-
Question 1
Correct
-
A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her high blood pressure. What is the location of action for this diuretic medication?
Your Answer: Ascending limb of the loop of Henle
Explanation:Furosemide and bumetanide are diuretics that work by blocking the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which decreases the reabsorption of NaCl.
Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.
The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Incorrect
-
Which one of the following is not a characteristic of the distal convoluted tubule in the kidney?
Your Answer: Up to 95% of filtered amino acids will be reabsorbed at this site
Correct Answer: Its secretory function is most effective at low systolic blood pressures (typically less than 100 mmHg)
Explanation:Compartment syndrome can lead to necrosis of the proximal convoluted tubule, which plays a crucial role in reabsorbing up to two thirds of filtered water. Acute tubular necrosis is more likely to occur when systolic blood pressure falls below the renal autoregulatory range, particularly if it is low. However, within this range, the absolute value of systolic BP has minimal impact.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Correct
-
A 28-year-old man presents to his GP complaining of abdominal pain and diarrhea. The GP suspects gastritis but decides to perform a urine test to rule out a UTI. The results of the urine dipstick test are as follows:
Blood: Negative mmol/l
Protein: Negative mmol/l
Leukocytes: ++ mmol/l
Nitrites: Negative mmol/l
What could be the reason for the abnormal urine dipstick result?Your Answer: Chlamydia
Explanation:Sterile pyuria can be caused by urethritis as a result of a sexually transmitted disease such as chlamydia.
Understanding Sterile Pyuria and Its Causes
Sterile pyuria is a medical condition characterized by the presence of white blood cells in the urine without any bacterial growth. It is a common finding in patients with urinary tract infections (UTIs) but can also be caused by other underlying conditions.
Some of the common causes of sterile pyuria include partially treated UTIs, urethritis (such as Chlamydia), renal tuberculosis, renal stones, appendicitis, bladder or renal cell cancer, adult polycystic kidney disease, and analgesic nephropathy.
It is important to identify the underlying cause of sterile pyuria to ensure proper treatment and prevent complications. Patients with this condition should seek medical attention and undergo further evaluation to determine the root cause of their symptoms. Early detection and treatment can help prevent further damage to the urinary tract and improve overall health outcomes.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Correct
-
A 58-year-old man is having a right nephrectomy. At what level does the renal artery typically branch off from the abdominal aorta during this procedure?
Your Answer: L2
Explanation:The level with L2 is where the renal arteries typically branch off from the aorta.
Anatomy of the Renal Arteries
The renal arteries are blood vessels that supply the kidneys with oxygenated blood. They are direct branches off the aorta and enter the kidney at the hilum. The right renal artery is longer than the left renal artery. The renal vein, artery, and pelvis also enter the kidney at the hilum.
The right renal artery is related to the inferior vena cava, right renal vein, head of the pancreas, and descending part of the duodenum. On the other hand, the left renal artery is related to the left renal vein and tail of the pancreas.
In some cases, there may be accessory arteries, mainly on the left side. These arteries usually pierce the upper or lower part of the kidney instead of entering at the hilum.
Before reaching the hilum, each renal artery divides into four or five segmental branches that supply each pyramid and cortex. These segmental branches then divide within the sinus into lobar arteries. Each vessel also gives off small inferior suprarenal branches to the suprarenal gland, ureter, and surrounding tissue and muscles.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Correct
-
A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her hypertension. What percentage of the sodium filtered at the glomerulus will be eliminated?
Your Answer: Up to 25%
Explanation:Loop diuretics cause significant increases in sodium excretion by acting on both the medullary and cortical regions of the thick ascending limb of the loop of Henle. This leads to a reduction in the medullary osmolal gradient and an increase in the excretion of free water, along with sodium loss. Unlike thiazide diuretics, which do not affect urine concentration and are more likely to cause hyponatremia, loop diuretics result in the loss of both sodium and water.
Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.
The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Correct
-
A 65-year-old man is having a radical cystectomy for bladder carcinoma. Significant venous bleeding occurs during the surgery. What is the main location for venous drainage from the bladder?
Your Answer: Vesicoprostatic venous plexus
Explanation:The urinary bladder is surrounded by a complex network of veins that drain into the internal iliac vein. During cystectomy, the vesicoprostatic plexus can be a significant source of venous bleeding.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
At which of the following locations is the highest amount of water absorbed?
