00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - An aged male patient suffers from seizures and loses consciousness. Central pontine myelinolysis...

    Incorrect

    • An aged male patient suffers from seizures and loses consciousness. Central pontine myelinolysis is diagnosed. What substance in the blood, when rapidly corrected from low levels, causes this condition?

      Your Answer: Potassium

      Correct Answer: Sodium

      Explanation:

      Central pontine myelinolysis is commonly caused by rapid correction of hyponatraemia, but it is not associated with the other options. Rapid correction of hypokalaemia may result in hyperkalaemia-induced arrhythmias, while rapid correction of hypocalcaemia may cause hypercalcaemia-related symptoms such as bone pain, renal/biliary colic, abdominal pain, and psychiatric symptoms (known as bones, stones, moans, and groans). Hypochloraemia is typically asymptomatic and not routinely monitored in clinical practice. Rapid correction of hypomagnesaemia may lead to hypermagnesaemia-induced weakness, nausea and vomiting, arrhythmias, and decreased tendon reflexes.

      Hyponatremia is a condition where the sodium levels in the blood are too low. If left untreated, it can lead to cerebral edema and brain herniation. Therefore, it is important to identify and treat hyponatremia promptly. The treatment plan depends on various factors such as the duration and severity of hyponatremia, symptoms, and the suspected cause. Over-rapid correction can lead to osmotic demyelination syndrome, which is a serious complication.

      Initial steps in treating hyponatremia involve ruling out any errors in the test results and reviewing medications that may cause hyponatremia. For chronic hyponatremia without severe symptoms, the treatment plan varies based on the suspected cause. If it is hypovolemic, normal saline may be given as a trial. If it is euvolemic, fluid restriction and medications such as demeclocycline or vaptans may be considered. If it is hypervolemic, fluid restriction and loop diuretics or vaptans may be considered.

      For acute hyponatremia with severe symptoms, patients require close monitoring in a hospital setting. Hypertonic saline is used to correct the sodium levels more quickly than in chronic cases. Vaptans, which act on V2 receptors, can be used but should be avoided in patients with hypovolemic hyponatremia and those with underlying liver disease.

      It is important to avoid over-correction of severe hyponatremia as it can lead to osmotic demyelination syndrome. Symptoms of this condition include dysarthria, dysphagia, paralysis, seizures, confusion, and coma. Therefore, sodium levels should only be raised by 4 to 6 mmol/L in a 24-hour period to prevent this complication.

    • This question is part of the following fields:

      • Renal System
      57.1
      Seconds
  • Question 2 - A 6-year-old girl presents with proteinuria, oedema, hypoalbuminaemia, hyperlipidaemia. A diagnosis of nephrotic...

    Correct

    • A 6-year-old girl presents with proteinuria, oedema, hypoalbuminaemia, hyperlipidaemia. A diagnosis of nephrotic syndrome secondary to minimal change disease is made.

      What is the most suitable medication for treatment in this case?

      Your Answer: Steroids

      Explanation:

      Prednisolone is the optimal treatment for minimal change glomerulonephritis presenting with nephrotic syndrome, while the other medications mentioned are not appropriate options.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      76.2
      Seconds
  • Question 3 - You are assisting in an open right adrenalectomy for a large adrenal adenoma...

    Incorrect

    • You are assisting in an open right adrenalectomy for a large adrenal adenoma in a slightly older patient. The consultant is momentarily distracted and you take the initiative to pull the adrenal into the wound to improve visibility. Unfortunately, this maneuver results in brisk bleeding. The most likely culprit vessel responsible for this bleeding is:

      - Portal vein
      - Phrenic vein
      - Right renal vein
      - Superior mesenteric vein
      - Inferior vena cava

      The vessel in question drains directly via a very short vessel and if not carefully sutured, it may become avulsed off the IVC. The best management approach for this injury involves the use of a Satinsky clamp and a 6/0 prolene suture.

      Your Answer: Right renal vein

      Correct Answer: Inferior vena cava

      Explanation:

      The vessel drains directly and is connected by a short pathway. If the sutures are not tied with caution, it could potentially detach from the IVC. In such a scenario, the recommended approach would be to use a Satinsky clamp and a 6/0 prolene suture to manage the injury.

      Adrenal Gland Anatomy

      The adrenal glands are located superomedially to the upper pole of each kidney. The right adrenal gland is posteriorly related to the diaphragm, inferiorly related to the kidney, medially related to the vena cava, and anteriorly related to the hepato-renal pouch and bare area of the liver. On the other hand, the left adrenal gland is postero-medially related to the crus of the diaphragm, inferiorly related to the pancreas and splenic vessels, and anteriorly related to the lesser sac and stomach.

      The arterial supply of the adrenal glands is through the superior adrenal arteries from the inferior phrenic artery, middle adrenal arteries from the aorta, and inferior adrenal arteries from the renal arteries. The right adrenal gland drains via one central vein directly into the inferior vena cava, while the left adrenal gland drains via one central vein into the left renal vein.

      In summary, the adrenal glands are small but important endocrine glands located above the kidneys. They have a unique blood supply and drainage system, and their location and relationships with other organs in the body are crucial for their proper functioning.

    • This question is part of the following fields:

      • Renal System
      129.3
      Seconds
  • Question 4 - A 22-year-old man is referred to a cardiologist by his family physician due...

    Incorrect

    • A 22-year-old man is referred to a cardiologist by his family physician due to consistently high cholesterol levels in his blood tests. During the assessment, the cardiologist observes yellowish skin nodules around the patient's Achilles tendon and white outer regions of the iris. The cardiologist informs the patient that he has inherited the condition from his biological parents and that there is a 50% chance of passing it on to his offspring, regardless of his partner's status. The patient reports a paternal uncle who died at 31 due to a heart-related condition. The cardiologist recommends treatment to manage cholesterol levels and prevent future cardiovascular events. What is the most likely underlying pathology in this patient's condition?

      Your Answer: Deficiency of lipoprotein lipase

      Correct Answer: Defective low-density lipoprotein receptors

      Explanation:

      The patient’s symptoms and signs suggest that they may have one of the familial dyslipidemias, likely familial hypercholesterolemia. This is supported by the presence of Achilles tendon xanthomas and corneal arcus in a relatively young patient, as well as the cardiologist’s statement that there is a 50% chance of inheritance if the mother is normal, indicating an autosomal dominant inheritance pattern. Familial hypercholesterolemia is caused by defective or absent LDL receptors.

      Other familial dyslipidemias include dysbetalipoproteinemia, which is caused by defective apolipoprotein E and has an autosomal recessive inheritance pattern, hypertriglyceridemia, which is caused by overproduction of VLDL and has an autosomal dominant inheritance pattern, and hyperchylomicronemia, which is caused by deficiency of lipoprotein lipase or apolipoprotein C-II and has an autosomal recessive inheritance pattern. Hyperchylomicronemia is not associated with a higher risk of atherosclerosis, unlike the other forms of familial dyslipidemia.

      Familial Hypercholesterolaemia: Causes, Diagnosis, and Management

      Familial hypercholesterolaemia (FH) is a genetic condition that affects approximately 1 in 500 people. It is an autosomal dominant disorder that results in high levels of LDL-cholesterol, which can lead to early cardiovascular disease if left untreated. FH is caused by mutations in the gene that encodes the LDL-receptor protein.

      To diagnose FH, NICE recommends suspecting it as a possible diagnosis in adults with a total cholesterol level greater than 7.5 mmol/l and/or a personal or family history of premature coronary heart disease. For children of affected parents, testing should be arranged by age 10 if one parent is affected and by age 5 if both parents are affected.

      The Simon Broome criteria are used for clinical diagnosis, which includes a total cholesterol level greater than 7.5 mmol/l and LDL-C greater than 4.9 mmol/l in adults or a total cholesterol level greater than 6.7 mmol/l and LDL-C greater than 4.0 mmol/l in children. Definite FH is diagnosed if there is tendon xanthoma in patients or first or second-degree relatives or DNA-based evidence of FH. Possible FH is diagnosed if there is a family history of myocardial infarction below age 50 years in second-degree relatives, below age 60 in first-degree relatives, or a family history of raised cholesterol levels.

      Management of FH involves referral to a specialist lipid clinic and the use of high-dose statins as first-line treatment. CVD risk estimation using standard tables is not appropriate in FH as they do not accurately reflect the risk of CVD. First-degree relatives have a 50% chance of having the disorder and should be offered screening, including children who should be screened by the age of 10 years if there is one affected parent. Statins should be discontinued in women 3 months before conception due to the risk of congenital defects.

    • This question is part of the following fields:

      • Renal System
      44.2
      Seconds
  • Question 5 - A 30-year-old man presents to the emergency department with complaints of abdominal pain,...

    Correct

    • A 30-year-old man presents to the emergency department with complaints of abdominal pain, nausea, and vomiting for a few hours. He has a history of type 1 diabetes mellitus, which is managed with insulin. He admits to running out of his insulin a few days ago. On examination, his temperature is 37.8ºC, pulse is 120/min, respirations are 25/min, and blood pressure is 100/70 mmHg. Dry mucous membranes are noted, and he has a fruity odour on his breath.

      The following laboratory results are obtained:

      Hb 142 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 250 * 109/L (150 - 400)
      WBC 11.2 * 109/L (4.0 - 11.0)
      Na+ 138 mmol/L (135 - 145)
      K+ 5.2 mmol/L (3.5 - 5.0)
      Urea 2.8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Glucose 28 mmol/L (4 - 7)

      Which of the following laboratory findings is most likely to be seen in this patient?

      Your Answer: PH 7.1; pCO2 2.3 kPa; Anion Gap 21

      Explanation:

      The patient is experiencing diabetic ketoacidosis, which results in a raised anion gap metabolic acidosis. To determine the correct answer, we must eliminate options with a normal or raised pH (7.4 and 7.5), as well as those with respiratory acidosis (as the patient has an increased respiratory rate and should have a low pCO2). The anion gap is also a crucial factor, with a normal range of 3 to 16. Therefore, the correct option is the one with an anion gap of 21.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      44.4
      Seconds
  • Question 6 - A 25-year-old man visits his primary care physician worried about a lump on...

    Incorrect

    • A 25-year-old man visits his primary care physician worried about a lump on his testes. He has no significant medical history and has recently started a new job after completing his education. His cousin was diagnosed with testicular cancer last year, and he is anxious that he might have the same condition.

      During the examination, the physician observes a diffuse swelling of the testes with tenderness on palpation.

      After prescribing a short course of ibuprofen, the patient remains concerned about testicular cancer and inquires about its presenting features in young men.

      What could be a possible presenting feature of testicular cancer in men in their mid-twenties?

      Your Answer: Frank haematuria

      Correct Answer: Hydrocele

      Explanation:

      Testicular cancer in young men may manifest as a hydrocele, which is the accumulation of fluid around the testicle. Therefore, it is important to investigate all cases of hydrocele to rule out cancer. On the other hand, epididymitis, which is usually caused by a bacterial infection, is unlikely to be a presenting feature of testicular cancer. If a male patient presents with frank haematuria, urgent investigation is necessary to rule out bladder cancer. A chancre, which is a painless genital ulcer commonly seen in the primary stage of syphilis, is not a presenting feature of testicular cancer.

