the loop of Henle, while acetazolamide functions as a carbonic anhydrase inhibitor.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 7 - A 59-year-old man comes to the GP complaining of lower back pain, weight...

    Incorrect

    • A 59-year-old man comes to the GP complaining of lower back pain, weight loss, an abdominal mass, and visible haematuria. The GP eliminates the possibility of a UTI and refers him through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms renal cell carcinoma. From which part of the kidney does his cancer originate?

      Your Answer:

      Correct Answer: Proximal renal tubular epithelium

      Explanation:

      Renal cell carcinoma originates from the proximal renal tubular epithelium, while the other options, such as blood vessels, distal renal tubular epithelium, and glomerular basement membrane, are all parts of the kidney but not the site of origin for renal cell carcinoma. Transitional cell carcinoma, on the other hand, arises from the transitional cells in the lining of the renal pelvis.

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 8 - A patient in his 50s becomes dehydrated, resulting in increased water absorption in...

    Incorrect

    • A patient in his 50s becomes dehydrated, resulting in increased water absorption in the collecting duct. If the concentration of his urine is measured, it would be around 1200mOsm/L. At which point in the nephron would a comparable osmolarity be observed?

      Your Answer:

      Correct Answer: The tip of the Loop of Henle

      Explanation:

      The Loop of Henle creates the highest osmolarity in the nephron, while the proximal tubule absorbs most of the water. The tip of the papilla has the greatest osmolarity, which is also the maximum osmolarity that urine can attain after water absorption in the collecting ducts. The medulla of the kidney facilitates water reabsorption in the collecting ducts due to the osmotic gradient formed by the Loops of Henle.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 9 - A 2-year-old girl presents with recurrent urinary tract infections. During the diagnostic work-up,...

    Incorrect

    • A 2-year-old girl presents with recurrent urinary tract infections. During the diagnostic work-up, abnormal renal function is noted and an ultrasound scan reveals bilateral hydronephrosis.

      What could be the probable underlying diagnosis?

      Your Answer:

      Correct Answer: Posterior urethral valves

      Explanation:

      A developmental uropathy known as a posterior urethral valve typically affects male infants with an incidence of 1 in 8000. The condition is characterized by bladder wall hypertrophy, hydronephrosis, and bladder diverticula, which are used as diagnostic features.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 10 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Incorrect

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer:

      Correct Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 11 - A 67-year-old man is undergoing a radical cystectomy due to T2 non-invasive bladder...

    Incorrect

    • A 67-year-old man is undergoing a radical cystectomy due to T2 non-invasive bladder cancer. As a medical student shadowing the urological surgeons during the procedure, I was asked to identify the origin of the inferior and superior vesical arteries that needed to be ligated.

      Your Answer:

      Correct Answer: Internal iliac artery

      Explanation:

      The internal iliac artery is the correct answer as it supplies the pelvis, including the bladder, and gives rise to the superior and inferior vesical arteries.

      The direct branch of the aorta is an incorrect answer as it refers to the origin of major vessels, not specifically related to the bladder.

      The external iliac artery is also an incorrect answer as it continues into the leg and does not supply the bladder.

      Similarly, the inferior mesenteric artery is an incorrect answer as it supplies the hind-gut of the digestive tract and is not directly related to the bladder.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 12 - A 54-year-old male comes to the emergency surgical department complaining of intense abdominal...

    Incorrect

    • A 54-year-old male comes to the emergency surgical department complaining of intense abdominal pain. He has no history of malignancy and is generally healthy. The biochemistry lab contacts the ward with an urgent message that his corrected calcium level is 3.6 mmol/l. What is the preferred medication for treating this abnormality?

      Your Answer:

      Correct Answer: IV Pamidronate

      Explanation:

      Pamidronate is the preferred drug due to its high efficacy and prolonged effects. If using calcitonin, it should be combined with another medication to ensure continued treatment of hypercalcemia after its short-term effects wear off. Zoledronate is the preferred option for cases related to cancer.

