-
Question 1
Incorrect
-
A 55-year-old man with several cardiac risk factors arrives at the hospital with sudden onset chest pain in the center. The pain extends to his left arm and is accompanied by sweating and nausea.
The patient's ECG reveals widespread T-wave inversion, which is a new finding compared to his previous ECGs. The level of troponin I in his serum is measured and confirmed to be elevated. The patient is initiated on treatment for acute coronary syndrome and transferred to a cardiac center.
What is the target of this measured cardiac biomarker?Your Answer: Myoglobin
Correct Answer: Actin
Explanation:Troponin I is a cardiac biomarker that binds to actin, which holds the troponin-tropomyosin complex in place and regulates muscle contraction. It is the standard biomarker used in conjunction with ECGs and clinical findings to diagnose non-ST elevation myocardial infarction (NSTEMI). Troponin I is highly sensitive and specific for myocardial damage compared to other cardiac biomarkers. Troponin C, another subunit of troponin, plays a role in Ca2+-dependent regulation of muscle contraction and can also be used in the diagnosis of myocardial infarction, but it is less specific as it is found in both cardiac and skeletal muscle. Copeptin, an amino acid peptide, is released earlier than troponin during acute myocardial infarction but is not widely used in clinical practice and has no interaction with troponin. Myoglobin, an iron- and oxygen-binding protein found in both cardiac and skeletal muscle, has poor specificity for cardiac injury and is not involved in the troponin-tropomyosin complex.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
The venous drainage of the heart is aided by the Thebesian veins. To which primary structure do they drain?
Your Answer: Great cardiac vein
Correct Answer: Atrium
Explanation:The surface of the heart is covered by numerous small veins known as thebesian veins, which drain directly into the heart, typically into the atrium.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis of a left sided partial anterior circulating stroke. He is treated with high dose aspirin for 14 days. He is then started on clopidogrel which he was unfortunately intolerant of. You therefore start him on dual aspirin and dipyridamole.
What is the mechanism of action of dipyridamole?Your Answer: Glycoprotein IIb/IIIa inhibitor
Correct Answer: Increases the effects of adenosine
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase enzymes and reduces the uptake of adenosine by cells. This leads to an increase in adenosine levels and a decrease in the breakdown of cAMP. Patients taking dipyridamole should not receive exogenous adenosine treatment, such as for supraventricular tachycardia, due to this interaction.
Clopidogrel is a medication that blocks ADP receptors.
Aspirin is a medication that inhibits cyclo-oxygenase.
Dabigatran and bivalirudin are medications that directly inhibit thrombin.
Tirofiban and abciximab are medications that inhibit glycoprotein IIb/IIIa.
Warfarin inhibits the production of factors II, VII, IX, and X.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?
Your Answer: Hypokalaemia
Explanation:Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.
Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.
However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 68-year-old man presents to the emergency department after experiencing a syncopal episode. His ECG reveals a prolonged PR interval, with every other QRS complex being dropped. The QRS complex width is within normal limits.
From which area of the heart is the conduction delay most likely originating?Your Answer: Bundle of His
Correct Answer: Atrio-Ventricular node
Explanation:The PR interval is the duration between the depolarization of the atria and the depolarization of the ventricles. In this case, the man is experiencing a 2:1 block, which is a type of second-degree heart block. Since his PR interval is prolonged, the issue must be occurring in the pathway between the atria and ventricles. However, since his QRS complex is normal, it is likely that the problem is in the AV node rather than the bundles of His. If the issue were in the sino-atrial node, it would not cause a prolonged PR interval with dropped QRS complexes. Similarly, if there were a slowing of conduction in the ventricles, it would cause a wide QRS complex but not a prolonged PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon examination, there are no notable symptoms except for a low serum potassium level found in her blood test. After informing her of the results, she reveals that she has been experiencing palpitations and dizziness for a few hours. You advise her to go to the emergency department for an ECG and treatment. What ECG indication is associated with hypokalaemia?
Your Answer: Broad bizarre QRS complexes
Correct Answer: ST segment depression
Explanation:ECG changes indicating hypokalaemia include ST-segment depression, along with other signs such as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified through ECG signs such as a long PR interval and a sine wave pattern, as well as tall tented T waves and broad bizarre QRS complexes. Prolongation of the PR interval may be seen in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Patients with hypokalaemia may present with symptoms such as fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis. It is worth noting that abnormalities in serum potassium levels are often discovered incidentally.
Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 70-year-old man visits his primary care physician complaining of paroxysmal nocturnal dyspnoea and increasing orthopnoea. The physician suspects heart failure and orders a chest X-ray. What signs on the chest X-ray would indicate heart failure?