      Testicular cancer is a common type of cancer that affects men between the ages of 20 and 30. The majority of cases (95%) are germ-cell tumors, which can be further classified as seminomas or non-seminomas. Non-germ cell tumors, such as Leydig cell tumors and sarcomas, are less common. Risk factors for testicular cancer include infertility, cryptorchidism, family history, Klinefelter’s syndrome, and mumps orchitis. Symptoms may include a painless lump, pain, hydrocele, and gynaecomastia.

      Tumour markers can be used to diagnose testicular cancer. For germ cell tumors, hCG may be elevated in seminomas, while AFP and/or beta-hCG are elevated in non-seminomas. LDH may also be elevated in germ cell tumors. Ultrasound is the first-line diagnostic tool.

      Treatment for testicular cancer depends on the type and stage of the tumor. Orchidectomy, chemotherapy, and radiotherapy may be used. Prognosis is generally excellent, with a 5-year survival rate of around 95% for Stage I seminomas and 85% for Stage I teratomas.

    • This question is part of the following fields:

      • Renal System
      21.2
      Seconds
  • Question 7 - A 67-year-old retired farmer presents to the emergency department with complaints of abdominal...

    Incorrect

    • A 67-year-old retired farmer presents to the emergency department with complaints of abdominal pain and inability to urinate for the past 24 hours. He reports a history of slow urine flow and difficulty emptying his bladder for the past few years. The patient has a medical history of type 2 diabetes mellitus, hypertension, and lower back pain, and underwent surgery for an inguinal hernia 2 years ago. Ultrasound reveals a distended bladder and hydronephrosis, and the patient undergoes urethral catheterization. Further investigation shows an enlarged prostate and an increase in free prostate-specific antigen (PSA), and a prostate biopsy is scheduled. Which part of the prostate is most likely causing bladder obstruction in this patient?

      Your Answer: Anterior and posterior lobe

      Correct Answer: Lateral and middle lobe lobe

      Explanation:

      A man presented with symptoms of acute urinary retention and a history of poor urine flow and straining to void, suggesting bladder outlet obstruction possibly due to an enlarged prostate. While prostatic adenocarcinoma is common in men over 50, it is unlikely to cause urinary symptoms. However, patients should still be screened for it to allow for early intervention if necessary. The man’s increased levels of free PSA indicate BPH rather than prostatic adenocarcinoma, as the latter would result in decreased free PSA and increased bound-PSA levels.

      The lateral and middle lobes of the prostate are closest to the urethra and their hyperplasia can compress it, leading to urinary and voiding symptoms. If the urethra is completely compressed, acute urinary retention and bladder outlet obstruction can occur. The anterior lobe is rarely enlarged in BPH and is not positioned to obstruct the urethra, while the posterior lobe is mostly involved in prostatic adenocarcinoma but does not typically cause urinary symptoms due to its distance from the urethra.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      30.3
      Seconds
  • Question 8 - A 27-year-old man is involved in a car crash resulting in a fracture...

    Correct

    • A 27-year-old man is involved in a car crash resulting in a fracture of his right tibia. He undergoes fasciotomies and an external fixator is applied. Within 48 hours, his serum creatinine levels increase and his urine is analyzed, revealing the presence of muddy brown casts. What is the probable underlying diagnosis?

      Your Answer: Acute tubular necrosis

      Explanation:

      It is probable that the patient suffered from compartment syndrome due to a tibial fracture and subsequent fasciotomies, which can result in myoglobinuria. The combination of deteriorating kidney function and the presence of muddy brown casts in the urine strongly indicate acute tubular necrosis. Acute interstitial nephritis is typically caused by drug toxicity and does not typically lead to the presence of muddy brown casts in the urine.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      12.4
      Seconds
  • Question 9 - A 47-year-old man is under the care of an ophthalmologist for open angle...

    Correct

    • A 47-year-old man is under the care of an ophthalmologist for open angle glaucoma. He visits his GP to express his worries about the medication prescribed after reading online information. What is the medication that the ophthalmologist has prescribed, which can function as a diuretic by acting on the proximal convoluted tubule of the kidney?

      Your Answer: Acetazolamide (carbonic anhydrase inhibitor)

      Explanation:

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      12.9
      Seconds
  • Question 10 - A 67-year-old man is undergoing a radical cystectomy due to T2 non-invasive bladder...

    Correct

    • A 67-year-old man is undergoing a radical cystectomy due to T2 non-invasive bladder cancer. As a medical student shadowing the urological surgeons during the procedure, I was asked to identify the origin of the inferior and superior vesical arteries that needed to be ligated.

      Your Answer: Internal iliac artery

      Explanation:

      The internal iliac artery is the correct answer as it supplies the pelvis, including the bladder, and gives rise to the superior and inferior vesical arteries.

      The direct branch of the aorta is an incorrect answer as it refers to the origin of major vessels, not specifically related to the bladder.

      The external iliac artery is also an incorrect answer as it continues into the leg and does not supply the bladder.

      Similarly, the inferior mesenteric artery is an incorrect answer as it supplies the hind-gut of the digestive tract and is not directly related to the bladder.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      16.5
      Seconds
  • Question 11 - Which of the following is not a cause of hyperkalemia? ...

    Correct

    • Which of the following is not a cause of hyperkalemia?

      Your Answer: Severe malnutrition

      Explanation:

      There are various factors that can lead to an increase in serum potassium levels, which are abbreviated as MACHINE. These include certain medications such as ACE inhibitors and NSAIDs, acidosis (both metabolic and respiratory), cellular destruction due to burns or traumatic injury, hypoaldosteronism, excessive intake of potassium, nephrons, and renal failure, and impaired excretion of potassium. Additionally, familial periodic paralysis can have subtypes that are associated with either hyperkalemia or hypokalemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      15.6
      Seconds
  • Question 12 - A 56-year-old man with a history of alcohol excess and type 2 diabetes...

    Correct

    • A 56-year-old man with a history of alcohol excess and type 2 diabetes presents to the emergency department in an intoxicated state. He takes metformin and his recent HbA1c was 44 mmol/mol. On arrival, his blood sugar is 5.1 mmol/L and he frequently needs to urinate. The examination is unremarkable except for his intoxicated state. His blood test shows a creatinine level of 66 µmol/L (55 - 120). What is causing the patient's polyuria?

      Your Answer: ADH suppression in the posterior pituitary gland

      Explanation:

      Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      16.5
      Seconds
  • Question 13 - What electrolyte imbalance is probable in a patient experiencing diarrhea and a palpable...

    Incorrect

    • What electrolyte imbalance is probable in a patient experiencing diarrhea and a palpable soft mass during digital rectal examination?

      Your Answer: Hyperkalaemia

      Correct Answer: Hypokalaemia

      Explanation:

      Rectal secretions from large villous adenomas of the rectum can cause hypokalaemia due to their high potassium content, which is a result of the marked secretory activity of the adenomas.

      Understanding Hypokalaemia and its Causes

      Hypokalaemia is a condition characterized by low levels of potassium in the blood. Potassium and hydrogen ions are competitors, and as potassium levels decrease, more hydrogen ions enter the cells. Hypokalaemia can occur with either alkalosis or acidosis. In cases of alkalosis, hypokalaemia may be caused by vomiting, thiazide and loop diuretics, Cushing’s syndrome, or Conn’s syndrome. On the other hand, hypokalaemia with acidosis may be caused by diarrhoea, renal tubular acidosis, acetazolamide, or partially treated diabetic ketoacidosis.

      It is important to note that magnesium deficiency may also cause hypokalaemia. In such cases, normalizing potassium levels may be difficult until the magnesium deficiency has been corrected. Understanding the causes of hypokalaemia can help in its diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      14.6
      Seconds
  • Question 14 - A 6-year-old boy is referred to the child assessment unit for recurrent urinary...

    Correct

    • A 6-year-old boy is referred to the child assessment unit for recurrent urinary tract infections. He is started on antibiotics and sent home with advice on supportive care.

      Upon his return a week later, his renal function tests have worsened and an ultrasound scan reveals hydronephrosis in his kidneys, ureters, and bladder. The diagnosis is acute pyelonephritis and further investigations are ordered to determine the underlying cause. A voiding cystourethrogram (VCUG) confirms the diagnosis of posterior urethral valves (PUV).

      The child and parents are informed of the diagnosis and inquire about treatment options. What is the definitive treatment for PUV?

      Your Answer: Endoscopic valvotomy

      Explanation:

      The preferred and most effective treatment for a child with posterior urethral valves (PUV) is endoscopic valvotomy. While bilateral cutaneous ureterostomies can be used for urinary drainage, they are not considered the definitive treatment for PUV. Bladder augmentation may be necessary if the bladder cannot hold enough urine or if bladder pressures remain high despite medication and catheterization. However, permanent antibiotic prophylaxis and catheterization are not recommended.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      224.2
      Seconds
  • Question 15 - A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to...

    Incorrect

    • A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?

      Your Answer: afferent arteriole- peritubular capillaries and medullary vasa recta- glomerular capillary bed- efferent arteriole

      Correct Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta

      Explanation:

      The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.

      The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.

      If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      185.3
      Seconds
  • Question 16 - Sarah, who is in her 50s, has recently undergone a kidney transplant. A...

    Correct

    • Sarah, who is in her 50s, has recently undergone a kidney transplant. A few hours after the surgery, she begins to feel extremely sick, experiencing a fever of 39°C and overall discomfort. She also reports pain at the site of the transplant, and the medical staff have noted a significant decrease in her urine output. The consultant suggests that this could be due to pre-existing antibodies, given the timing of the symptoms.

      What is the most probable diagnosis in Sarah's case?

      Your Answer: Hyperacute transplant rejection

      Explanation:

      Based on the symptoms and timeframe, it is likely that the patient is experiencing hyperacute transplant rejection. This type of rejection is classified as a type II hypersensitivity reaction, which occurs when pre-existing IgG or IgM antibodies attack HLA or ABO antigens. This autoimmune response causes thrombosis in the vascular supply to the transplanted organ, leading to ischemia and necrosis. Unfortunately, the only treatment option is to remove the graft.

      Acute graft failure, on the other hand, typically occurs over several months and is often caused by HLA mismatch. This condition can be treated with immunosuppressants and steroids.

      Chronic graft failure is characterized by antibody- and cell-mediated mechanisms that lead to fibrosis of the transplanted organ over time. This process usually takes more than six months to develop.

      Post-transplant acute tubular necrosis is another possible complication that can cause reduced urine output and muddy brown casts on urinalysis. However, it does not typically present with the hyperacute symptoms described above.

      Lymphocele is a common post-transplant complication that is usually asymptomatic but can cause a mass and compress the ureter if it becomes large enough. It can be drained through percutaneous or intraperitoneal methods.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      12.3
      Seconds
  • Question 17 - A 70-year-old man is receiving treatment for pneumonia and is currently experiencing delirium....

    Incorrect

    • A 70-year-old man is receiving treatment for pneumonia and is currently experiencing delirium. He has been catheterized and is receiving IV antibiotics. The nurse has observed that he has not urinated overnight, despite attempts to flush the catheter.