      Managing Hypercalcaemia

      Hypercalcaemia can be managed through various methods. The first step is to rehydrate the patient with normal saline, usually at a rate of 3-4 litres per day. Once rehydration is achieved, bisphosphonates can be administered. These drugs take 2-3 days to work, with maximum effect seen at 7 days.

      Calcitonin is another option that can be used for quicker effect than bisphosphonates. In cases of sarcoidosis, steroids may also be used. However, loop diuretics such as furosemide should be used with caution as they may worsen electrolyte derangement and volume depletion. They are typically reserved for patients who cannot tolerate aggressive fluid rehydration.

      In summary, the management of hypercalcaemia involves rehydration with normal saline followed by the use of bisphosphonates, calcitonin, or steroids in certain cases. Loop diuretics may also be used, but with caution. It is important to monitor electrolyte levels and adjust treatment accordingly.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 13 - A 57-year-old man with a history of chronic myeloid leukaemia for which he...

    Incorrect

    • A 57-year-old man with a history of chronic myeloid leukaemia for which he has started receiving chemotherapy presents with left flank pain and oliguria. He has tenderness over his left renal angle. A working diagnosis of kidney stones is made. Both abdominal X-ray and CT scan are unremarkable and no stone is visible.

      What is the most likely composition of his kidney stone?

      Your Answer:

      Correct Answer: Uric acid

      Explanation:

      Stones formed in the urinary tract due to infections with urease-positive bacteria, such as Proteus mirabilis, are known as struvite stones. These stones are caused by the hydrolysis of urea to ammonia, which alkalizes the urine. Struvite stones often take the shape of staghorn calculi and can be detected through radiography as they are radio-opaque.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 14 - You are working in a GP clinic. A 32-year-old woman has multiple sclerosis....

    Incorrect

    • You are working in a GP clinic. A 32-year-old woman has multiple sclerosis. After taking a history and examining her, you diagnose her with chronic urinary retention.

      What nerves are most likely affected by demyelination in this case?

      Your Answer:

      Correct Answer: Pelvic splanchnic

      Explanation:

      The pelvic splanchnic nerves provide parasympathetic innervation to the bladder. In cases of chronic urinary retention, damage to these nerves may be the cause. The greater splanchnic nerves supply the foregut of the gastrointestinal tract, while the lesser splanchnic nerves supply the midgut. Sympathetic innervation of the bladder comes from the hypogastric nerve plexuses, and the lumbar splanchnic nerves innervate the smooth muscles and glands of the pelvis.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 15 - A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports...

    Incorrect

    • A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports that this happened two days ago and her urine looked like port wine. She has a smoking history of 30 pack-years and denies drinking alcohol.

      The patient is urgently referred for cystoscopy, which reveals a 2x3cm ulcerated lesion adjacent to the left ureteric orifice. The lesion is biopsied and diagnosed as transitional cell carcinoma.

      Which venous structure transmits blood from the tumour to the internal iliac veins?

      Your Answer:

      Correct Answer: Vesicouterine plexus

      Explanation:

      The vesicouterine plexus is responsible for draining the bladder in females.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 16 - An aged male patient suffers from seizures and loses consciousness. Central pontine myelinolysis...

    Incorrect

    • An aged male patient suffers from seizures and loses consciousness. Central pontine myelinolysis is diagnosed. What substance in the blood, when rapidly corrected from low levels, causes this condition?

      Your Answer:

      Correct Answer: Sodium

      Explanation:

      Central pontine myelinolysis is commonly caused by rapid correction of hyponatraemia, but it is not associated with the other options. Rapid correction of hypokalaemia may result in hyperkalaemia-induced arrhythmias, while rapid correction of hypocalcaemia may cause hypercalcaemia-related symptoms such as bone pain, renal/biliary colic, abdominal pain, and psychiatric symptoms (known as bones, stones, moans, and groans). Hypochloraemia is typically asymptomatic and not routinely monitored in clinical practice. Rapid correction of hypomagnesaemia may lead to hypermagnesaemia-induced weakness, nausea and vomiting, arrhythmias, and decreased tendon reflexes.