Your Answer: Right colon
Correct Answer: Jejunum
Explanation:The small bowel, specifically the jejunum and ileum, is the primary location for water absorption in the gastrointestinal tract. While the colon does play a role in water absorption, its contribution is minor in comparison. However, if there is a significant removal of the small bowel, the importance of the colon in water absorption may become more significant.
Water Absorption in the Human Body
Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.
The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 73-year-old man visits the urology clinic due to an elevated PSA level. Despite undergoing a biopsy, there are no indications of cancer or benign prostatic hypertrophy.
The patient has a medical history of diabetes mellitus, hypertension, scrotal varicocele, renal calculi, and acute urine retention.
Out of his existing medical conditions, which one is the probable culprit for his increased PSA level?Your Answer: Diabetes mellitus
Correct Answer: Urine retention
Explanation:Urinary retention is a common cause of a raised PSA reading, as it can lead to bladder enlargement. Other conditions such as diabetes mellitus, hypertension, and renal calculi are not direct causes of elevated PSA levels.
Understanding PSA Testing for Prostate Cancer
Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.
PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Incorrect
-
A 58-year-old man presents to the Emergency Department with a significant amount of blood in his urine over the past two days. He reports having occasional blood in his urine previously, but it has now turned red. He denies any fever but complains of feeling fatigued. The patient has a 25 pack years history of smoking and has worked in a factory that produces dyes for his entire career. The doctor orders a ureteroscopy, which reveals an abnormal growth in his bladder. What is the highest risk factor for the most likely diagnosis in this patient?
Your Answer: Nitrosamines
Correct Answer: 2-naphthylamine
Explanation:The patient’s painless hematuria and fatigue, combined with a history of smoking and occupation in a dye factory, suggest a diagnosis of transitional cell carcinoma of the bladder. This is supported by the observation of an abnormal growth in the bladder during ureteroscopy (First Aid 2017, p219 & p569).
1. Arsenic is a carcinogen that raises the risk of angiosarcoma of the liver, squamous cell carcinoma of the skin, and lung cancer.
2. Aromatic amines, such as 2-naphthylamine and benzidine, are carcinogens that increase the risk of transitional cell carcinoma of the bladder. They are commonly used in dye manufacturing.
3. Aflatoxins from Aspergillus increase the risk of hepatocellular carcinoma. Aflatoxins are frequently found in crops like peanuts and maize.
4. Nitrosamines in smoked foods are linked to an increased risk of stomach cancer.
5.Risk Factors for Bladder Cancer
Bladder cancer is a type of cancer that affects the bladder, and there are different types of bladder cancer. The risk factors for urothelial (transitional cell) carcinoma of the bladder include smoking, which is the most important risk factor in western countries. Exposure to aniline dyes, such as working in the printing and textile industry, and rubber manufacture are also risk factors. Cyclophosphamide, a chemotherapy drug, is also a risk factor for this type of bladder cancer. On the other hand, the risk factors for squamous cell carcinoma of the bladder include schistosomiasis and smoking. It is important to be aware of these risk factors and take steps to reduce your risk of developing bladder cancer.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Correct
-
A 65-year-old man with type 2 diabetes mellitus is undergoing his annual diabetic examination. He reports feeling more fatigued than usual and has missed his previous three annual check-ups. His blood glucose control has been inadequate, and he has not been adhering to his medications. His blood pressure measures 170/90 mmHg, and a urinalysis reveals microalbuminuria. A blood test shows that his glomerular filtration rate (GFR) is 27mL/min per 1.73m².
Assuming a renal biopsy is conducted on this patient, what are the anticipated findings?Your Answer: Nodular glomerulosclerosis and hyaline arteriosclerosis
Explanation:The patient in question is suffering from T2DM that is poorly controlled, resulting in diabetic nephropathy. The histological examination reveals the presence of Kimmelstiel-Wilson lesions (nodular glomerulosclerosis) and hyaline arteriosclerosis, which are caused by nonenzymatic glycosylation.
Amyloidosis is characterized by apple-green birefringence under polarised light.
Acute post-streptococcal glomerulonephritis is identified by enlarged and hypercellular glomeruli.
Rapidly progressive (crescentic) glomerulonephritis is characterized by crescent moon-shaped glomeruli.
Diffuse proliferative glomerulonephritis (often due to SLE) is identified by wire looping of capillaries in the glomeruli.
Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease
Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.
