00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 50-year-old man with a history of type 2 diabetes mellitus, bipolar disorder...

    Incorrect

    • A 50-year-old man with a history of type 2 diabetes mellitus, bipolar disorder and chronic obstructive pulmonary disease presents for a preoperative assessment for an inguinal hernia repair. His bloods are taken and reveal the following results:

      Na+ 125 mmol/l
      K+ 3.8 mmol/l
      Bicarbonate 24 mmol/l
      Urea 3.7 mmol/l
      Creatinine 92 µmol/l

      As a result of his smoking history, a chest x-ray is ordered and reported as normal. The Consultant inquires about the most probable cause of the hyponatraemia.

      Your Answer: Lithium

      Correct Answer: Carbamazepine

      Explanation:

      Carbamazepine, sulfonylureas, SSRIs, and tricyclics are drugs that can cause SIADH. While lithium can lead to diabetes insipidus, it usually occurs with high sodium levels. Elevated antidiuretic hormone levels due to lithium are typically only seen in cases of severe overdose.

      SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.

    • This question is part of the following fields:

      • Renal System
      177.5
      Seconds
  • Question 2 - A 28-year-old man is on day 9 of his cycle from Land's End...

    Correct

    • A 28-year-old man is on day 9 of his cycle from Land's End to John O'Groats. He made a wrong turn and ran out of fluids. After getting back on track, he found a shop and purchased a 2L bottle of water.

      Which part of the nephron is responsible for reabsorbing the majority of this water?

      Your Answer: Proximal tubule

      Explanation:

      The correct answer is the proximal tubule. This is where the majority of filtered water is reabsorbed, due to the osmotic force generated by Na+ reabsorption. Bowman’s capsule only allows for ultrafiltration, while the collecting duct allows for variable water reabsorption, but not to the same extent as the proximal tubule. The distal tubule also plays a role in Na+ reabsorption, but water reabsorption is dependent on this mechanism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      7.2
      Seconds
  • Question 3 - A 54-year-old man was admitted 2 weeks ago for pneumonia and was prescribed...

    Correct

    • A 54-year-old man was admitted 2 weeks ago for pneumonia and was prescribed oral antibiotics. However, the antibiotics were changed after he developed a Clostridium difficile infection 9 days ago, which he is still recovering from. Fortunately, his pneumonia has improved.

      He has no significant medical history and is not taking any long-term medications.

      What are the expected results of his arterial blood gas test?

      Your Answer: Normal anion gap metabolic acidosis

      Explanation:

      Diarrhoea caused by a Clostridium difficile infection can result in a normal anion gap metabolic acidosis due to the loss of bicarbonate. The body compensates for this by increasing chloride concentration, which maintains a normal anion gap. Low anion gap metabolic acidosis, normal anion gap metabolic alkalosis, and raised anion gap metabolic acidosis are all incorrect as they do not accurately reflect the compensatory mechanisms in this scenario.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      80.1
      Seconds
  • Question 4 - A 25-year-old woman visits her GP, reporting excessive urination and constant thirst for...

    Correct

    • A 25-year-old woman visits her GP, reporting excessive urination and constant thirst for the past few months. She has a history of bipolar disorder and is taking lithium. The symptoms suggest nephrogenic diabetes insipidus, which occurs when the kidneys fail to respond to vasopressin. What is the primary site in the kidney responsible for most of the water reabsorption?

      Your Answer: Proximal tubule

      Explanation:

      The proximal tubule is responsible for reabsorbing the majority of water in the kidneys. However, in cases of nephrogenic diabetes insipidus, which is often a result of taking lithium, the collecting ducts do not properly respond to antidiuretic hormone (ADH). This means that even with increased ADH, aquaporin-2 channels are not inserted in the collecting ducts, resulting in decreased water reabsorption.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      18.9
      Seconds
  • Question 5 - Which one of the following decreases the production of renin? ...

    Incorrect

    • Which one of the following decreases the production of renin?