      The patient has a medical history of hypertension, chronic back pain, and type 2 diabetes, for which he takes ramipril, furosemide, naproxen, and gliclazide. His daily blood tests are pending, and the morning medication round has begun.

      What is the appropriate course of action regarding his medications?

      Your Answer: Increase furosemide, withhold ramipril, continue everything else

      Correct Answer: Withhold furosemide, naproxen, and ramipril, continue gliclazide and IV antibiotics

      Explanation:

      When a patient is suspected to have acute kidney injury (AKI), it is important to stop nephrotoxic medications such as ACE inhibitors, ARBs, diuretics, and NSAIDs. In this case, the patient is on ramipril, furosemide, and naproxen, which should be withheld. Gliclazide and IV antibiotics can be continued, but blood sugar levels should be monitored closely due to the increased risk of hypoglycemia in renal impairment. It is incorrect to give morning medication and wait for blood test results, increase furosemide, withhold all regular medications, or withhold only furosemide and gliclazide while continuing everything else. The appropriate action is to withhold all nephrotoxic medications and continue necessary treatments while monitoring the patient’s condition closely.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      34.1
      Seconds
  • Question 18 - A 5-year-old boy comes to his family doctor with a purple rash on...

    Incorrect

    • A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.

      What is the suspected diagnosis of this condition?

      Your Answer: Minimal change disease

      Correct Answer: Henoch-Schonlein purpura

      Explanation:

      The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.

      Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).

      Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.

      Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.

      Understanding Henoch-Schonlein Purpura

      Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.

      The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.

      Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.

      In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.

    • This question is part of the following fields:

      • Renal System
      14.7
      Seconds
  • Question 19 - A 4-year-old boy is presented to the emergency department by his father due...

    Incorrect

    • A 4-year-old boy is presented to the emergency department by his father due to an increase in facial and leg swelling. The father reports no significant medical or family history but has noticed his son passing frothy urine for the past 3 days.

      During the examination, there is facial and pitting oedema. Laboratory tests confirm hypoalbuminaemia, and a urine dipstick shows proteinuria +++.

      What is the probable result on light microscopy of a renal biopsy?

      Your Answer: Fusion of podocytes and effacement of foot processes

      Correct Answer: Normal architecture

      Explanation:

      In minimal change disease, light microscopy typically shows no abnormalities.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      18.5
      Seconds
  • Question 20 - A 70-year-old male visits his GP complaining of increased difficulty in breathing. He...

    Incorrect

    • A 70-year-old male visits his GP complaining of increased difficulty in breathing. He has a history of left ventricular heart failure, and his symptoms suggest a worsening of his condition. The doctor prescribes spironolactone as a diuretic. What is the mechanism of action of this medication?

      Your Answer: Sodium channel blocker in the collecting tubule

      Correct Answer: Aldosterone antagonist

      Explanation:

      The mechanism of action of spironolactone involves blocking the aldosterone receptor in the distal tubules and collecting duct of the kidneys. In contrast, furosemide acts as a loop diuretic by inhibiting the sodium/potassium/2 chloride inhibitor in the loop of Henle, while acetazolamide functions as a carbonic anhydrase inhibitor.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      72
      Seconds
  • Question 21 - A 29-year-old female patient complains of dysuria and frequent urination for the past...

    Incorrect

    • A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.

      What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?

      Your Answer: Uric acid

      Correct Answer: Ammonium magnesium phosphate (struvite)

      Explanation:

      The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      50
      Seconds
  • Question 22 - A 16-year-old girl arrives at the emergency department with a sudden worsening of...

    Correct

    • A 16-year-old girl arrives at the emergency department with a sudden worsening of her asthma symptoms. The medical team administers nebulizers containing salbutamol and ipratropium bromide, along with IV steroids. Salbutamol is known to be a β2 receptor agonist. What metabolic impact should be monitored in response to this medication?

      Your Answer: Hypokalaemia

      Explanation:

      Salbutamol reduces serum potassium levels by acting as a β2 agonist when administered through nebulisation or intravenous routes.

      Drugs and their Effects on Potassium Levels

      Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.

      Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.

      It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.

      Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.

    • This question is part of the following fields:

      • Renal System
      96.1
      Seconds
  • Question 23 - A fourth year medical student presents to their GP with haemoptysis following a...

    Correct

    • A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?

      Your Answer: Type 2

      Explanation:

      The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.

      Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.

      Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.

      Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.

      Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.

      The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.

      Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.

    • This question is part of the following fields:

      • Renal System
      14.1
      Seconds
  • Question 24 - A 14-month-old boy is presented to the surgical clinic by his mother due...

    Incorrect

    • A 14-month-old boy is presented to the surgical clinic by his mother due to the absence of his left testicle in the scrotum. If the testicle were ectopic, where would it be located?

      Your Answer: External inguinal ring

      Correct Answer: Superficial inguinal pouch

      Explanation:

      Testes that are located outside of their normal embryological descent range are known as ectopic testes. These can be found in various locations such as the superficial inguinal pouch, base of the penis, femoral triangle, and perineum.

      Common Testicular Disorders in Paediatric Urology

      Testicular disorders are frequently encountered in paediatric urological practice. One of the most common conditions is cryptorchidism, which refers to the failure of the testicle to descend from the abdominal cavity into the scrotum. It is important to differentiate between a non-descended testis and a retractile testis. Ectopic testes are those that lie outside the normal path of embryological descent. Undescended testes occur in approximately 1% of male infants and should be placed in the scrotum after one year of age. Magnetic resonance imaging (MRI) may be used to locate intra-abdominal testes, but laparoscopy is often necessary in this age group. Testicular torsion is another common condition that presents with sudden onset of severe scrotal pain. Surgical exploration is the management of choice, and delay beyond six hours is associated with low salvage rates. Hydroceles, which are fluid-filled sacs in the scrotum or spermatic cord, may be treated with surgical ligation of the patent processus vaginalis or scrotal exploration in older children with cystic hydroceles.

      Overall, prompt diagnosis and appropriate management of testicular disorders are crucial in paediatric urology to prevent long-term complications and ensure optimal outcomes for patients.

    • This question is part of the following fields:

      • Renal System
      48
      Seconds
  • Question 25 - A 72-year-old male patient with heart failure experiences significant physical activity limitations. He...

    Correct

    • A 72-year-old male patient with heart failure experiences significant physical activity limitations. He is prescribed a medication that targets the collecting duct of the kidney, but is cautioned about potential breast tissue enlargement. What electrolyte imbalance could result from this medication?

      Your Answer: Hyperkalaemia

      Explanation:

      Hyperkalaemia may be caused by Spironolactone

      Spironolactone is recognized for its potential to cause breast tissue growth as a side effect. As an aldosterone receptor antagonist, it hinders the elimination of potassium, making it a potassium-sparing diuretic.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      59.3
      Seconds
  • Question 26 - A 15-year-old teenage boy comes to see his General Practitioner with swelling in...

    Correct

    • A 15-year-old teenage boy comes to see his General Practitioner with swelling in his left scrotum. He reports no pain or other symptoms. During examination in a supine position, the GP notes that the left testicle is smaller than the right and there are no abnormal masses on either side. The GP diagnoses the patient with a varicocele, which is caused by increased hydrostatic pressure in the venous plexus of the left scrotum. The question is, where does the left testicular (gonadal) vein drain into?

      Your Answer: Left renal vein

      Explanation:

      The left renal vein receives drainage from the left testicular vein, while the common iliac and internal iliac veins do not receive any blood from the testicles. The internal iliac veins collect blood from the pelvic internal organs and join the external iliac vein, which drains blood from the legs, to form the common iliac vein. On the other hand, the right testicular vein directly drains into the inferior vena cava since it is situated to the right of the midline. The great saphenous veins, which are located superficially, collect blood from the toes.

      Scrotal Problems: Epididymal Cysts, Hydrocele, and Varicocele

      Epididymal cysts are the most frequent cause of scrotal swellings seen in primary care. They are usually found posterior to the testicle and separate from the body of the testicle. Epididymal cysts may be associated with polycystic kidney disease, cystic fibrosis, or von Hippel-Lindau syndrome. Diagnosis is usually confirmed by ultrasound, and management is typically supportive. However, surgical removal or sclerotherapy may be attempted for larger or symptomatic cysts.

      Hydrocele refers to the accumulation of fluid within the tunica vaginalis. They can be communicating or non-communicating. Communicating hydroceles are common in newborn males and usually resolve within the first few months of life. Non-communicating hydroceles are caused by excessive fluid production within the tunica vaginalis. Hydroceles may develop secondary to epididymo-orchitis, testicular torsion, or testicular tumors. Diagnosis may be clinical, but ultrasound is required if there is any doubt about the diagnosis or if the underlying testis cannot be palpated. Management depends on the severity of the presentation, and further investigation, such as ultrasound, is usually warranted to exclude any underlying cause such as a tumor.

      Varicocele is an abnormal enlargement of the testicular veins. They are usually asymptomatic but may be important as they are associated with infertility. Varicoceles are much more common on the left side and are classically described as a bag of worms. Diagnosis is made through ultrasound with Doppler studies. Management is usually conservative, but occasionally surgery is required if the patient is troubled by pain. There is ongoing debate regarding the effectiveness of surgery to treat infertility.

    • This question is part of the following fields:

      • Renal System
      16.9
      Seconds
  • Question 27 - A 40-year-old man visits his doctor for a routine check-up and is informed...

    Correct

    • A 40-year-old man visits his doctor for a routine check-up and is informed that his cholesterol levels are elevated. He has a significant family history of high cholesterol and genetic testing reveals that he is heterozygous for the affected allele. If he has a child with a woman who does not carry the affected allele, what is the probability that their child will inherit the condition?

      Your Answer: 50%

      Explanation:

      Familial Hypercholesterolaemia: Causes, Diagnosis, and Management

      Familial hypercholesterolaemia (FH) is a genetic condition that affects approximately 1 in 500 people. It is an autosomal dominant disorder that results in high levels of LDL-cholesterol, which can lead to early cardiovascular disease if left untreated. FH is caused by mutations in the gene that encodes the LDL-receptor protein.

      To diagnose FH, NICE recommends suspecting it as a possible diagnosis in adults with a total cholesterol level greater than 7.5 mmol/l and/or a personal or family history of premature coronary heart disease. For children of affected parents, testing should be arranged by age 10 if one parent is affected and by age 5 if both parents are affected.

      The Simon Broome criteria are used for clinical diagnosis, which includes a total cholesterol level greater than 7.5 mmol/l and LDL-C greater than 4.9 mmol/l in adults or a total cholesterol level greater than 6.7 mmol/l and LDL-C greater than 4.0 mmol/l in children. Definite FH is diagnosed if there is tendon xanthoma in patients or first or second-degree relatives or DNA-based evidence of FH. Possible FH is diagnosed if there is a family history of myocardial infarction below age 50 years in second-degree relatives, below age 60 in first-degree relatives, or a family history of raised cholesterol levels.

      Management of FH involves referral to a specialist lipid clinic and the use of high-dose statins as first-line treatment. CVD risk estimation using standard tables is not appropriate in FH as they do not accurately reflect the risk of CVD. First-degree relatives have a 50% chance of having the disorder and should be offered screening, including children who should be screened by the age of 10 years if there is one affected parent. Statins should be discontinued in women 3 months before conception due to the risk of congenital defects.