There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 11
Correct
-
A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports that this happened two days ago and her urine looked like port wine. She has a smoking history of 30 pack-years and denies drinking alcohol.
The patient is urgently referred for cystoscopy, which reveals a 2x3cm ulcerated lesion adjacent to the left ureteric orifice. The lesion is biopsied and diagnosed as transitional cell carcinoma.
Which venous structure transmits blood from the tumour to the internal iliac veins?Your Answer: Vesicouterine plexus
Explanation:The vesicouterine plexus is responsible for draining the bladder in females.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 12
Incorrect
-
A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.
What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?Your Answer: Calcium oxalate
Correct Answer: Ammonium magnesium phosphate (struvite)
Explanation:The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.
Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.
-
This question is part of the following fields:
- Renal System
-
-
Question 13
Incorrect
-
A 54-year-old man visits the clinic after his spouse was diagnosed with hypertension and advised him to get his blood pressure checked. He has no symptoms. Upon measurement, his blood pressure is 155/92 mmHg. To further evaluate, a 24-hour blood pressure monitoring is scheduled. During the consultation, you discuss the physiology of blood pressure and mention the significance of the renin-angiotensin-aldosterone system in maintaining blood pressure homeostasis. Can you identify the primary site of aldosterone action in the kidney?
Your Answer: Afferent arteriole of the glomerulus
Correct Answer: Distal convoluted tubule and collecting duct of the nephron
Explanation:Aldosterone functions in the distal convoluted tubule and collecting ducts of the nephron. Spironolactone is a diuretic that preserves potassium levels by blocking aldosterone receptors. The loop of Henle and Bowman’s capsule are located closer to the beginning of the nephron. Prostaglandins regulate the afferent arteriole of the glomerulus, causing vasodilation. NSAIDs can lead to renal failure by inhibiting prostaglandin production. The vasa recta are straight capillaries that run parallel to the loop of Henle in the kidney. To confirm a diagnosis of hypertension, NICE recommends a 24-hour ambulatory blood pressure reading to account for the potential increase in blood pressure in clinical settings.
Aldosterone is a hormone that is primarily produced by the adrenal cortex in the zona glomerulosa. Its main function is to stimulate the reabsorption of sodium from the distal tubules, which results in the excretion of potassium. It is regulated by various factors such as angiotensin II, potassium, and ACTH, which increase its secretion. However, when there is an overproduction of aldosterone, it can lead to primary hyperaldosteronism, which is a common cause of secondary hypertension. This condition can be caused by an adrenal adenoma, which is also known as Conn’s syndrome. It is important to note that spironolactone, an aldosterone antagonist, can cause hyperkalemia.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Correct
-
A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.
What is the suspected diagnosis of this condition?Your Answer: Henoch-Schonlein purpura
Explanation:The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.
Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).
Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.
Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 15
Correct
-
Whilst on the ward, you observe that a severely underweight 25-year-old male patient with anorexia nervosa has become acutely drowsy and confused. You are informed that he was artificially fed 30 minutes ago, are given a set of blood tests taken since his new symptoms began and suspect that he has refeeding syndrome.
What are the blood results that you are likely to observe?Your Answer: Hypokalaemia, hypophosphataemia and hypomagnesemia
Explanation:When severely underweight patients are given high levels of artificial feeding, it can trigger refeeding syndrome. This condition is characterized by a sudden surge of insulin, which causes protein channels to move to the apical layer of cell membranes. As a result, glucose and electrolytes like potassium, phosphate, and magnesium are rapidly taken up by cells, leading to a significant drop in their serum levels. This can cause hypokalemia, hypophosphatemia, and hypomagnesemia.
Hypophosphataemia is a medical condition characterized by low levels of phosphate in the blood. This condition can be caused by various factors such as alcohol excess, acute liver failure, diabetic ketoacidosis, refeeding syndrome, primary hyperparathyroidism, and osteomalacia.
Alcohol excess, acute liver failure, and diabetic ketoacidosis are some of the common causes of hypophosphataemia. Refeeding syndrome, which occurs when a malnourished individual is given too much food too quickly, can also lead to this condition. Primary hyperparathyroidism, a condition where the parathyroid gland produces too much hormone, and osteomalacia, a condition where bones become soft and weak, can also cause hypophosphataemia.