      Your Answer: Adrenaline

      Correct Answer: Beta-blockers

      Explanation:

      Renin and its Factors

      Renin is a hormone that is produced by juxtaglomerular cells. Its main function is to convert angiotensinogen into angiotensin I. There are several factors that can stimulate or reduce the secretion of renin.

      Factors that stimulate renin secretion include hypotension, which can cause reduced renal perfusion, hyponatremia, sympathetic nerve stimulation, catecholamines, and erect posture. On the other hand, there are also factors that can reduce renin secretion, such as beta-blockers and NSAIDs.

      It is important to understand the factors that affect renin secretion as it plays a crucial role in regulating blood pressure and fluid balance in the body. By knowing these factors, healthcare professionals can better manage and treat conditions related to renin secretion.

    • This question is part of the following fields:

      • Renal System
      44.2
      Seconds
  • Question 6 - A 42-year-old woman visits your clinic to review the results of her ambulatory...

    Correct

    • A 42-year-old woman visits your clinic to review the results of her ambulatory blood pressure test, which showed an average blood pressure of 148/93 mmHg. As a first-line treatment for hypertension in this age group, you suggest starting antihypertensive medication, specifically ACE inhibitors. These medications work by inhibiting the action of angiotensin-converting-enzyme, which converts angiotensin I to angiotensin II. Renin catalyzes the hydrolysis of angiotensinogen to produce angiotensin I. What type of kidney cell releases renin?

      Your Answer: Juxtaglomerular cells

      Explanation:

      The kidneys have several specialized cells that play important roles in their function. The juxtaglomerular cells, found in the walls of the afferent arterioles, produce renin which is a key factor in the renin-angiotensin-aldosterone system. Podocytes, located in the Bowman’s capsule, wrap around the glomerular capillaries and help filter blood through their filtration slits. The cells lining the proximal tubule are responsible for absorption and secretion of various substances. The macula densa, located in the cortical thick ascending limb of the loop of Henle, detects sodium chloride levels and can trigger the release of renin and vasodilation of the afferent arterioles if levels are low.

      Renin and its Factors

      Renin is a hormone that is produced by juxtaglomerular cells. Its main function is to convert angiotensinogen into angiotensin I. There are several factors that can stimulate or reduce the secretion of renin.

      Factors that stimulate renin secretion include hypotension, which can cause reduced renal perfusion, hyponatremia, sympathetic nerve stimulation, catecholamines, and erect posture. On the other hand, there are also factors that can reduce renin secretion, such as beta-blockers and NSAIDs.

      It is important to understand the factors that affect renin secretion as it plays a crucial role in regulating blood pressure and fluid balance in the body. By knowing these factors, healthcare professionals can better manage and treat conditions related to renin secretion.

    • This question is part of the following fields:

      • Renal System
      22.8
      Seconds
  • Question 7 - A 25-year-old man visits his primary care physician worried about a lump on...

    Correct

    • A 25-year-old man visits his primary care physician worried about a lump on his testes. He has no significant medical history and has recently started a new job after completing his education. His cousin was diagnosed with testicular cancer last year, and he is anxious that he might have the same condition.

      During the examination, the physician observes a diffuse swelling of the testes with tenderness on palpation.

      After prescribing a short course of ibuprofen, the patient remains concerned about testicular cancer and inquires about its presenting features in young men.

      What could be a possible presenting feature of testicular cancer in men in their mid-twenties?

      Your Answer: Hydrocele

      Explanation:

      Testicular cancer in young men may manifest as a hydrocele, which is the accumulation of fluid around the testicle. Therefore, it is important to investigate all cases of hydrocele to rule out cancer. On the other hand, epididymitis, which is usually caused by a bacterial infection, is unlikely to be a presenting feature of testicular cancer. If a male patient presents with frank haematuria, urgent investigation is necessary to rule out bladder cancer. A chancre, which is a painless genital ulcer commonly seen in the primary stage of syphilis, is not a presenting feature of testicular cancer.