Your Answer:
Correct Answer: Upper zone vessel enlargement
Explanation:Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 39-year-old woman is being evaluated for progressive dyspnea and is found to have primary pulmonary hypertension. She is prescribed bosentan. What is the mode of action of bosentan?
Your Answer:
Correct Answer: Endothelin receptor antagonist
Explanation:Bosentan is an antagonist of the endothelin-1 receptor.
Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.
The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.
Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 78-year-old woman with a history of heart failure visits the clinic complaining of constipation that has lasted for 5 days. Upon further inquiry, she mentions feeling weaker than usual this week and experiencing regular muscle cramps. During the examination, you observe reduced tone and hyporeflexia in both her upper and lower limbs. You suspect that her symptoms may be caused by hypokalaemia, which could be related to the diuretics she takes to manage her heart failure. Which of the following diuretics is known to be associated with hypokalaemia?
Your Answer:
Correct Answer: Furosemide
Explanation:Hypokalaemia is a potential side effect of loop diuretics such as furosemide. In contrast, potassium-sparing diuretics like spironolactone, triamterene, eplerenone, and amiloride are more likely to cause hyperkalaemia. The patient in the scenario is experiencing symptoms suggestive of hypokalaemia, including muscle weakness, cramps, and constipation. Hypokalaemia can also cause fatigue, myalgia, hyporeflexia, and in rare cases, paralysis.
Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 65-year-old man with diabetes presents to the vascular clinic with a chronic cold purple right leg that previously only caused pain during exercise. However, he now reports experiencing leg pain at rest for the past week. Upon examination, it is noted that he has no palpable popliteal, posterior tibial, or dorsalis pedis pulses on his right leg and a weak posterior tibial and dorsalis pedis pulse on his left leg. His ABPI is 0.56. What would be the most appropriate next step in managing his condition?
Your Answer:
Correct Answer: Percutaneous transluminal angioplasty
Explanation:The man is experiencing critical ischemia, which is a severe form of peripheral arterial disease. He has progressed from experiencing claudication (similar to angina of the leg) to experiencing pain even at rest. While lifestyle changes and medication such as aspirin and statins are important, surgical intervention is necessary in this case. His ABPI is very low, indicating arterial disease, and percutaneous transluminal angioplasty is the preferred surgical option due to its minimally invasive nature. Amputation is not recommended at this stage as the tissue is still viable.
Symptoms of peripheral arterial disease include no symptoms, claudication, leg pain at rest, ulceration, and gangrene. Signs include absent leg and foot pulses, cold white legs, atrophic skin, arterial ulcers, and long capillary filling time (over 15 seconds in severe ischemia). The first line investigation is ABPI, and imaging options include colour duplex ultrasound and MR/CT angiography if intervention is being considered.
Management involves modifying risk factors such as smoking cessation, treating hypertension and high cholesterol, and prescribing clopidogrel. Supervised exercise programs can also help increase blood flow. Surgical options include percutaneous transluminal angioplasty and surgical reconstruction using the saphenous vein as a bypass graft. Amputation may be necessary in severe cases.
Understanding Ankle Brachial Pressure Index (ABPI)
Ankle Brachial Pressure Index (ABPI) is a non-invasive test used to assess the blood flow in the legs. It is a simple and quick test that compares the blood pressure in the ankle with the blood pressure in the arm. The result is expressed as a ratio, with the normal value being 1.0.
ABPI is particularly useful in the assessment of peripheral arterial disease (PAD), which is a condition that affects the blood vessels outside the heart and brain. PAD can cause intermittent claudication, which is a cramping pain in the legs that occurs during exercise and is relieved by rest.
The interpretation of ABPI results is as follows: a ratio between 0.6 and 0.9 is indicative of claudication, while a ratio between 0.3 and 0.6 suggests rest pain. A ratio below 0.3 indicates impending limb loss and requires urgent intervention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.
What findings may be observed on the echocardiogram of this patient?Your Answer:
Correct Answer: Systolic anterior motion (SAM)
Explanation:The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
During ward round, you have been presented with an ECG of a 50-year-old female who was admitted with blackouts and a heart rate of 43bpm. On the ECG you note that the QRS complex is narrow but is missing after every other P wave. What is this condition called?
Your Answer:
Correct Answer: 2:1 heart block
Explanation:The patient has a bradycardia with a narrow QRS complex, ruling out bundle branch blocks. It is not a first-degree heart block or a Wenckebach heart block. The correct diagnosis is a 2:1 heart block with 2 P waves to each QRS complex.
Understanding Heart Blocks: Types and Features
Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.
First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.
Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.
It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 75-year-old man arrives at the emergency department complaining of lightheadedness and difficulty breathing. Upon examination, his ECG reveals supraventricular tachycardia, which may be caused by an irregularity in the cardiac electrical activation sequence. He is successfully cardioverted to sinus rhythm.