Hypophosphataemia can have serious consequences on the body. Low levels of phosphate can lead to red blood cell haemolysis, white blood cell and platelet dysfunction, muscle weakness, and rhabdomyolysis. It can also cause central nervous system dysfunction, which can lead to confusion, seizures, and coma. Therefore, it is important to identify and treat hypophosphataemia promptly to prevent any further complications.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Correct
-
A 15-year-old boy presents to the ED with severe left flank pain that extends to his groin. He describes his symptoms as 'passing stones,' which he has been experiencing 'since he was a child.' His father also reports having similar issues since childhood. Upon urinalysis, hexagonal crystals are detected, and the urinary cyanide nitroprusside test is positive.
What is the most probable reason for this patient's condition?Your Answer: Amino acid transport abnormality
Explanation:Recurrent kidney stones from childhood and positive family history for nephrolithiasis suggest cystinuria, which is characterized by impaired transport of cystine and dibasic amino acids. The urinary cyanide-nitroprusside test can confirm the diagnosis. Other causes of kidney stones include excess uric acid excretion (gout), excessive intestinal reabsorption of oxalate (Crohn’s disease), infection with urease-producing microorganisms (struvite stones), and primary hyperparathyroidism (calcium oxalate stones).
Understanding Cystinuria: A Genetic Disorder Causing Recurrent Renal Stones
Cystinuria is a genetic disorder that causes recurrent renal stones due to a defect in the membrane transport of cystine, ornithine, lysine, and arginine. This autosomal recessive disorder is caused by mutations in two genes, SLC3A1 on chromosome 2 and SLC7A9 on chromosome 19.
The hallmark feature of cystinuria is the formation of yellow and crystalline renal stones that appear semi-opaque on x-ray. To diagnose cystinuria, a cyanide-nitroprusside test is performed.
Management of cystinuria involves hydration, D-penicillamine, and urinary alkalinization. These treatments help to prevent the formation of renal stones and reduce the risk of complications.
In summary, cystinuria is a genetic disorder that causes recurrent renal stones. Early diagnosis and management are crucial to prevent complications and improve outcomes for individuals with this condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 17
Correct
-
A 24-year-old male patient visits his GP after observing swelling in his legs. He mentions that his urine has turned frothy. Upon conducting blood tests, the doctor discovers elevated cholesterol levels and reduced albumin.
What type of electrolyte imbalances should the GP anticipate in this individual?Your Answer: Hypervolaemic hyponatraemia
Explanation:Hypervolaemic hyponatraemia can be caused by nephrotic syndrome.
Nephrotic syndrome is characterized by oedema, proteinuria, hypercholesterolaemia, and hypoalbuminaemia. It results in fluid retention, which can lead to hypervolaemic hyponatraemia. Urinary sodium levels would not show an increase if tested.
Understanding Hyponatraemia: Causes and Diagnosis
Hyponatraemia is a condition that can be caused by either an excess of water or a depletion of sodium in the body. However, it is important to note that there are also cases of pseudohyponatraemia, which can be caused by factors such as hyperlipidaemia or taking blood from a drip arm. To diagnose hyponatraemia, doctors often look at the levels of urinary sodium and osmolarity.
If the urinary sodium level is above 20 mmol/l, it may indicate sodium depletion due to renal loss or the use of diuretics such as thiazides or loop diuretics. Other possible causes include Addison’s disease or the diuretic stage of renal failure. On the other hand, if the patient is euvolaemic, it may be due to conditions such as SIADH (urine osmolality > 500 mmol/kg) or hypothyroidism.
If the urinary sodium level is below 20 mmol/l, it may indicate sodium depletion due to extrarenal loss caused by conditions such as diarrhoea, vomiting, sweating, burns, or adenoma of rectum. Alternatively, it may be due to water excess, which can cause the patient to be hypervolaemic and oedematous. This can be caused by conditions such as secondary hyperaldosteronism, nephrotic syndrome, IV dextrose, or psychogenic polydipsia.
In summary, hyponatraemia can be caused by a variety of factors, and it is important to diagnose the underlying cause in order to provide appropriate treatment. By looking at the levels of urinary sodium and osmolarity, doctors can determine the cause of hyponatraemia and provide the necessary interventions.
-
This question is part of the following fields:
- Renal System
-
-
Question 18
Incorrect
-
Which serum protein is most likely to increase in a patient with severe sepsis?
Your Answer: Cortisol binding protein
Correct Answer: Ferritin
Explanation:During an acute phase response, ferritin levels can significantly rise while other parameters typically decrease.