      Hyponatremia is a condition where the sodium levels in the blood are too low. If left untreated, it can lead to cerebral edema and brain herniation. Therefore, it is important to identify and treat hyponatremia promptly. The treatment plan depends on various factors such as the duration and severity of hyponatremia, symptoms, and the suspected cause. Over-rapid correction can lead to osmotic demyelination syndrome, which is a serious complication.

      Initial steps in treating hyponatremia involve ruling out any errors in the test results and reviewing medications that may cause hyponatremia. For chronic hyponatremia without severe symptoms, the treatment plan varies based on the suspected cause. If it is hypovolemic, normal saline may be given as a trial. If it is euvolemic, fluid restriction and medications such as demeclocycline or vaptans may be considered. If it is hypervolemic, fluid restriction and loop diuretics or vaptans may be considered.

      For acute hyponatremia with severe symptoms, patients require close monitoring in a hospital setting. Hypertonic saline is used to correct the sodium levels more quickly than in chronic cases. Vaptans, which act on V2 receptors, can be used but should be avoided in patients with hypovolemic hyponatremia and those with underlying liver disease.

      It is important to avoid over-correction of severe hyponatremia as it can lead to osmotic demyelination syndrome. Symptoms of this condition include dysarthria, dysphagia, paralysis, seizures, confusion, and coma. Therefore, sodium levels should only be raised by 4 to 6 mmol/L in a 24-hour period to prevent this complication.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 17 - In individuals experiencing abdominal discomfort and nausea, along with recurrent kidney stones and...

    Incorrect

    • In individuals experiencing abdominal discomfort and nausea, along with recurrent kidney stones and urinary tract infections, what structural anomaly might be detected on imaging?

      Your Answer:

      Correct Answer: Fused kidneys crossing anterior to the aorta

      Explanation:

      The presence of abdominal pain, nausea, and recurrent kidney stones and urinary tract infections raises the possibility of a horseshoe kidney, where two kidneys are fused in the midline and pass in front of the aorta. This is a congenital condition that is more prevalent in males and is linked to a higher incidence of urinary tract infections. Unfortunately, there is no cure for this condition, and treatment is focused on managing symptoms.

      Moreover, the identification of numerous cysts in the kidneys suggests the presence of polycystic kidney disease, which is associated with diverticulosis and cerebral aneurysms.

      Understanding the Risk Factors for Renal Stones

      Renal stones, also known as kidney stones, are solid masses that form in the kidneys and can cause severe pain and discomfort. There are several risk factors that can increase the likelihood of developing renal stones. Dehydration is a significant risk factor, as it can lead to concentrated urine and the formation of stones. Other factors include hypercalciuria, hyperparathyroidism, hypercalcaemia, cystinuria, high dietary oxalate, renal tubular acidosis, medullary sponge kidney, polycystic kidney disease, and exposure to beryllium or cadmium.

      Urate stones, a type of renal stone, are caused by the precipitation of uric acid. Risk factors for urate stones include gout and ileostomy, which can result in acidic urine due to the loss of bicarbonate and fluid.

      In addition to these factors, certain medications can also contribute to the formation of renal stones. Loop diuretics, steroids, acetazolamide, and theophylline can promote the formation of calcium stones, while thiazides can prevent them by increasing distal tubular calcium resorption.

      It is important to understand these risk factors and take steps to prevent the formation of renal stones, such as staying hydrated, maintaining a healthy diet, and avoiding medications that may contribute to their formation.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 18 - A 32-year-old single mum has been recommended for genetic testing after her 10-months-old...

    Incorrect

    • A 32-year-old single mum has been recommended for genetic testing after her 10-months-old daughter was diagnosed with congenital nephrogenic diabetes insipidus. She has no symptoms and does not know of any family history of this disorder.

      Which part of the kidney is frequently impacted in this condition?

      Your Answer:

      Correct Answer: Vasopressin receptor

      Explanation:

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 19 - A 67-year-old man presents with hypertension and a history of angina and peripheral...

    Incorrect

    • A 67-year-old man presents with hypertension and a history of angina and peripheral vascular disease. During the physical examination, you detect a renal bruit on the left side. What is the most effective approach to evaluate renal blood flow in this individual?