    • This question is part of the following fields:

      • Renal System
      40.7
      Seconds
  • Question 28 - A 75-year-old male is brought to the emergency department after falling at home....

    Correct

    • A 75-year-old male is brought to the emergency department after falling at home. Upon admission, his blood tests reveal a sodium level of 128 mmol/l. Which medication is the most probable cause of this?

      Your Answer: Sertraline

      Explanation:

      Hyponatremia is a common side effect of SSRIs, including Sertraline, which can cause SIADH. However, medications such as Statins, Levothyroxine, and Metformin are not typically linked to hyponatremia.

      SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.

    • This question is part of the following fields:

      • Renal System
      56.8
      Seconds
  • Question 29 - A 50-year-old male is brought back to a surgical ward after a renal...

    Correct

    • A 50-year-old male is brought back to a surgical ward after a renal transplant. Diuresis suddenly decreases 2 hours after the transplantation. The patient is quickly transferred back to surgery where the transplanted kidney displays signs of hyperacute rejection and is removed. Histopathological examination confirms hyperacute rejection.

      What type of reaction has this patient undergone?

      Your Answer: Type II hypersensitivity

      Explanation:

      Hyperacute transplant rejection is a type II hypersensitivity reaction, which is characterized by a cytotoxic response caused by pre-existing antibodies to the ABO or HLA antigens. This reaction leads to widespread thrombosis and ischaemia/necrosis within the transplanted organ, necessitating its surgical removal.

      In contrast, type I hypersensitivity is an immediate IgE-mediated reaction that occurs within minutes, while type III hypersensitivity is an IgM-mediated reaction that involves the formation of circulating immune complexes. Type IV hypersensitivity is a cell-mediated response that takes weeks to develop and is seen in chronic graft rejections. Finally, type V hypersensitivity is an autoimmune reaction that involves the binding of auto-antibodies to cell surface receptors, either preventing the intended ligand binding or mimicking its effects.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      17
      Seconds
  • Question 30 - A 20-year-old male presents with lethargy and heavy proteinuria on urinalysis. The consultant...

    Incorrect

    • A 20-year-old male presents with lethargy and heavy proteinuria on urinalysis. The consultant wants to directly measure renal function. What test will you order?

      Your Answer: Cockcroft-Gault equation

      Correct Answer: Inulin clearance

      Explanation:

      Inulin is an ideal substance for measuring creatinine clearance as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. This provides a direct measurement of CrCl, making it the gold standard.

      However, the MDRD equation is commonly used to estimate eGFR by considering creatinine, age, sex, and ethnicity. It may not be accurate for individuals with varying muscle mass, such as a muscular young man who may produce more creatinine and have an underestimated CrCl.

      The Cockcroft-Gault equation is considered superior to MDRD as it also takes into account the patient’s weight, age, sex, and creatinine levels.

      Reabsorption and Secretion in Renal Function

      In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.

      The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).

      Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.

    • This question is part of the following fields:

      • Renal System
      14.3
      Seconds
  • Question 31 - A 55-year-old man, who has a history of type 2 diabetes, is prescribed...

    Incorrect

    • A 55-year-old man, who has a history of type 2 diabetes, is prescribed losartan for his hypertension due to the development of a dry cough from ramipril. Losartan works by inhibiting the activity of a substance that acts on the AT1 receptor.

      What accurately characterizes the function of this substance?

      Your Answer: Increases filtration fraction through vasoconstriction of the afferent arteriole of the glomerulus to preserve GFR

      Correct Answer: Increases filtration fraction through vasoconstriction of the efferent arteriole of the glomerulus to preserve GFR

      Explanation:

      Angiotensin II is responsible for increasing the filtration fraction by constricting the efferent arteriole of the glomerulus, which helps to maintain the glomerular filtration rate (GFR). This mechanism has been found to slow down the progression of diabetic nephropathy. AT1 receptor blockers such as azilsartan, candesartan, and olmesartan can also block the action of Ang II. Desmopressin activates aquaporin, which is mainly located in the collecting duct of the kidneys. Norepinephrine and epinephrine, not Ang II, can cause vasoconstriction of the afferent arteriole of the glomerulus.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      171.9
      Seconds
  • Question 32 - A 32-year-old single mum has been recommended for genetic testing after her 10-months-old...

    Incorrect

    • A 32-year-old single mum has been recommended for genetic testing after her 10-months-old daughter was diagnosed with congenital nephrogenic diabetes insipidus. She has no symptoms and does not know of any family history of this disorder.

      Which part of the kidney is frequently impacted in this condition?

      Your Answer: Aquaporin 1 channel (AQP1)

      Correct Answer: Vasopressin receptor

      Explanation:

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      15.2
      Seconds
  • Question 33 - A 28-year-old man has a glomerular filtration rate of 110ml / minute at...

    Incorrect

    • A 28-year-old man has a glomerular filtration rate of 110ml / minute at a systolic blood pressure of 120/80. If his blood pressure were to decrease to 100/70, what would be his glomerular filtration rate?

      Your Answer: 75ml/ minute

      Correct Answer: 110ml / minute

      Explanation:

      The suggested decrease in blood pressure is within the kidney’s autoregulatory range for blood supply, so the GFR will remain unaffected.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      97
      Seconds
  • Question 34 - Which one of the following decreases the production of renin? ...

    Correct

    • Which one of the following decreases the production of renin?

      Your Answer: Beta-blockers

      Explanation:

      Renin and its Factors

      Renin is a hormone that is produced by juxtaglomerular cells. Its main function is to convert angiotensinogen into angiotensin I. There are several factors that can stimulate or reduce the secretion of renin.

      Factors that stimulate renin secretion include hypotension, which can cause reduced renal perfusion, hyponatremia, sympathetic nerve stimulation, catecholamines, and erect posture. On the other hand, there are also factors that can reduce renin secretion, such as beta-blockers and NSAIDs.

      It is important to understand the factors that affect renin secretion as it plays a crucial role in regulating blood pressure and fluid balance in the body. By knowing these factors, healthcare professionals can better manage and treat conditions related to renin secretion.

    • This question is part of the following fields:

      • Renal System
      13.6
      Seconds
  • Question 35 - A 75-year-old male ex-smoker presents to a urologist with a complaint of painless...

    Correct

    • A 75-year-old male ex-smoker presents to a urologist with a complaint of painless haematuria that has been ongoing for 3 weeks. He has experienced a weight loss of 5 kg over the past two months. During an urgent cystoscopy, a suspicious mass is discovered and subsequently biopsied. The histology confirms a transitional cell carcinoma of the bladder. A CT scan of the abdomen and pelvis reveals multiple enlarged lymph nodes. Which lymph node is the most probable site of metastasis?

      Your Answer: Internal and external iliac lymph nodes

      Explanation:

      The external and internal iliac nodes are the main recipients of lymphatic drainage from the bladder, while the testes and ovaries are primarily drained by the para-aortic lymph nodes.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      22.1
      Seconds
  • Question 36 - A middle-aged woman expresses concerns about her baby not receiving enough blood supply....

    Incorrect

    • A middle-aged woman expresses concerns about her baby not receiving enough blood supply. Her physician assures her that her blood volume will rise during pregnancy, resulting in a sufficient blood supply for her baby. What is the cause of this increased blood volume?

      Your Answer: Increased ADH

      Correct Answer: Renin-angiotensin system

      Explanation:

      The renin-angiotensin system is responsible for increasing plasma volume by converting angiotensinogen to angiotensin 2, which causes vasoconstriction and fluid retention. While increased ADH could theoretically raise plasma volume, it typically maintains the hypothalamic plasma volume set-point and reduces micturition rate, which is not consistent with pregnancy. Conversely, decreased ADH could increase micturition and decrease plasma volume. It is important to note that decreased GFR is not a factor in increasing plasma volume during pregnancy, as it actually increases.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      31.4
      Seconds
  • Question 37 - A 65-year-old man visits the haemofiltration unit thrice a week for treatment. What...

    Correct

    • A 65-year-old man visits the haemofiltration unit thrice a week for treatment. What is responsible for detecting alterations in salt concentrations, such as sodium chloride, in normally functioning kidneys and adjusting the glomerular filtration rate accordingly?

      Your Answer: Macula densa

      Explanation:

      The macula densa is a specialized area of columnar tubule cells located in the final part of the ascending loop of Henle. These cells are in contact with the afferent arteriole and play a crucial role in detecting the concentration of sodium chloride in the convoluted tubules and ascending loop of Henle. This detection is affected by the glomerular filtration rate (GFR), which is increased by an increase in blood pressure. When the macula densa detects high sodium chloride levels, it releases ATP and adenosine, which constrict the afferent arteriole and lower GFR. Conversely, when low sodium chloride levels are detected, the macula densa releases nitric oxide, which acts as a vasodilator. The macula densa can also increase renin production from the juxtaglomerular cells.

      Juxtaglomerular cells are smooth muscle cells located mainly in the walls of the afferent arteriole. They act as baroreceptors to detect changes in blood pressure and can secrete renin.

      Mesangial cells are located at the junction of the afferent and efferent arterioles and, together with the juxtaglomerular cells and the macula densa, form the juxtaglomerular apparatus.

      Podocytes, which are modified simple squamous epithelial cells with foot-like projections, make up the innermost layer of the Bowman’s capsule surrounding the glomerular capillaries. They assist in glomerular filtration.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      40.6
      Seconds
  • Question 38 - You are asked to evaluate a 53-year-old man who has developed sudden right...

    Incorrect

    • You are asked to evaluate a 53-year-old man who has developed sudden right arm pain while in the renal ward.

      According to the patient, the pain started in his right arm within a few minutes while he was resting in bed. He denies any history of trauma. He was recently admitted due to significant edema throughout his body, including periorbital edema.

      Upon examination, his right arm appears pale, cool to the touch, has a capillary refill time of 6 seconds, and no palpable radial pulse. However, his brachial pulse is present.

      The patient is currently undergoing daily blood tests to monitor his renal function. On admission, his urine dipstick showed heavy proteinuria. A 24-hour urine collection was performed, and the results have just been reported:

      Protein 6.2g/L

      What is the probable cause of his right arm pain?

      Your Answer: Factor V Leiden deficiency

      Correct Answer: Antithrombin III deficiency

      Explanation:

      When a patient with nephrotic syndrome experiences symptoms such as those presented in this scenario, the possibility of a vascular event should be considered. The acute onset of symptoms and underlying renal disease suggest the need to differentiate between arterial and venous events, such as arterial thromboembolism or dissection and venous thromboembolism.

      Nephrotic syndrome increases the risk of both venous and arterial thromboses due to the loss of coagulation factors and plasminogen, leading to a hypercoagulable state. In this case, the lack of a radial pulse and cool limb suggest arterial pathology, which is more strongly associated with the loss of antithrombin III than with renal loss of protein S.

      Risk factors such as Factor V Leiden deficiency, the omission of low molecular weight heparin, and immobility in hospital are not specifically relevant to this case.

      Possible Complications of Nephrotic Syndrome

      Nephrotic syndrome is a condition that affects the kidneys, causing them to leak protein into the urine. This can lead to a number of complications, including an increased risk of thromboembolism, which is related to the loss of antithrombin III and plasminogen in the urine. This can result in deep vein thrombosis, pulmonary embolism, and renal vein thrombosis, which can cause a sudden deterioration in renal function.