Acute Phase Proteins and their Role in the Body’s Response to Infection
During an infection or injury, the body undergoes an acute phase response where it produces a variety of proteins to help fight off the infection and promote healing. These proteins are known as acute phase proteins and include CRP, procalcitonin, ferritin, fibrinogen, alpha-1 antitrypsin, ceruloplasmin, serum amyloid A, serum amyloid P component, haptoglobin, and complement.
CRP is a commonly measured acute phase protein that is synthesized in the liver and binds to bacterial cells and those undergoing apoptosis. It is able to activate the complement system and its levels are known to rise in patients following surgery. Procalcitonin is another acute phase protein that is used as a marker for bacterial infections. Ferritin is involved in iron storage and transport, while fibrinogen is important for blood clotting. Alpha-1 antitrypsin helps protect the lungs from damage, and ceruloplasmin is involved in copper transport. Serum amyloid A and serum amyloid P component are involved in inflammation, while haptoglobin binds to hemoglobin to prevent its breakdown. Complement is a group of proteins that help to destroy pathogens.
During the acute phase response, the liver decreases the production of other proteins known as negative acute phase proteins, including albumin, transthyretin, transferrin, retinol binding protein, and cortisol binding protein. These proteins are important for maintaining normal bodily functions, but their production is decreased during an infection or injury to allow for the production of acute phase proteins.
-
This question is part of the following fields:
- Renal System
-
-
Question 19
Incorrect
-
During a small bowel resection, the anaesthetist decides to administer an electrolyte-rich intravenous fluid to a 47-year-old man. What is the most suitable option for this requirement?
Your Answer: 5% Dextrose with added potassium 20 mmol/ L
Correct Answer: Hartmans
Explanation:While Hartmans solution has the highest electrolyte content, pentastarch and gelofusine contain a greater number of macromolecules.
Intraoperative Fluid Management: Tailored Approach and Goal-Directed Therapy
Intraoperative fluid management is a crucial aspect of surgical care, but it does not have a rigid algorithm due to the unique requirements of each patient. The latest NICE guidelines in 2013 did not specifically address this issue, but the concept of fluid restriction has been emphasized in enhanced recovery programs for the past decade. In the past, patients received large volumes of saline-rich solutions, which could lead to tissue damage and poor perfusion. However, a tailored approach to fluid administration is now practiced, and goal-directed therapy is used with the help of cardiac output monitors. The composition of commonly used intravenous fluids varies in terms of sodium, potassium, chloride, bicarbonate, and lactate. Therefore, it is important to consider the specific needs of each patient and adjust fluid administration accordingly. By doing so, the risk of complications such as ileus and wound breakdown can be reduced, and optimal surgical outcomes can be achieved.
-
This question is part of the following fields:
- Renal System
-
-
Question 20
Correct
-
A health-conscious 45-year-old presents with an unexplained acute kidney injury (AKI) and a kidney biopsy reveals the presence of calcium oxalate crystals in the renal tubules. The patient's calcium levels are normal, oxalate levels are elevated, and vitamin D levels are within normal range. Which vitamin overdose could potentially account for this condition?
Your Answer: Vitamin C
Explanation:The deposition of calcium oxalate in the renal tubules indicates that the patient is experiencing oxalate nephropathy, which is commonly caused by an overdose of vitamin C. Therefore, the correct answer is vitamin C overdose. It should be noted that elevated calcium levels are associated with vitamin D overdose, which is not applicable in this case.
Understanding Oxalate Nephropathy
Oxalate nephropathy is a type of sudden kidney damage that occurs when calcium oxalate crystals accumulate in the renal tubules. This condition can be caused by various factors, including the ingestion of ethylene glycol or an overdose of vitamin C. When these crystals build up in the renal tubules, they can cause damage to the tubular epithelium, leading to kidney dysfunction.
To better understand oxalate nephropathy, it is important to note that the renal tubules are responsible for filtering waste products from the blood and excreting them in the urine. When calcium oxalate crystals accumulate in these tubules, they can disrupt this process and cause damage to the tubular epithelium. This can lead to a range of symptoms, including decreased urine output, swelling in the legs and feet, and fatigue.
-
This question is part of the following fields:
- Renal System
-
-
Question 21
Incorrect
-
What is the effect of vasodilation of the efferent arterioles of the kidney?