      Your Answer:

      Correct Answer: Para-aminohippurate (PAH) clearance

      Explanation:

      Renal artery stenosis is the likely diagnosis for the patient, as it causes a reduction in renal blood flow. To measure renal plasma flow, the gold standard method in renal physiology is the use of para-aminohippurate (PAH) clearance.

      Inulin is an ideal substance for measuring creatinine clearance (CrCl) as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. The Modification of Diet in Renal Disease (MDRD) and Cockcroft-Gault equation are commonly used to estimate creatinine clearance.

      Reabsorption and Secretion in Renal Function

      In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.

      The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).

      Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 20 - An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy...

    Incorrect

    • An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy bruising. Despite maintaining a healthy diet, he has noticed an increase in abdominal weight. Following a positive high dexamethasone test, he is diagnosed with Cushing's disease caused by a pituitary adenoma. Which part of the adrenal gland produces the hormone responsible for his symptoms' pathophysiology?

      Your Answer:

      Correct Answer: Zona fasciculata

      Explanation:

      The correct answer is the zona fasciculata of the adrenal cortex.

      This patient’s symptoms suggest that they may have Cushing’s syndrome, which is caused by excess cortisol production. Cortisol is normally produced in the zona fasciculata of the adrenal cortex.

      The adrenal medulla produces catecholamines like adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to reduced renal perfusion.

      The zona glomerulosa is the outer layer of the adrenal cortex and produces mineralocorticoids like aldosterone.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens like DHEA.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 21 - A 50-year-old woman comes to the GP clinic with her husband after attempting...

    Incorrect

    • A 50-year-old woman comes to the GP clinic with her husband after attempting a dehydration detox. She appears confused and drowsy, and reports having vomited three times in the past 12 hours without passing urine. The patient has a medical history of allergic rhinitis, anxiety, hypothyroidism, type 2 diabetes mellitus, and chronic lower back pain.

      During the examination, you observe dry mucous membranes, a pulse rate of 112/min, a respiratory rate of 24/min, a blood pressure of 97/65 mmHg, a temperature of 37.1ºC, and O2 saturation of 98%.

      Given the patient's condition, you suspect that she requires immediate hospital care and refer her to the emergency department.

      What medication should be stopped immediately for this patient?

      Your Answer:

      Correct Answer: Losartan

      Explanation:

      In cases of AKI, it is recommended to discontinue the use of angiotensin II receptor antagonists such as Losartan as they can worsen renal function by reducing renal perfusion. This is because angiotensin II plays a role in constricting systemic blood vessels and the efferent arteriole of the glomerulus, which increases GFR. Blocking angiotensin II can lead to a drop in systemic blood pressure and dilation of the efferent glomerular arteriole, which can exacerbate kidney impairment.

      Cetirizine is not the most important medication to discontinue in AKI, as it is a non-sedating antihistamine and is unlikely to be a major cause of drowsiness. Diazepam may be contributing to drowsiness and is excreted in the urine, but sudden discontinuation can result in withdrawal symptoms. Levothyroxine does not need to be stopped in AKI as thyroid hormones are primarily metabolized in the liver and are not considered high risk in renal impairment.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 22 - A 26-year-old man falls and lands on a manhole cover, resulting in an...

    Incorrect

    • A 26-year-old man falls and lands on a manhole cover, resulting in an injury to his anterior bulbar urethra. Where is the likely location for the accumulation of extravasated urine?

      Your Answer:

      Correct Answer: Connective tissue of the scrotum

      Explanation:

      The section of the urethra located between the perineal membrane and the membranous layer of the superficial fascia is tightly bound to the ischiopubic rami. This prevents urine from leaking backwards as the two layers are seamlessly connected around the superficial transverse perineal muscles.

      Lower Genitourinary Tract Trauma: Types of Injury and Management

      Lower genitourinary tract trauma can occur due to blunt trauma, with most bladder injuries associated with pelvic fractures. However, these injuries can easily be overlooked during trauma assessment. Up to 10% of male pelvic fractures are associated with urethral or bladder injuries.