      Other complications of nephrotic syndrome include hyperlipidaemia, which can increase the risk of acute coronary syndrome, stroke, and other cardiovascular problems. Chronic kidney disease is also a possible complication, as is an increased risk of infection due to the loss of urinary immunoglobulin. Additionally, hypocalcaemia can occur due to the loss of vitamin D and binding protein in the urine.

      It is important for individuals with nephrotic syndrome to be aware of these potential complications and to work closely with their healthcare providers to manage their condition and prevent further complications from occurring. Regular monitoring and treatment can help to minimize the risk of these complications and improve overall health outcomes.

    • This question is part of the following fields:

      • Renal System
      33.1
      Seconds
  • Question 39 - A 70-year-old woman presents to the emergency department with confusion and drowsiness, discovered...

    Correct

    • A 70-year-old woman presents to the emergency department with confusion and drowsiness, discovered by her carers at home. She has experienced three episodes of vomiting and complains of a headache. Earlier in the day, she was unable to recognise her carers and is now communicating with short, nonsensical phrases.

      Based on her medical history of type 2 diabetes and stage 3 chronic kidney disease, along with the results of a CT head scan showing generalised cerebral and cerebellar oedema with narrowed ventricles and effaced sulci and cisterns, what is the most likely cause of this patient's symptoms?

      Your Answer: Hyponatraemia

      Explanation:

      Severe hyponatraemia can lead to cerebral oedema, which is likely the cause of the patient’s symptoms of confusion, headache, and drowsiness. The patient’s history of chronic kidney disease and use of thiazide diuretics increase her risk of developing hyponatraemia. Thiazides inhibit urinary dilution, leading to reduced reabsorption of NaCl in the distal renal tubules and an increased risk of hyponatraemia. In severe cases, hyponatraemia can cause a decrease in plasma osmolality, resulting in water movement into the brain and cerebral oedema.

      Hypocalcaemia is not associated with cerebral oedema and can be ruled out based on the CT findings. Hypomagnesaemia is typically asymptomatic unless severe and is not associated with cerebral oedema. Hypophosphataemia is uncommon in patients with renal disease and does not present with symptoms similar to those described in the vignette. Severe hypovolemia is not indicated in this case, as there is no evidence of reduced skin turgor, dry mucous membranes, reduced urine output, or other signs of hypovolaemic shock. However, it should be noted that rapid volume correction in hypovolaemic shock can also lead to cerebral oedema.

      Hyponatremia is a condition where the sodium levels in the blood are too low. If left untreated, it can lead to cerebral edema and brain herniation. Therefore, it is important to identify and treat hyponatremia promptly. The treatment plan depends on various factors such as the duration and severity of hyponatremia, symptoms, and the suspected cause. Over-rapid correction can lead to osmotic demyelination syndrome, which is a serious complication.

      Initial steps in treating hyponatremia involve ruling out any errors in the test results and reviewing medications that may cause hyponatremia. For chronic hyponatremia without severe symptoms, the treatment plan varies based on the suspected cause. If it is hypovolemic, normal saline may be given as a trial. If it is euvolemic, fluid restriction and medications such as demeclocycline or vaptans may be considered. If it is hypervolemic, fluid restriction and loop diuretics or vaptans may be considered.

      For acute hyponatremia with severe symptoms, patients require close monitoring in a hospital setting. Hypertonic saline is used to correct the sodium levels more quickly than in chronic cases. Vaptans, which act on V2 receptors, can be used but should be avoided in patients with hypovolemic hyponatremia and those with underlying liver disease.

      It is important to avoid over-correction of severe hyponatremia as it can lead to osmotic demyelination syndrome. Symptoms of this condition include dysarthria, dysphagia, paralysis, seizures, confusion, and coma. Therefore, sodium levels should only be raised by 4 to 6 mmol/L in a 24-hour period to prevent this complication.

    • This question is part of the following fields:

      • Renal System
      68.3
      Seconds
  • Question 40 - Which of the following medications can lead to hyperkalemia? ...

    Correct

    • Which of the following medications can lead to hyperkalemia?

      Your Answer: Heparin

      Explanation:

      Hyperkalaemia can be caused by both unfractionated and low-molecular weight heparin due to their ability to inhibit aldosterone secretion. Salbutamol is a known remedy for hyperkalaemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      23.7
      Seconds
  • Question 41 - A 65-year-old man is being evaluated at the liver clinic of his local...

    Correct

    • A 65-year-old man is being evaluated at the liver clinic of his local hospital. The physician in charge observes that he has developed ascites due to secondary hyperaldosteronism, which is common in patients with liver cirrhosis. To counteract the elevated aldosterone levels by blocking its action in the nephron, she intends to initiate a diuretic.

      Which part of the nephron is the diuretic most likely to target in this patient?

      Your Answer: Cortical collecting ducts

      Explanation:

      Spironolactone is a diuretic that acts as an aldosterone antagonist on the cortical collecting ducts. It is the first-line treatment for controlling ascites in this gentleman as it blocks the secondary hyperaldosteronism underlying the condition. The main site of action for spironolactone’s diuretic effects is the cortical collecting duct.

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      47.6
      Seconds
  • Question 42 - A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent...

    Correct

    • A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent to assess his renal function. The results are below. He is diagnosed with an acute kidney injury.

      Na+ 143 mmol/l
      K+ 4.8 mmol/l
      Urea 32 mmol/l
      Creatinine 383 mmol/l
      eGFR 15 ml/min

      What electrolyte should be monitored closely?

      Your Answer: Potassium

      Explanation:

      The nephron plays a crucial role in maintaining the balance of electrolytes in the bloodstream, particularly potassium and hydrogen ions, which are regulated in the distal convoluted tubule (DCT) and collecting duct (CD).

      Dehydration-induced acute kidney injury (AKI) is considered a pre-renal cause that reduces the glomerular filtration rate (GFR). In response, the kidney attempts to reabsorb as much fluid as possible to compensate for the body’s fluid depletion. As a result, minimal filtrate reaches the DCT and CD, leading to reduced potassium excretion. High levels of potassium can be extremely hazardous, especially due to its impact on the myocardium. Therefore, monitoring potassium levels is crucial in such situations, which can be done quickly through a venous blood gas (VBG) test.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      26.2
      Seconds
  • Question 43 - A 25-year-old woman visits her GP, reporting excessive urination and constant thirst for...

    Correct

    • A 25-year-old woman visits her GP, reporting excessive urination and constant thirst for the past few months. She has a history of bipolar disorder and is taking lithium. The symptoms suggest nephrogenic diabetes insipidus, which occurs when the kidneys fail to respond to vasopressin. What is the primary site in the kidney responsible for most of the water reabsorption?

      Your Answer: Proximal tubule

      Explanation:

      The proximal tubule is responsible for reabsorbing the majority of water in the kidneys. However, in cases of nephrogenic diabetes insipidus, which is often a result of taking lithium, the collecting ducts do not properly respond to antidiuretic hormone (ADH). This means that even with increased ADH, aquaporin-2 channels are not inserted in the collecting ducts, resulting in decreased water reabsorption.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      54.4
      Seconds
  • Question 44 - A 50-year-old man presents to a urology clinic with persistent haematuria. He has...

    Incorrect

    • A 50-year-old man presents to a urology clinic with persistent haematuria. He has a smoking history of 30 pack years and you suspect bladder cancer. After performing a cystoscopy and biopsy, the lesion is found to be malignant. What is the probable cell type?

      Your Answer: Adenocarcinoma

      Correct Answer: Transitional cell carcinoma

      Explanation:

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      21.2
      Seconds
  • Question 45 - A 60-year-old man complains of excessive urination and increased thirst. You want to...

    Correct

    • A 60-year-old man complains of excessive urination and increased thirst. You want to examine for diabetes insipidus.

      What is the most suitable test to conduct?

      Your Answer: Water deprivation test

      Explanation:

      The water deprivation test is a diagnostic tool for investigating diabetes insipidus. The Short Synacthen test is utilized to diagnose Addison’s disease. Cranial diabetes insipidus can be treated with Desmopressin, while nephrogenic diabetes insipidus can be treated with thiazide diuretics.

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      6.9
      Seconds
  • Question 46 - A 20-year-old male with sickle cell disease arrives at the hospital exhibiting symptoms...

    Correct

    • A 20-year-old male with sickle cell disease arrives at the hospital exhibiting symptoms of dehydration, infection, and acute kidney injury. What is the direct activator of the renin-angiotensin system in this case?

      Your Answer: Low blood pressure

      Explanation:

      The RAS is a hormone system that regulates plasma sodium concentration and arterial blood pressure. When plasma sodium concentration is low or renal blood flow is reduced due to low blood pressure, juxtaglomerular cells in the kidneys convert prorenin to renin, which is secreted into circulation. Renin acts on angiotensinogen to form angiotensin I, which is then converted to angiotensin II by ACE found in the lungs and epithelial cells of the kidneys. Angiotensin II is a potent vasoactive peptide that constricts arterioles, increasing arterial blood pressure and stimulating aldosterone secretion from the adrenal cortex. Aldosterone causes the kidneys to reabsorb sodium ions from tubular fluid back into the blood while excreting potassium ions in urine.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      16
      Seconds
  • Question 47 - You are working in a GP clinic. A 32-year-old woman has multiple sclerosis....

    Incorrect

    • You are working in a GP clinic. A 32-year-old woman has multiple sclerosis. After taking a history and examining her, you diagnose her with chronic urinary retention.

      What nerves are most likely affected by demyelination in this case?

      Your Answer: Greater splanchnic

      Correct Answer: Pelvic splanchnic

      Explanation:

      The pelvic splanchnic nerves provide parasympathetic innervation to the bladder. In cases of chronic urinary retention, damage to these nerves may be the cause. The greater splanchnic nerves supply the foregut of the gastrointestinal tract, while the lesser splanchnic nerves supply the midgut. Sympathetic innervation of the bladder comes from the hypogastric nerve plexuses, and the lumbar splanchnic nerves innervate the smooth muscles and glands of the pelvis.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      57.2
      Seconds
  • Question 48 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Type 4 renal tubular acidosis

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Renal System
      54.4
      Seconds
  • Question 49 - A nephrologist is evaluating a 12-year-old boy who presented with general malaise and...

    Incorrect

    • A nephrologist is evaluating a 12-year-old boy who presented with general malaise and was found to have proteinuria and haematuria on urine dipstick by his primary care physician. Following a comprehensive assessment, the nephrologist orders a renal biopsy. The biopsy report reveals that the immunofluorescence of the sample showed a granular appearance. What is the probable diagnosis?

      Your Answer: IgA nephropathy

      Correct Answer: Post-streptococcal glomerulonephritis

      Explanation:

      Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.

      It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.

      Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.

    • This question is part of the following fields:

      • Renal System
      46.4
      Seconds
  • Question 50 - A 58-year-old man is having a right nephrectomy. At what level does the...

    Incorrect

    • A 58-year-old man is having a right nephrectomy. At what level does the renal artery typically branch off from the abdominal aorta during this procedure?