What is the anticipated sequence of his cardiac electrical activation following the procedure?Your Answer:
Correct Answer: SA node- atria- AV node- Bundle of His- right and left bundle branches- Purkinje fibres
Explanation:The correct order of cardiac electrical activation is as follows: SA node, atria, AV node, Bundle of His, right and left bundle branches, and Purkinje fibers. Understanding this sequence is crucial as it is directly related to interpreting ECGs.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 32-year-old woman has been diagnosed with hyperparathyroidism and is scheduled for resection of a right inferior parathyroid adenoma. What embryological structure does this adenoma originate from?
Your Answer:
Correct Answer: Third pharyngeal pouch
Explanation:The third pharyngeal pouch gives rise to the inferior parathyroid, while the fourth pharyngeal pouch is responsible for the development of the superior parathyroid.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 42-year-old man presents to the emergency department with gradual-onset central chest pain. The pain is 7/10 in severity and started six hours ago. He reports no shortness of breath or haemoptysis. The pain worsens when taking a deep breath in and improves when leaning forward.
The patient has no significant medical history and is not taking any regular medications, but he recently completed a course of amoxicillin for an upper respiratory tract infection. His grandfather died of a heart attack at the age of 84. He has a smoking history of 3 pack-years but currently does not smoke or drink alcohol. He has not traveled recently. During a recent well man check at his GP, his 10-year QRISK score was determined to be 3%.
On examination, the patient appears comfortable at rest. His heart rate is 88/min, blood pressure is 136/78 mmHg, oxygen saturation is 98% on air, respiratory rate is 16 breaths per minute, and temperature is 36.8ºC. No additional heart sounds are heard, and lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present.
An ECG taken on admission shows concave ST-segment elevation and PR depression present in all leads.
What is the most likely diagnosis?Your Answer:
Correct Answer: Pericarditis
Explanation:The most likely diagnosis for a patient with global ST and PR segment changes is pericarditis. This condition is characterized by inflammation of the pericardium, which often occurs after a respiratory illness. Patients with pericarditis typically experience sharp chest pain that worsens with inspiration or lying down and improves when leaning forward.
While benign early repolarization (BER) can also cause ST elevation, it is less likely in this case as the patient’s symptoms are more consistent with pericarditis. Additionally, BER often presents with a fish hook pattern on the ECG.
Infective endocarditis, pulmonary embolism (PE), and myocardial infarction (MI) are less likely diagnoses. Infective endocarditis typically presents with fever and a murmur, while PE is associated with tachycardia, haemoptysis, and signs of deep vein thrombosis. MI is usually confined to a specific territory on the ECG and is unlikely in a patient with low cardiac risk factors.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 55-year-old man arrives at the emergency department complaining of central chest pain that started 15 minutes ago. An ECG is conducted and reveals ST elevation in leads I, aVL, and V6. Which coronary artery is the most probable cause of obstruction?
Your Answer:
Correct Answer: Left circumflex artery
Explanation:The presence of ischaemic changes in leads I, aVL, and V5-6 suggests a possible issue with the left circumflex artery, which supplies blood to the lateral area of the heart. Complete blockage of this artery can lead to ST elevation, while partial blockage may result in non-ST elevation myocardial infarction. Other areas of the heart and their corresponding coronary arteries are listed in the table below.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 73-year-old man presents to the emergency department with complaints of severe cramping pain in his leg at rest. He has a medical history of peripheral vascular disease, chronic obstructive pulmonary disease, and hypertension.
During the examination, his blood pressure is measured at 138/92 mmHg, respiratory rate at 22/min, and oxygen saturations at 99%. The healthcare provider performs a neurovascular exam of the lower limbs and palpates the pulses.
Which area should be palpated first?Your Answer:
Correct Answer: First metatarsal space on dorsum of foot
Explanation:To assess lower leg pulses, it is recommended to start from the most distal point and move towards the proximal area. This helps to identify the location of any occlusion. The first pulse to be checked is the dorsalis pedis pulse, which is located on the dorsum of the foot in the first metatarsal space, lateral to the extensor hallucis longus tendon. Palpating behind the knee or in the fourth metatarsal space is incorrect, as no pulse can be felt there. The posterior tibial pulse can be felt posteriorly and inferiorly to the medial malleolus, but it should not be assessed first as it is not as distal as the dorsalis pedis pulse.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
As a medical student on placement in the pathology lab, I observed the pathologist examining a section of a blood vessel. I wondered, what distinguishes the tunica media from the tunica adventitia?
Your Answer:
Correct Answer: External elastic lamina
Explanation:Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives at the hospital complaining of severe chest pain that spreads to his jaw. He has vomited twice and feels lightheaded.
An electrocardiogram (ECG) reveals widespread ST elevation with reciprocal ST-segment depression. A troponin T serum level is obtained and confirms an elevated reading.