      Urethral injuries mainly occur in males and can be identified by blood at the meatus in 50% of cases. There are two types of urethral injury: bulbar rupture, which is the most common and often caused by straddle-type injuries such as bicycles, and membranous rupture, which can be extra or intraperitoneal and commonly caused by pelvic fractures. Penile or perineal oedema/hematoma and displacement of the prostate upwards during PR examination are also signs of urethral injury. An ascending urethrogram is used for investigation, and management involves surgical placement of a suprapubic catheter.

      External genitalia injuries, such as those to the penis and scrotum, can be caused by penetration, blunt trauma, continence- or sexual pleasure-enhancing devices, and mutilation.

      Bladder injuries can be intra or extraperitoneal and present with haematuria or suprapubic pain. A history of pelvic fracture and inability to void should always raise suspicion of bladder or urethral injury. Inability to retrieve all fluid used to irrigate the bladder through a Foley catheter also indicates bladder injury. IVU or cystogram is used for investigation, and management involves laparotomy if intraperitoneal and conservative treatment if extraperitoneal.

      In summary, lower genitourinary tract trauma can result in urethral or bladder injuries, which can be identified through various signs and symptoms. Proper investigation and management are crucial for successful treatment.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 23 - A 28-year-old female patient presents with haemoptysis and is diagnosed with metastatic tumour...

    Incorrect

    • A 28-year-old female patient presents with haemoptysis and is diagnosed with metastatic tumour in the lung parenchyma. Upon biopsy, the histology reveals clear cells. What is the probable origin of the primary site?

      Your Answer:

      Correct Answer: Kidney

      Explanation:

      Renal cell cancer includes a subtype known as clear cell tumours, which exhibit distinct genetic alterations located on chromosome 3.

      Renal Lesions: Types, Features, and Treatments

      Renal lesions refer to abnormal growths or masses that develop in the kidneys. There are different types of renal lesions, each with its own disease-specific features and treatment options. Renal cell carcinoma is the most common renal tumor, accounting for 85% of cases. It often presents with haematuria and may cause hypertension and polycythaemia as paraneoplastic features. Treatment usually involves radical or partial nephrectomy.

      Nephroblastoma, also known as Wilms tumor, is a rare childhood tumor that accounts for 80% of all genitourinary malignancies in those under the age of 15 years. It often presents with a mass and hypertension. Diagnostic workup includes ultrasound and CT scanning, and treatment involves surgical resection combined with chemotherapy. Neuroblastoma is the most common extracranial tumor of childhood, with up to 80% occurring in those under 4 years of age. It is a tumor of neural crest origin and may be diagnosed using MIBG scanning. Treatment involves surgical resection, radiotherapy, and chemotherapy.

      Transitional cell carcinoma accounts for 90% of lower urinary tract tumors but only 10% of renal tumors. It often presents with painless haematuria and may be caused by occupational exposure to industrial dyes and rubber chemicals. Diagnosis and staging are done with CT IVU, and treatment involves radical nephroureterectomy. Angiomyolipoma is a hamartoma type lesion that occurs sporadically in 80% of cases and in those with tuberous sclerosis in the remaining cases. It is composed of blood vessels, smooth muscle, and fat and may cause massive bleeding in 10% of cases. Surgical resection is required for lesions larger than 4 cm and causing symptoms.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 24 - A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist...

    Incorrect

    • A 65-year-old woman with chronic kidney failure has been instructed by her nephrologist to adhere to a 'renal diet'. She visits you to gain more knowledge about this.

      What is typically recommended to individuals with chronic kidney disease?

      Your Answer:

      Correct Answer: Low potassium diet

      Explanation:

      Dietary Recommendations for Chronic Kidney Disease Patients

      Chronic kidney disease patients are recommended to follow a specific diet that is low in protein, phosphate, sodium, and potassium. This dietary advice is given to reduce the strain on the kidneys, as these substances are typically excreted by the kidneys. By limiting the intake of these nutrients, patients can help slow the progression of their kidney disease and manage their symptoms more effectively. It is important for patients to work closely with their healthcare provider or a registered dietitian to ensure they are meeting their nutritional needs while following these dietary restrictions. With proper guidance and adherence to this diet, patients with chronic kidney disease can improve their overall health and quality of life.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 25 - An 71-year-old man arrives at the emergency department complaining of severe back pain...