Your Answer: Glomerular filtration rate
Correct Answer: Renal blood flow
Explanation:Effects of Dilatation of Efferent Arterioles on Renal Function
Dilatation of the efferent arterioles results in a decrease in glomerular capillary hydrostatic pressure, which in turn reduces the resistance to flow through the afferent arterioles. This leads to an increase in renal blood flow, although to a lesser extent than if the afferent arterioles were dilated. However, the reduction in glomerular capillary hydrostatic pressure causes a decrease in glomerular filtration rate. The peritubular capillary oncotic pressure is influenced by the filtration fraction, which increases with a rise in GFR and no change in renal blood flow. Consequently, a greater filtration fraction would result in an increase in peritubular capillary oncotic pressure. Therefore, dilatation of the efferent arterioles causes a decrease in peritubular capillary oncotic pressure. Although urine volume is not significantly affected by this change, a sustained reduction in GFR may lead to a decrease in urine volume.
-
This question is part of the following fields:
- Renal System
-
-
Question 22
Incorrect
-
A 67-year-old man presents with hypertension and a history of angina and peripheral vascular disease. During the physical examination, you detect a renal bruit on the left side. What is the most effective approach to evaluate renal blood flow in this individual?
Your Answer: Cockcroft-Gault equation
Correct Answer: Para-aminohippurate (PAH) clearance
Explanation:Renal artery stenosis is the likely diagnosis for the patient, as it causes a reduction in renal blood flow. To measure renal plasma flow, the gold standard method in renal physiology is the use of para-aminohippurate (PAH) clearance.
Inulin is an ideal substance for measuring creatinine clearance (CrCl) as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. The Modification of Diet in Renal Disease (MDRD) and Cockcroft-Gault equation are commonly used to estimate creatinine clearance.
Reabsorption and Secretion in Renal Function
In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.
The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).
Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.
-
This question is part of the following fields:
- Renal System
-
-
Question 23
Correct
-
A patient with compromised kidney function is given a new medication that is typically eliminated through renal excretion. What factors might impact the excretion of the medication?
Your Answer: Diffusivity across the basement membrane and tubular secretion/reabsorption
Explanation:The clearance of a substance in the kidneys is influenced by two important factors: diffusivity across the basement membrane and tubular secretion/reabsorption. Additionally, the Loop of Henle plays a crucial role in generating a significant osmotic gradient, while the primary function of the collecting duct is to facilitate the reabsorption of water.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 24
Correct
-
A 72-year-old man with confirmed heart failure visits the community cardiology clinic and complains of ankle swelling as his most bothersome symptom. He expresses reluctance to begin another diuretic due to a previous hospitalization for weakness, nausea, and abdominal cramps after starting one. The cardiologist proposes initiating an aldosterone receptor antagonist. What medication is the cardiologist recommending?
Your Answer: Spironolactone (potassium-sparing diuretic)
Explanation:Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.
However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Correct
-
A 20-year-old male with sickle cell disease arrives at the hospital exhibiting symptoms of dehydration, infection, and acute kidney injury. What is the direct activator of the renin-angiotensin system in this case?
Your Answer: Low blood pressure
Explanation:The RAS is a hormone system that regulates plasma sodium concentration and arterial blood pressure. When plasma sodium concentration is low or renal blood flow is reduced due to low blood pressure, juxtaglomerular cells in the kidneys convert prorenin to renin, which is secreted into circulation. Renin acts on angiotensinogen to form angiotensin I, which is then converted to angiotensin II by ACE found in the lungs and epithelial cells of the kidneys. Angiotensin II is a potent vasoactive peptide that constricts arterioles, increasing arterial blood pressure and stimulating aldosterone secretion from the adrenal cortex. Aldosterone causes the kidneys to reabsorb sodium ions from tubular fluid back into the blood while excreting potassium ions in urine.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Incorrect
-
An 82-year-old man is admitted to the neurology ward and complains to the nurse that he is experiencing difficulty urinating. He expresses significant distress and reports feeling pain due to urinary retention. To alleviate his discomfort, the nurse places him in a warm bath, which finally allows him to relax his sphincter and urinate.
What nervous structure was responsible for maintaining detrusor capacity and causing the patient's difficulty in urinating?Your Answer: Prostatic hyperplasia
Correct Answer: Hypogastric plexuses
Explanation:The superior and inferior hypogastric plexuses are responsible for providing sympathetic innervation to the bladder, which helps maintain detrusor capacity by preventing parasympathetic contraction of the bladder.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 27
Incorrect
-
A 75-year-old male is brought to the emergency department after falling at home. Upon admission, his blood tests reveal a sodium level of 128 mmol/l. Which medication is the most probable cause of this?