What is the target of this cardiac biomarker?Your Answer:
Correct Answer: Tropomyosin
Explanation:The troponin-tropomyosin complex is formed when troponin T binds to tropomyosin. In cases of ST-elevation myocardial infarction (STEMI), elevated levels of troponin T in the bloodstream can confirm the presence of cardiac tissue damage. This biomarker plays a role in regulating muscle contraction by binding to tropomyosin. However, troponin I, not troponin T, binds to actin to hold the troponin-tropomyosin complex in place. While troponin T is released in cases of cardiac cell damage, it is considered less sensitive and specific than troponin I in diagnosing myocardial infarction.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 55-year-old man is having a radical gastrectomy for stomach cancer. What structure must be divided to access the coeliac axis during the procedure?
Your Answer:
Correct Answer: Lesser omentum
Explanation:The division of the lesser omentum is necessary during a radical gastrectomy as it constitutes one of the nodal stations that must be removed.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?
Your Answer:
Correct Answer: Tricuspid valve
Explanation:The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?
Your Answer:
Correct Answer: Rapid movement of blood entering ventricles from atria
Explanation:S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.
Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.
While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.
A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 57-year-old man is diagnosed with angina and prescribed medications for symptom control and secondary prevention. The doctor advises him to make dietary changes to address excess fat in the blood that can lead to angina. During the explanation, the doctor asks which apolipoprotein macrophages recognize to uptake lipids under normal circumstances?
Your Answer:
Correct Answer: ApoB100
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
With respect to the basilic vein, which statement is not true?
Your Answer:
Correct Answer: Its deep anatomical location makes it unsuitable for use as an arteriovenous access site in fistula surgery
Explanation:A basilic vein transposition is a surgical procedure that utilizes it during arteriovenous fistula surgery.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 76-year-old male comes for his yearly checkup with the heart failure nurses. What is the leading cause of heart failure?
Your Answer:
Correct Answer: Ischaemic heart disease
Explanation:The leading cause of heart failure in the western world is ischaemic heart disease, followed by high blood pressure, cardiomyopathies, arrhythmias, and heart valve issues. While COPD can be linked to cor pulmonale, which is a type of right heart failure, it is still not as prevalent as ischaemic heart disease as a cause. This information is based on a population-based study titled Incidence and Aetiology of Heart Failure published in the European Heart Journal in 1999.
Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his GP is reviewing his discharge letter. The patient has a history of atrial fibrillation and takes warfarin to reduce the risk of stroke. The GP notices an abnormality in the coagulation screen that was performed before surgery. The discharge letter confirms that this is expected with warfarin use.
What is the most likely abnormality on this patient's coagulation blood results?
Reference ranges:
International normalised ratio (INR) 0.9-1.2
Prothrombin time (PT) 10-14 secsYour Answer:
Correct Answer: PT 21 secs, INR 2.5
Explanation:Warfarin causes an increase in prothrombin-time (PT) and international normalised ratio (INR) by inhibiting vitamin K-dependent clotting factors. An increase in PT will cause an increase in INR, and a decrease in PT and INR is a prothrombotic state.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A young woman presents with symptoms indicative of infective endocarditis. She has no history of injecting drug use, but her dentist notes that she has poor oral hygiene. What organism is most likely responsible for this infection?
Your Answer:
Correct Answer: Streptococci viridans
Explanation:Infective endocarditis is most frequently caused by Streptococci viridans, which is commonly found in the oral cavity. This type of infection is often linked to patients with inadequate dental hygiene or those who have undergone dental procedures.
Aetiology of Infective Endocarditis
Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.
The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.
Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
Which segment of the ECG waveform corresponds to the shutting of the mitral valve?
Your Answer:
Correct Answer: QRS complex
Explanation:A diagram depicting the various stages of the cardiac cycle can be accessed through the external link provided.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
Where are the red hat pins most likely located based on the highest velocity measurements in different parts of a bovine heart during experimental research for a new drug for heart conduction disorders?
Your Answer:
Correct Answer: Purkinje fibres
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
John, a 67-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has emesis, homonymous hemianopia, weakness of left upper and lower limb, and dysphasia. He makes the healthcare professionals aware he has a worsening headache.
He has a past medical history of atrial fibrillation for which he is taking warfarin. His INR IS 4.3 despite his target range of 2-3.
A CT is ordered and the report suggests the anterior cerebral artery is the affected vessel.
Which areas of the brain can be affected with a haemorrhage stemming of this artery?Your Answer:
Correct Answer: Frontal and parietal lobes
Explanation:The frontal and parietal lobes are partially supplied by the anterior cerebral artery, which is a branch of the internal carotid artery. Specifically, it mainly provides blood to the anteromedial region of these lobes.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)