    Incorrect

    • An 71-year-old man arrives at the emergency department complaining of severe back pain that started 2 hours ago. The pain is radiating from his flank to his groin and comes and goes in waves. He had a kidney stone 2 months ago. A CT scan reveals a hyperdense calculus in his left ureter. His serum calcium level is 2.1 mmol/L (normal range: 2.2-2.6) and his urine calcium level is 9.2 mmol/24hours (normal range: 2.5-7.5). What medication is the most appropriate to reduce the risk of further renal stones?

      Your Answer:

      Correct Answer: Bendroflumethiazide

      Explanation:

      Thiazide diuretics, specifically bendroflumethiazide, can be used to decrease calcium excretion and stone formation in patients with hypercalciuria and renal stones. The patient’s urinary calcium levels indicate hypercalciuria, which can be managed with thiazide diuretics. Bumetanide and furosemide, both loop diuretics, are not effective in managing hypercalciuria and renal stones. Denosumab, an antibody used for hypercalcaemia associated with malignancy, is not used in the management of renal stones.

      Management and Prevention of Renal Stones

      Renal stones, also known as kidney stones, can cause severe pain and discomfort. The British Association of Urological Surgeons (BAUS) has published guidelines on the management of acute ureteric/renal colic. Initial management includes the use of NSAIDs as the analgesia of choice for renal colic, with caution taken when prescribing certain NSAIDs due to increased risk of cardiovascular events. Alpha-adrenergic blockers are no longer routinely recommended, but may be beneficial for patients amenable to conservative management. Initial investigations include urine dipstick and culture, serum creatinine and electrolytes, FBC/CRP, and calcium/urate levels. Non-contrast CT KUB is now recommended as the first-line imaging for all patients, with ultrasound having a limited role.

      Most renal stones measuring less than 5 mm in maximum diameter will pass spontaneously within 4 weeks. However, more intensive and urgent treatment is indicated in the presence of ureteric obstruction, renal developmental abnormality, and previous renal transplant. Treatment options include lithotripsy, nephrolithotomy, ureteroscopy, and open surgery. Shockwave lithotripsy involves generating a shock wave externally to the patient, while ureteroscopy involves passing a ureteroscope retrograde through the ureter and into the renal pelvis. Percutaneous nephrolithotomy involves gaining access to the renal collecting system and performing intra corporeal lithotripsy or stone fragmentation. The preferred treatment option depends on the size and complexity of the stone.

      Prevention of renal stones involves lifestyle modifications such as high fluid intake, low animal protein and salt diet, and thiazide diuretics to increase distal tubular calcium resorption. Calcium stones may also be due to hypercalciuria, which can be managed with thiazide diuretics. Oxalate stones can be managed with cholestyramine and pyridoxine, while uric acid stones can be managed with allopurinol and urinary alkalinization with oral bicarbonate.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 26 - A 27-year-old man is involved in a car crash resulting in a fracture...

    Incorrect

    • A 27-year-old man is involved in a car crash resulting in a fracture of his right tibia. He undergoes fasciotomies and an external fixator is applied. Within 48 hours, his serum creatinine levels increase and his urine is analyzed, revealing the presence of muddy brown casts. What is the probable underlying diagnosis?

      Your Answer:

      Correct Answer: Acute tubular necrosis

      Explanation:

      It is probable that the patient suffered from compartment syndrome due to a tibial fracture and subsequent fasciotomies, which can result in myoglobinuria. The combination of deteriorating kidney function and the presence of muddy brown casts in the urine strongly indicate acute tubular necrosis. Acute interstitial nephritis is typically caused by drug toxicity and does not typically lead to the presence of muddy brown casts in the urine.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 27 - A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to...

    Incorrect

    • A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?

      Your Answer:

      Correct Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta

      Explanation:

      The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.

      The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.

      If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 28 - A 45-year-old female is admitted to the hospital for investigation of recently developed...