Your Answer: Levothyroxine
Correct Answer: Sertraline
Explanation:Hyponatremia is a common side effect of SSRIs, including Sertraline, which can cause SIADH. However, medications such as Statins, Levothyroxine, and Metformin are not typically linked to hyponatremia.
SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.
-
This question is part of the following fields:
- Renal System
-
-
Question 28
Incorrect
-
A 5-year-old boy presents with symptoms of right sided loin pain, lethargy and haematuria. On examination he is pyrexial and has a large mass in the right upper quadrant. What is the most probable underlying diagnosis?
Your Answer: Grawitz tumour
Correct Answer: Nephroblastoma
Explanation:Based on the symptoms presented, it is highly probable that the child has nephroblastoma, while perinephric abscess is an unlikely diagnosis. Even if an abscess were to develop, it would most likely be contained within Gerota’s fascia initially, making anterior extension improbable.
Nephroblastoma: A Childhood Cancer
Nephroblastoma, also known as Wilms tumours, is a type of childhood cancer that typically occurs in the first four years of life. The most common symptom is the presence of a mass, often accompanied by haematuria (blood in urine). In some cases, pyrexia (fever) may also occur in about 50% of patients. Unfortunately, nephroblastomas tend to metastasize early, usually to the lungs.
The primary treatment for nephroblastoma is nephrectomy, which involves the surgical removal of the affected kidney. The prognosis for younger children is generally better, with those under one year of age having an overall 5-year survival rate of 80%. It is important to seek medical attention promptly if any of the symptoms associated with nephroblastoma are present, as early detection and treatment can greatly improve the chances of a positive outcome.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Incorrect
-
A 67-year-old retired farmer presents to the emergency department with complaints of abdominal pain and inability to urinate for the past 24 hours. He reports a history of slow urine flow and difficulty emptying his bladder for the past few years. The patient has a medical history of type 2 diabetes mellitus, hypertension, and lower back pain, and underwent surgery for an inguinal hernia 2 years ago. Ultrasound reveals a distended bladder and hydronephrosis, and the patient undergoes urethral catheterization. Further investigation shows an enlarged prostate and an increase in free prostate-specific antigen (PSA), and a prostate biopsy is scheduled. Which part of the prostate is most likely causing bladder obstruction in this patient?
Your Answer: Lateral and posterior lobe
Correct Answer: Lateral and middle lobe lobe
Explanation:A man presented with symptoms of acute urinary retention and a history of poor urine flow and straining to void, suggesting bladder outlet obstruction possibly due to an enlarged prostate. While prostatic adenocarcinoma is common in men over 50, it is unlikely to cause urinary symptoms. However, patients should still be screened for it to allow for early intervention if necessary. The man’s increased levels of free PSA indicate BPH rather than prostatic adenocarcinoma, as the latter would result in decreased free PSA and increased bound-PSA levels.
The lateral and middle lobes of the prostate are closest to the urethra and their hyperplasia can compress it, leading to urinary and voiding symptoms. If the urethra is completely compressed, acute urinary retention and bladder outlet obstruction can occur. The anterior lobe is rarely enlarged in BPH and is not positioned to obstruct the urethra, while the posterior lobe is mostly involved in prostatic adenocarcinoma but does not typically cause urinary symptoms due to its distance from the urethra.
Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.
Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.
-
This question is part of the following fields:
- Renal System
-
-
Question 30
Incorrect
-
A 20-year-old male presents with lethargy and heavy proteinuria on urinalysis. The consultant wants to directly measure renal function. What test will you order?
Your Answer: Serum creatinine
Correct Answer: Inulin clearance
Explanation:Inulin is an ideal substance for measuring creatinine clearance as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. This provides a direct measurement of CrCl, making it the gold standard.
However, the MDRD equation is commonly used to estimate eGFR by considering creatinine, age, sex, and ethnicity. It may not be accurate for individuals with varying muscle mass, such as a muscular young man who may produce more creatinine and have an underestimated CrCl.
The Cockcroft-Gault equation is considered superior to MDRD as it also takes into account the patient’s weight, age, sex, and creatinine levels.
Reabsorption and Secretion in Renal Function
In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.
The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).
Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)