      Your Answer: L4

      Correct Answer: L2

      Explanation:

      The level with L2 is where the renal arteries typically branch off from the aorta.

      Anatomy of the Renal Arteries

      The renal arteries are blood vessels that supply the kidneys with oxygenated blood. They are direct branches off the aorta and enter the kidney at the hilum. The right renal artery is longer than the left renal artery. The renal vein, artery, and pelvis also enter the kidney at the hilum.

      The right renal artery is related to the inferior vena cava, right renal vein, head of the pancreas, and descending part of the duodenum. On the other hand, the left renal artery is related to the left renal vein and tail of the pancreas.

      In some cases, there may be accessory arteries, mainly on the left side. These arteries usually pierce the upper or lower part of the kidney instead of entering at the hilum.

      Before reaching the hilum, each renal artery divides into four or five segmental branches that supply each pyramid and cortex. These segmental branches then divide within the sinus into lobar arteries. Each vessel also gives off small inferior suprarenal branches to the suprarenal gland, ureter, and surrounding tissue and muscles.

    • This question is part of the following fields:

      • Renal System
      10.8
      Seconds
  • Question 51 - A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He...

    Correct

    • A 26-year-old male visits his doctor complaining of fever and coryzal symptoms. He has no significant medical history and is not sexually active.

      During the physical examination, the doctor notes a soft, slightly tender abdomen with no guarding. The patient's temperature is 38.2 ºC.

      To investigate further, the doctor orders a complete blood count, urea and electrolytes, and C-reactive protein. Additionally, a mid-stream urine sample is sent for microscopy, culture, and sensitivity.

      What might be observed in the urine on microscopy?

      Your Answer: Hyaline casts

      Explanation:

      During fever, exercise, or use of loop diuretics, it is normal to observe hyaline casts in urine. Nephritic syndrome is associated with red cell casts, while gout is characterized by needle-shaped crystals. Acute tubular necrosis is indicated by brown granular casts, and pseudogout is identified by rhomboid-shaped crystals.

      Different Types of Urinary Casts and Their Significance

      Urine contains various types of urinary casts that can provide important information about the underlying condition of the patient. Hyaline casts, for instance, are composed of Tamm-Horsfall protein that is secreted by the distal convoluted tubule. These casts are commonly seen in normal urine, after exercise, during fever, or with loop diuretics. On the other hand, brown granular casts in urine are indicative of acute tubular necrosis.

      In prerenal uraemia, the urinary sediment appears ‘bland’, which means that there are no significant abnormalities in the urine. Lastly, red cell casts are associated with nephritic syndrome, which is a condition characterized by inflammation of the glomeruli in the kidneys. By analyzing the type of urinary casts present in the urine, healthcare professionals can diagnose and manage various kidney diseases and disorders. Proper identification and interpretation of urinary casts can help in the early detection and treatment of kidney problems.

    • This question is part of the following fields:

      • Renal System
      52.9
      Seconds
  • Question 52 - What substance is most effective in obtaining the most precise measurement of the...

    Correct

    • What substance is most effective in obtaining the most precise measurement of the glomerular filtration rate?

      Your Answer: Inulin

      Explanation:

      The decrease in renal function and muscle mass as one ages leads to a decline in creatinine levels. The kidney reabsorbs glucose, protein (amino acids), and PAH.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      8
      Seconds
  • Question 53 - A 65-year-old man with type 2 diabetes mellitus is undergoing his annual diabetic...

    Incorrect

    • A 65-year-old man with type 2 diabetes mellitus is undergoing his annual diabetic examination. He reports feeling more fatigued than usual and has missed his previous three annual check-ups. His blood glucose control has been inadequate, and he has not been adhering to his medications. His blood pressure measures 170/90 mmHg, and a urinalysis reveals microalbuminuria. A blood test shows that his glomerular filtration rate (GFR) is 27mL/min per 1.73m².

      Assuming a renal biopsy is conducted on this patient, what are the anticipated findings?

      Your Answer: Crescent moon shaped glomeruli

      Correct Answer: Nodular glomerulosclerosis and hyaline arteriosclerosis

      Explanation:

      The patient in question is suffering from T2DM that is poorly controlled, resulting in diabetic nephropathy. The histological examination reveals the presence of Kimmelstiel-Wilson lesions (nodular glomerulosclerosis) and hyaline arteriosclerosis, which are caused by nonenzymatic glycosylation.

      Amyloidosis is characterized by apple-green birefringence under polarised light.

      Acute post-streptococcal glomerulonephritis is identified by enlarged and hypercellular glomeruli.

      Rapidly progressive (crescentic) glomerulonephritis is characterized by crescent moon-shaped glomeruli.

      Diffuse proliferative glomerulonephritis (often due to SLE) is identified by wire looping of capillaries in the glomeruli.

      Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease

      Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.

      There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.

    • This question is part of the following fields:

      • Renal System
      47.8
      Seconds
  • Question 54 - A 20-year-old man is brought to the Emergency Department in an unconscious state,...

    Correct

    • A 20-year-old man is brought to the Emergency Department in an unconscious state, lying in a pool of blood with several stab wounds in his abdomen. How does the physiological compensatory mechanism differ in the short-term for a venous bleed versus an arterial bleed?

      Your Answer: A venous bleed causes reduced preload before reducing blood pressure and being detected by baroreceptors whilst an arterial bleed causes an instant blood pressure drop

      Explanation:

      A venous bleed is compensated for in a less direct manner compared to an arterial bleed. The reduction in preload caused by a venous bleed results in a decrease in cardiac output and subsequently, blood pressure. Baroreceptors detect this drop in blood pressure and trigger a physiological compensation response.

      In contrast, an arterial bleed causes an immediate drop in blood pressure, which is detected directly by baroreceptors.

      Both types of bleeding result in increased levels of angiotensin II and a heightened thirst drive. However, these compensatory mechanisms take longer to take effect than the immediate response triggered by baroreceptors.

      Understanding Bleeding and its Effects on the Body

      Bleeding, even if it is of a small volume, triggers a response in the body that causes generalised splanchnic vasoconstriction. This response is mediated by the activation of the sympathetic nervous system. The process of vasoconstriction is usually enough to maintain renal perfusion and cardiac output if the volume of blood lost is small. However, if greater volumes of blood are lost, the renin angiotensin system is activated, resulting in haemorrhagic shock.

      The body’s physiological measures can restore circulating volume if the source of bleeding ceases. Ongoing bleeding, on the other hand, will result in haemorrhagic shock. Blood loss is typically quantified by the degree of shock produced, which is determined by parameters such as blood loss volume, pulse rate, blood pressure, respiratory rate, urine output, and symptoms. Understanding the effects of bleeding on the body is crucial in managing and treating patients who experience blood loss.

    • This question is part of the following fields:

      • Renal System
      20.2
      Seconds
  • Question 55 - A 6-year-old girl visits her pediatrician with significant swelling around her eyes. Her...

    Correct

    • A 6-year-old girl visits her pediatrician with significant swelling around her eyes. Her mother reports that the patient has been passing foamy urine lately.

      Upon conducting a urine dipstick test, the pediatrician observes proteinuria +++ with no other anomalies.

      The pediatrician suspects that the patient may have minimal change disease leading to nephrotic syndrome.

      What is the association of this condition with light microscopy?

      Your Answer: Normal glomerular architecture

      Explanation:

      In minimal change disease, light microscopy typically shows no abnormalities.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      14.8
      Seconds
  • Question 56 - A 37-year-old woman presents to rheumatology with complaints of fatigue and arthralgia persisting...

    Correct

    • A 37-year-old woman presents to rheumatology with complaints of fatigue and arthralgia persisting for the past 3 months. During her evaluation, a urine dipstick test reveals proteinuria, and renal biopsies reveal histological evidence of proliferative 'wire-loop' glomerulonephritis.

      What is the probable diagnosis?

      Your Answer: Systemic lupus erythematosus (SLE)

      Explanation:

      Renal Complications in Systemic Lupus Erythematosus

      Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.

      Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.

    • This question is part of the following fields:

      • Renal System
      13.2
      Seconds
  • Question 57 - A 56-year-old presents to his general physician with painless haematuria and is urgently...

    Incorrect

    • A 56-year-old presents to his general physician with painless haematuria and is urgently referred to urology due to a certain risk factor in his history. The urologist performs a flexible cystoscopy and discovers bladder cancer, which is later confirmed by a bladder biopsy. What could have prompted the general physician to make an urgent referral?

      Your Answer: Selenium

      Correct Answer: Exposure to 2-Naphthylamine

      Explanation:

      The primary intravesical immunotherapy for early-stage bladder cancer is Bacillus Calmette-Guerin (BCG), which does not pose a risk for bladder cancer. There is no evidence to suggest that aspirin has any impact on the risk of bladder cancer. However, exposure to hydrocarbons like 2-Naphthylamine is a known risk factor for bladder cancer.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      41.9
      Seconds
  • Question 58 - A 50-year-old woman presents to her GP with a complaint of generalised puffiness....

    Incorrect

    • A 50-year-old woman presents to her GP with a complaint of generalised puffiness. She has been feeling lethargic and noticed swelling in her hands, feet, and face over the past few weeks. Additionally, she has been experiencing shortness of breath on exertion and cannot lie flat, frequently waking up at night gasping for air. She also reports tingling and loss of sensation in both feet, which has now extended to her knees. She has no regular medications and is otherwise healthy.

      Upon examination, the patient has decreased sensation over the distal lower limbs and hepatomegaly. Urine dipstick reveals protein +++ and urinalysis reveals hyperalbuminuria. Serology shows hypoalbuminaemia and hyperlipidaemia. An outpatient echocardiogram reveals both systolic and diagnostic heart failure, with a restrictive filling pattern. The Mantoux skin test was negative.

      What is the probable mechanism behind this patient's condition?

      Your Answer: Anti-neutrophil cytoplasmic antibody-induced inflammation

      Correct Answer: Deposition of light chain fragments

      Explanation:

      The deposition of light chain fragments in various tissues is the most common cause of amyloidosis (AL), which can present with symptoms such as nephrotic syndrome, heart failure, and peripheral neuropathy.

      Symptoms in the upper respiratory tract and kidneys are typically seen in granulomatosis with polyangiitis (GPA), which is caused by anti-neutrophil cytoplasmic antibody-induced inflammation. Therefore, this answer is not applicable.

      Tuberculosis is caused by Mycobacterium, but the absence of pulmonary features and negative Mantoux skin test make it unlikely in this case. Therefore, this answer is not applicable.

      Amyloidosis is a condition that can occur in different forms. The most common type is AL amyloidosis, which is caused by the accumulation of immunoglobulin light chain fragments. This can be due to underlying conditions such as myeloma, Waldenstrom’s, or MGUS. Symptoms of AL amyloidosis can include nephrotic syndrome, cardiac and neurological issues, macroglossia, and periorbital eccymoses.

      Another type of amyloidosis is AA amyloid, which is caused by the buildup of serum amyloid A protein, an acute phase reactant. This form of amyloidosis is often seen in patients with chronic infections or inflammation, such as TB, bronchiectasis, or rheumatoid arthritis. The most common symptom of AA amyloidosis is renal involvement.