    Incorrect

    • A 45-year-old female is admitted to the hospital for investigation of recently developed hypertension, myalgia, and a facial rash. She experiences a decline in kidney function and complains of muscle aches and ankle swelling during her hospital stay. A kidney biopsy and urine sample are taken, revealing a proliferative 'wire-loop' glomerular lesion on histopathological assessment. The urinalysis shows proteinuria but no presence of leukocytes or nitrites. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Systemic lupus erythematosus

      Explanation:

      Lupus nephritis is characterized by proliferative ‘wire-loop’ glomerular histology, proteinuria, and systemic symptoms. This condition occurs when autoimmune processes in SLE cause inflammation and damage to the glomeruli. Symptoms may include oedema, myalgia, arthralgia, hypertension, and foamy-appearing urine due to high levels of protein. Acute tubular necrosis primarily affects the tubules and does not typically present with proteinuria. Congestive heart failure and IgA nephropathy can cause proteinuria, but they do not result in the ‘wire-loop’ glomerular lesion seen in lupus nephritis. Pyelonephritis may also cause proteinuria, but it is an infectious process and would present with additional symptoms such as nitrites, leukocytes, and blood in the urine.

      Renal Complications in Systemic Lupus Erythematosus

      Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.

      Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 29 - A 30-year-old female visits her GP complaining of ankle swelling. During the examination,...

    Incorrect

    • A 30-year-old female visits her GP complaining of ankle swelling. During the examination, her blood pressure is found to be 180/110 mmHg and a urine dipstick reveals protein +++ levels. She is referred to a nephrologist who performs a renal biopsy. The biopsy results show basement membrane thickening on light microscopy and subepithelial spikes on silver staining. Immunohistochemistry confirms the presence of PLA2. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Membranous glomerulonephritis

      Explanation:

      Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.

      Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.

      The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 30 - A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the...

    Incorrect

    • A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the past 6 days. He complains of abdominal pain and has been urinating very little. His mother has also noticed multiple bruises on his body without any known cause. What is the most probable organism responsible for his symptoms?

      Your Answer:

      Correct Answer: E. coli

      Explanation:

      The patient’s symptoms suggest that they may be suffering from haemolytic uraemic syndrome (HUS), which is often caused by an infection with E.coli 0157:H7.

      HUS is characterized by a combination of haemolytic anaemia, thrombocytopaenia, and acute kidney injury, which can ultimately lead to renal failure.

      The presence of bloody diarrhoea in the patient’s medical history is a significant indicator of HUS. Additionally, the reduced urine output is likely due to the acute kidney injury, while the bruising may be a result of the thrombocytopaenia associated with HUS.

      Understanding Haemolytic Uraemic Syndrome

      Haemolytic uraemic syndrome (HUS) is a condition that primarily affects young children and is characterized by a triad of symptoms, including acute kidney injury, microangiopathic haemolytic anaemia, and thrombocytopenia. The most common cause of HUS in children is Shiga toxin-producing Escherichia coli (STEC) 0157:H7, which accounts for over 90% of cases. Other causes of HUS include pneumococcal infection, HIV, systemic lupus erythematosus, drugs, and cancer.

      To diagnose HUS, doctors may perform a full blood count, check for evidence of STEC infection in stool culture, and conduct PCR for Shiga toxins. Treatment for HUS is supportive and may include fluids, blood transfusion, and dialysis if required. Antibiotics are not recommended, despite the preceding diarrhoeal illness in many patients. The indications for plasma exchange in HUS are complicated, and as a general rule, plasma exchange is reserved for severe cases of HUS not associated with diarrhoea. Eculizumab, a C5 inhibitor monoclonal antibody, has shown greater efficiency than plasma exchange alone in the treatment of adult atypical HUS.

      In summary, HUS is a serious condition that primarily affects young children and is characterized by a triad of symptoms. The most common cause of HUS in children is STEC 0157:H7, and diagnosis may involve various tests. Treatment is supportive, and antibiotics are not recommended. The indications for plasma exchange are complicated, and eculizumab may be more effective in treating adult atypical HUS.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (0/2) 0%
Passmed