      Beta-2 microglobulin amyloidosis is another form of the condition, which is caused by the accumulation of beta-2 microglobulin, a protein found in the major histocompatibility complex. This type of amyloidosis is often seen in patients who are on renal dialysis.

    • This question is part of the following fields:

      • Renal System
      66.7
      Seconds
  • Question 59 - A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a...

    Correct

    • A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a renal transplant. In terms of HLA matching between donor and recipient, which HLA antigen is the most crucial to match?

      Your Answer: DR

      Explanation:

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      6.9
      Seconds
  • Question 60 - A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight...

    Incorrect

    • A 54-year-old individual visits their GP complaining of lower back pain, fatigue, weight loss, and visible haematuria. After ruling out a UTI, the GP refers them through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms malignant renal cancer. What is the probable histological type of their cancer?

      Your Answer: Transitional cell carcinoma

      Correct Answer: Clear cell carcinoma

      Explanation:

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      17.6
      Seconds
  • Question 61 - A 23-year-old male presents to the emergency department with decreased level of consciousness...

    Correct

    • A 23-year-old male presents to the emergency department with decreased level of consciousness after a night of excessive alcohol intake. He is observed to have increased urine output. There is no history of substance abuse according to his companions.

      What is the probable cause of the patient's polyuria?

      Your Answer: antidiuretic hormone inhibition

      Explanation:

      Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria. This occurs because alcohol inhibits ADH, which reduces the insertion of aquaporins in the collecting tubules of the nephron. As a result, water reabsorption is reduced, leading to polyuria. The other options provided are incorrect because they do not accurately describe the mechanism by which alcohol causes polyuria. Central diabetes insipidus is a disorder of ADH production in the brain, while nephrogenic diabetes insipidus is caused by kidney pathology. Osmotic diuresis occurs when solutes such as glucose and urea increase the osmotic pressure in the renal tubules, leading to water retention, but this is not the primary mechanism by which alcohol causes polyuria.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      25.1
      Seconds
  • Question 62 - A 70-year-old male was admitted to the hospital due to delirium observed in...

    Incorrect

    • A 70-year-old male was admitted to the hospital due to delirium observed in the nursing home. Upon diagnosis, he was found to have a lower respiratory tract infection which progressed to sepsis. During his stay in the ICU, he was discovered to have severe hyponatremia. The medical team has prescribed tolvaptan along with other medications.

      What is the mechanism of action of tolvaptan?

      Your Answer: Vasopressin V2 receptor agonist

      Correct Answer: Vasopressin V2 receptor antagonist

      Explanation:

      Tolvaptan is a drug that blocks the action of vasopressin at the V2 receptor, which reduces water absorption and increases aquaresis without sodium loss. Vasopressin is a hormone that regulates water balance in the body.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      12.4
      Seconds
  • Question 63 - A 35-year-old woman, gravida 3 para 1, is scheduled for a caesarian-section. During...

    Incorrect

    • A 35-year-old woman, gravida 3 para 1, is scheduled for a caesarian-section. During the procedure, it is crucial to avoid damaging certain structures, such as the bladder and its vascular supply, to prevent complications. What is the female bladder's venous drainage structure?

      Your Answer: Vesicoprostatic venous plexus

      Correct Answer: Vesicouterine venous plexus

      Explanation:

      The vesicouterine venous plexus is responsible for draining the bladder in females, while the vesicoprostatic venous plexus serves the same function in males by connecting the prostatic venous plexus and vesical plexuses. The pampiniform plexus is responsible for draining the ovaries in females. It is important to note that the terms vesicorectal and vesicovaginal plexuses are not accurate anatomical structures, but rather refer to fistulas that may form between the bladder and nearby structures.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      343.9
      Seconds
  • Question 64 - A 3-year-old toddler is brought to the paediatric department due to stunted growth....

    Incorrect

    • A 3-year-old toddler is brought to the paediatric department due to stunted growth. During the medical history-taking, it is revealed that the parents are first cousins. Genetic testing confirms the diagnosis of Fanconi syndrome, which is known to cause renal dysfunction and electrolyte imbalances. The child's blood test results are as follows:

      - Calcium: 2.4 mmol/L (normal range: 2.1-2.6)
      - Phosphate: 0.3 mmol/L (normal range: 0.8-1.4)
      - Magnesium: 0.9 mmol/L (normal range: 0.7-1.0)

      Which part of the nephron is likely affected in this case, leading to the electrolyte disturbance observed in the patient?

      Your Answer: Distal convoluted tubule

      Correct Answer: Proximal convoluted tubule

      Explanation:

      The proximal convoluted tubule is where the majority of renal phosphate reabsorption occurs. This is relevant to a patient with hypophosphataemia, as dysfunction of the proximal convoluted tubule can lead to this condition. In addition to phosphate, the proximal convoluted tubule also reabsorbs glucose, amino acids, bicarbonate, sodium, and potassium.

      The collecting duct, distal convoluted tubule, and glomerulus are not involved in the reabsorption of phosphate. The collecting duct regulates water reabsorption, the distal convoluted tubule plays a role in acid-base balance, and the glomerulus performs ultrafiltration. Thiazides and aldosterone antagonists act on the distal convoluted tubule.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      13.5
      Seconds
  • Question 65 - A 79-year-old man is brought to the emergency department after fainting. Prior to...

    Incorrect

    • A 79-year-old man is brought to the emergency department after fainting. Prior to losing consciousness, he experienced dizziness and heart palpitations. He was unconscious for less than a minute and denies any chest discomfort. Upon cardiac examination, no abnormalities are detected. An ECG is conducted and reveals indications of hyperkalaemia. What is an ECG manifestation of hyperkalaemia?

      Your Answer: Left bundle branch block

      Correct Answer: Tall tented T waves

      Explanation:

      Hyperkalaemia can be identified on an ECG by tall tented T waves, small or absent P waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may form a sinusoidal wave pattern, and asystole may occur. On the other hand, hypokalaemia can be detected by ST segment depression, prominent U waves, small or inverted T waves, a prolonged PR interval (which can also be present in hyperkalaemia), and a long QT interval.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      60.6
      Seconds
  • Question 66 - A 44-year-old woman presents to the emergency department with abdominal pain. She reports...

    Incorrect

    • A 44-year-old woman presents to the emergency department with abdominal pain. She reports feeling generally unwell for the last 2 days but says today is the worst she has felt.

      On examination, her heart rate is 110 beats/min with a blood pressure of 106/70mmHg and a respiratory rate of 27 breaths/min.

      An arterial blood gas is taken:

      pH 7.11 (7.35 - 7.45)
      pO2 11.2 kPa (10.5 - 13.5)
      pCO2 4.9 kPa (4.7 - 6.0)
      Sodium 142 mmol/L (135 - 145)
      Potassium 5.1 mmol/L (3.5 - 5.5)
      Chloride 111 mmol/L (96 - 106)
      Bicarbonate 17 mmol/L (22 - 28)
      Lactate 2.6 mmol/L (0.6 - 1.9)
      Glucose 10.5 mmol/L (4 - 7)

      What is the most likely cause for this patient's investigation findings?

      Your Answer: Diabetic ketoacidosis

      Correct Answer: Diarrhoea

      Explanation:

      The patient’s condition is caused by diarrhoea, which is a common cause of normal anion gap metabolic acidosis. The anion gap is calculated by subtracting the sum of chloride and bicarbonate levels from the sum of sodium and potassium levels. In this case, the anion gap is within the normal range of 10-18 mmol/L. Other causes of normal anion gap metabolic acidosis include ureterosigmoidostomy, renal tubular acidosis, Addison’s disease, and certain medications. Raised anion gap metabolic acidosis can be remembered using the mnemonic ‘MUDPILES’, which includes causes such as methanol poisoning, diabetic ketoacidosis, and salicylate poisoning. However, these are not relevant in this case as the patient has a normal anion gap metabolic acidosis caused by diarrhoea.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      20.7
      Seconds
  • Question 67 - A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound...

    Incorrect

    • A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound that revealed several large cysts on her left kidney. The medical team has informed her of the potential risks associated with the procedure, such as the possibility of puncturing the primary blood vessels that supply the kidney - the renal artery and vein. At what anatomical level do these vessels enter the left kidney, considering their location?

      Your Answer: T12

      Correct Answer: L1

      Explanation:

      The correct level for the hilum of the left kidney is L1, which is also where the renal artery, vein, and ureter enter the kidney. T12 is not the correct level as it is the location of the adrenal glands or upper pole of the kidney. L2 is also not correct as it refers to the hilum of the right kidney, which is slightly lower. L4 is not the correct level as both renal arteries come off above this level from the abdominal aorta.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      20
      Seconds
  • Question 68 - A 65-year-old male is recovering from a community acquired pneumonia in hospital. He...

    Incorrect

    • A 65-year-old male is recovering from a community acquired pneumonia in hospital. He has undergone some blood tests that morning which indicate that he is experiencing AKI stage 2. The results are as follows:

      - Na+ 133 mmol/L (135 - 145)
      - K+ 3.6 mmol/L (3.5 - 5.0)
      - Bicarbonate 23 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 150 µmol/L (55 - 120)

      Over the past 12 hours, he has only produced 360ml of urine. In light of this, what is the most crucial medication to discontinue from his drug chart?

      Your Answer: Co-amoxiclav

      Correct Answer: Diclofenac

      Explanation:

      In cases of acute kidney injury (AKI), it is crucial to discontinue the use of nonsteroidal anti-inflammatory drugs (NSAIDs) as they can potentially worsen renal function. Ibuprofen, being an NSAID, falls under this category.

      NSAIDs work by reducing the production of prostaglandins, which are responsible for vasodilation. Inhibiting their production can lead to vasoconstriction of the afferent arteriole, resulting in decreased renal perfusion and a decline in estimated glomerular filtration rate (eGFR).

      To prevent further damage to the kidneys, all nephrotoxic medications, including NSAIDs, ACE inhibitors, gentamicin, vancomycin, and metformin (which should be discussed with the diabetic team), should be discontinued in cases of AKI.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      34.7
      Seconds
  • Question 69 - A 49-year-old woman visits the clinic complaining of occasional palpitations over the last...

    Incorrect

    • A 49-year-old woman visits the clinic complaining of occasional palpitations over the last 7 days. The palpitations occur without any physical exertion and are not accompanied by chest pain. Upon examination, her heart appears to be functioning normally. An ECG is conducted, revealing indications of hyperkalaemia. What is an ECG indicator of hyperkalaemia?

      Your Answer: Inverted T waves

      Correct Answer: Small or absent P waves

      Explanation:

      The presence of small or inverted T waves on an ECG can indicate hyperkalaemia, along with other signs such as absent or reduced P waves, broad and bizarre QRS complexes, and tall-tented T waves. In severe cases, hyperkalaemia can lead to asystole.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      17.7
      Seconds
  • Question 70 - What is measured to obtain renal plasma flow if the patient is a...

    Correct

    • What is measured to obtain renal plasma flow if the patient is a few years older?

      Your Answer: Para-amino hippuric acid (PAH)

      Explanation:

      The normal value for renal plasma flow is 660ml/min, which is calculated by dividing the amount of PAH in urine per unit time by the difference in PAH concentration in the renal artery or vein.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      14.8
      Seconds
  • Question 71 - A 32-year-old male is undergoing renal transplant surgery. Shortly after the donor kidney...

    Correct

    • A 32-year-old male is undergoing renal transplant surgery. Shortly after the donor kidney has been inserted, the transplanted organ begins to lose its color and becomes limp. Is hyperacute transplant rejection the likely cause of this? What is the underlying mechanism behind it?

      Your Answer: Pre-existing recipient antibodies against donor HLA/ABO antigens

      Explanation:

      Hyperacute transplant rejection is a rapid rejection of a donor organ that can occur within minutes to hours after transplantation. This rejection is caused by pre-existing antibodies against ABO or HLA antigens in the donor organ. If the rejection is widespread, it can activate the coagulation cascade and lead to occlusive thrombosis of the donated organ. Donor organs are carefully matched to recipients to minimize the risk of rejection.

      Mast cell degranulation is an allergic reaction that is mediated by IgE and results in the release of histamine.

      Acute rejection occurs days to weeks after transplantation and is an inflammatory process against the donated organ. Immunosuppressives can be used to slow down this process.

      Chronic rejection occurs months to years after transplantation and is characterized by atrophy of the organ and arteriosclerosis, rather than acute inflammatory processes.

      Graft vs Host disease occurs when donor T-cells mount a cell-mediated response against host tissues. This can lead to cholestasis, jaundice, a widespread rash, and diarrhea. It typically occurs within the first year following transplantation.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      8.9
      Seconds
  • Question 72 - A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals...

    Incorrect

    • A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals abnormal fusion of the inferior poles of both kidneys, leading to a diagnosis of horseshoe kidney. During fetal development, what structure traps horseshoe kidneys as they ascend anteriorly?

      Your Answer: Aortic bifurcation

      Correct Answer: Inferior mesenteric artery

      Explanation:

      During fetal development, horseshoe kidneys become trapped under the inferior mesenteric artery as they ascend from the pelvis, resulting in their remaining low in the abdomen. This can lead to complications such as renal stones, infections, and hydronephrosis, including urteropelvic junction obstruction.

      Understanding Horseshoe Kidney Abnormality

      Horseshoe kidney is a condition that occurs during the embryonic development of the kidneys, where the lower poles of the kidneys fuse together, resulting in a U-shaped kidney. This abnormality is relatively common, affecting approximately 1 in 500 people in the general population. However, it is more prevalent in individuals with Turner’s syndrome, affecting 1 in 20 individuals with the condition.

      The fused kidney is typically located lower than normal due to the root of the inferior mesenteric artery, which prevents the anterior ascent. Despite this abnormality, most people with horseshoe kidney do not experience any symptoms. It is important to note that this condition does not typically require treatment unless complications arise. Understanding this condition can help individuals with horseshoe kidney and their healthcare providers manage any potential health concerns.

    • This question is part of the following fields:

      • Renal System
      18
      Seconds
  • Question 73 - A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent...

    Incorrect

    • A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent urinary tract infections. The paediatric consultant on CAU orders a group of investigations to find out the underlying cause.

      What are the risk factors for UTIs in children, as the paediatrics trainee has asked the medical student?

      Your Answer: Double voiding

      Correct Answer: Posterior urethral valves

      Explanation:

      The risk of urinary tract infection is higher in individuals with posterior urethral valves.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      23.5
      Seconds
  • Question 74 - A 26-year-old man has been in a car accident and his right leg...

    Correct

    • A 26-year-old man has been in a car accident and his right leg has been trapped for 5 hours during transportation. During examination, his foot is found to be insensate and there is only a weakly felt dorsalis pedis pulse. Which of the following biochemical abnormalities is most likely to be present?

      Your Answer: Hyperkalaemia

      Explanation:

      The patient is expected to suffer from compartment syndrome, which may lead to delayed diagnosis and muscle necrosis. Muscle necrosis can cause the release of potassium, and there is a high probability of renal dysfunction, which can result in elevated serum potassium levels.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      10.1
      Seconds
  • Question 75 - An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy...

    Incorrect

    • An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy bruising. Despite maintaining a healthy diet, he has noticed an increase in abdominal weight. Following a positive high dexamethasone test, he is diagnosed with Cushing's disease caused by a pituitary adenoma. Which part of the adrenal gland produces the hormone responsible for his symptoms' pathophysiology?

      Your Answer: Adrenal medulla

      Correct Answer: Zona fasciculata

      Explanation:

      The correct answer is the zona fasciculata of the adrenal cortex.

      This patient’s symptoms suggest that they may have Cushing’s syndrome, which is caused by excess cortisol production. Cortisol is normally produced in the zona fasciculata of the adrenal cortex.

      The adrenal medulla produces catecholamines like adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to reduced renal perfusion.

      The zona glomerulosa is the outer layer of the adrenal cortex and produces mineralocorticoids like aldosterone.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens like DHEA.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      14.8
      Seconds
  • Question 76 - Samantha is a 58-year-old woman who has been experiencing symptoms of urinary urgency...

    Incorrect

    • Samantha is a 58-year-old woman who has been experiencing symptoms of urinary urgency and frequency. She is curious about the accuracy of the PSA test and would like to know what percentage of patients with an elevated PSA level (for their age) do not actually have prostate cancer.

      Approximately what percentage of patients with a raised PSA level (relative to their age) do not have prostate cancer?

      Your Answer: 25%

      Correct Answer: 75%

      Explanation:

      PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland, and it is used as a tumour marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. The National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      The PCRMP has recommended age-adjusted upper limits for PSA, while NICE Clinical Knowledge Summaries suggest a lower threshold for referral. However, PSA levels may also be raised by other conditions such as benign prostatic hyperplasia, prostatitis, urinary tract infection, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract.

      PSA testing has poor specificity and sensitivity, and various methods are used to try and add greater meaning to a PSA level, including age-adjusted upper limits and monitoring change in PSA level with time. It is important to note that digital rectal examination may or may not cause a rise in PSA levels, which is a matter of debate.

    • This question is part of the following fields:

      • Renal System
      20.9
      Seconds
  • Question 77 - A 45-year-old man presents to the physician complaining of fatigue, dark urine, and...

    Incorrect

    • A 45-year-old man presents to the physician complaining of fatigue, dark urine, and swelling in his lower extremities that has been ongoing for the past two weeks. He has no significant medical history and is not taking any medications. He denies using tobacco, alcohol, or drugs. During the physical examination, symmetric pitting oedema is observed in his lower extremities, and his blood pressure is 132/83 mmHg with a pulse of 84/min.

      Laboratory results reveal a urea level of 4mmol/L (2.0 - 7.0) and a creatinine level of 83 µmol/L (55 - 120). Urinalysis shows 4+ proteinuria and microscopic hematuria. Electron microscopy of the kidney biopsy specimen reveals dense deposits within the glomerular basement membrane, and immunofluorescence microscopy is positive for C3, not immunoglobulins.

      What is the most likely pathophysiologic mechanism underlying this patient's condition?

      Your Answer: Anti- GBM antibodies

      Correct Answer: Persistent activation of alternate complement pathway

      Explanation:

      The cause of membranoproliferative glomerulonephritis, type 2, is persistent activation of the alternative complement pathway, which leads to kidney damage. This condition is characterized by IgG antibodies, known as C3 nephritic factor, that target C3 convertase. In contrast, Goodpasture’s syndrome is associated with anti-GBM antibodies, while rapidly progressive glomerulonephritis may involve cell-mediated injury. Immune complex-mediated glomerulopathies, such as SLE and post-streptococcal glomerulonephritis, are caused by circulating immune complexes, while non-immunologic kidney damage is seen in diabetic nephropathy and hypertensive nephropathy.

      Understanding Membranoproliferative Glomerulonephritis

      Membranoproliferative glomerulonephritis, also known as mesangiocapillary glomerulonephritis, is a kidney disease that can present as nephrotic syndrome, haematuria, or proteinuria. Unfortunately, it has a poor prognosis. There are three types of this disease, with type 1 accounting for 90% of cases. It is caused by cryoglobulinaemia and hepatitis C, and can be diagnosed through a renal biopsy that shows subendothelial and mesangium immune deposits of electron-dense material resulting in a ‘tram-track’ appearance under electron microscopy.

      Type 2, also known as ‘dense deposit disease’, is caused by partial lipodystrophy and factor H deficiency. It is characterized by persistent activation of the alternative complement pathway, low circulating levels of C3, and the presence of C3b nephritic factor in 70% of cases. This factor is an antibody to alternative-pathway C3 convertase (C3bBb) that stabilizes C3 convertase. A renal biopsy for type 2 shows intramembranous immune complex deposits with ‘dense deposits’ under electron microscopy.

      Type 3 is caused by hepatitis B and C. While steroids may be effective in managing this disease, it is important to note that the prognosis for all types of membranoproliferative glomerulonephritis is poor. Understanding the different types and their causes can help with diagnosis and management of this serious kidney disease.

    • This question is part of the following fields:

      • Renal System
      65.6
      Seconds
  • Question 78 - A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in...

    Correct

    • A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in her right flank and haematuria. She reports feeling slightly nauseous, but otherwise feels well. She has a medical history of hyperparathyroidism, but has never experienced these symptoms before. Her body mass index is 28kg/m² and she admits to regularly consuming takeaways. During examination, she appears restless and exhibits tenderness in her right flank.

      What is the probable substance responsible for causing this patient's pain?

      Your Answer: Calcium oxalate

      Explanation:

      Renal stones are predominantly made up of calcium phosphate, and individuals with renal tubular acidosis are at a higher risk of developing them. Uric acid stones, which make up only 5-10% of cases, are often associated with malignancies.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      17
      Seconds
  • Question 79 - A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract...

    Correct

    • A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract infection. She has a medical history of type 2 diabetes, hypertension, and a previous cerebrovascular accident. After three days, she experiences an altered sensorium and her urine output has been 100 ml over the past 12 hours. Her creatinine level has increased from 1 mg/dl to almost 5 mg/dl, and her blood pressure is currently 180/100 mmHg. The patient is currently taking amikacin, insulin, atorvastatin, atenolol, ramipril, and clopidogrel.

      Which medication, other than ramipril, should be discontinued for this patient?

      Your Answer: Amikacin

      Explanation:

      The patient’s symptoms suggest that they may be experiencing acute kidney injury (AKI) as a result of a severe urinary tract infection and potential sepsis. It is important to note that ACE inhibitors such as ramipril should not be used in cases of AKI, and aminoglycosides like amikacin should also be discontinued. Beta-blockers like atenolol, on the other hand, are generally safe to use in AKI patients and may be preferred over ACE inhibitors and ARBs as antihypertensives. While statins like atorvastatin are generally safe in AKI, they can rarely cause rhabdomyolysis, which can worsen renal function and lead to renal failure. Therefore, patients who experience muscle pain should be evaluated further to rule out the possibility of rhabdomyolysis.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 80 - A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her...

    Correct

    • A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her high blood pressure. What is the location of action for this diuretic medication?

      Your Answer: Ascending limb of the loop of Henle

      Explanation:

      Furosemide and bumetanide are diuretics that work by blocking the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which decreases the reabsorption of NaCl.

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      13.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (43/80) 54%
Passmed