      Testicular cancer is a common type of cancer that affects men between the ages of 20 and 30. The majority of cases (95%) are germ-cell tumors, which can be further classified as seminomas or non-seminomas. Non-germ cell tumors, such as Leydig cell tumors and sarcomas, are less common. Risk factors for testicular cancer include infertility, cryptorchidism, family history, Klinefelter’s syndrome, and mumps orchitis. Symptoms may include a painless lump, pain, hydrocele, and gynaecomastia.

      Tumour markers can be used to diagnose testicular cancer. For germ cell tumors, hCG may be elevated in seminomas, while AFP and/or beta-hCG are elevated in non-seminomas. LDH may also be elevated in germ cell tumors. Ultrasound is the first-line diagnostic tool.

      Treatment for testicular cancer depends on the type and stage of the tumor. Orchidectomy, chemotherapy, and radiotherapy may be used. Prognosis is generally excellent, with a 5-year survival rate of around 95% for Stage I seminomas and 85% for Stage I teratomas.

    • This question is part of the following fields:

      • Renal System
      15
      Seconds
  • Question 8 - An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy...

    Incorrect

    • An 73-year-old man visits his doctor complaining of limb weakness, fatigue, and easy bruising. Despite maintaining a healthy diet, he has noticed an increase in abdominal weight. Following a positive high dexamethasone test, he is diagnosed with Cushing's disease caused by a pituitary adenoma. Which part of the adrenal gland produces the hormone responsible for his symptoms' pathophysiology?

      Your Answer: Zona glomerulosa

      Correct Answer: Zona fasciculata

      Explanation:

      The correct answer is the zona fasciculata of the adrenal cortex.

      This patient’s symptoms suggest that they may have Cushing’s syndrome, which is caused by excess cortisol production. Cortisol is normally produced in the zona fasciculata of the adrenal cortex.

      The adrenal medulla produces catecholamines like adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to reduced renal perfusion.

      The zona glomerulosa is the outer layer of the adrenal cortex and produces mineralocorticoids like aldosterone.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens like DHEA.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      22.3
      Seconds
  • Question 9 - A 30-year-old woman is being evaluated for possible Addison's disease due to experiencing...

    Correct

    • A 30-year-old woman is being evaluated for possible Addison's disease due to experiencing atypical exhaustion and observing a mild bronzing of her skin. The underlying cause is believed to be an autoimmune assault on the adrenal cortex, leading to reduced secretion of aldosterone.

      What is the typical physiological trigger for the production of this steroid hormone?

      Your Answer: Angiotensin II

      Explanation:

      The correct answer is Angiotensin II, which stimulates the release of aldosterone. It also has the ability to stimulate the release of ADH, increase blood pressure, and influence the kidneys to retain sodium and water.

      Angiotensin I is not the correct answer as it is converted to angiotensin II by ACE and does not have a direct role in the release of aldosterone by the adrenal cortex.

      ACE is released by the capillaries in the lungs and is responsible for converting angiotensin I to angiotensin II.

      Angiotensinogen is not the correct answer as it is the first step in the renin-angiotensin-aldosterone system. It is released by the liver and converted to angiotensin I by renin.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      16.7
      Seconds
  • Question 10 - A 90-year-old man is discovered unconscious in his residence. He is transported to...

    Incorrect

    • A 90-year-old man is discovered unconscious in his residence. He is transported to the hospital for further evaluation and is diagnosed with dehydration-induced hypotension. What is the most probable physiological response?

      Your Answer: Decreased aldosterone secretion

      Correct Answer: Renin release due to reduced perfusion of organs

      Explanation:

      Renin is released when there is a decrease in renal perfusion.

      The secretion of aldosterone would increase due to elevated levels of angiotensin II.

      Angiotensin II causes vasoconstriction of the efferent arteriole to the glomerulus, which increases the pressure across the glomerulus and filtration fraction, ultimately preserving GFR.

      Angiotensin II stimulates the pituitary gland to secrete more ADH, which acts on the collecting duct to increase water absorption.

      The baroreceptor reflex is another mechanism that helps maintain blood pressure homeostasis, along with the renin-angiotensin-aldosterone system. When blood pressure increases, baroreceptors in the aortic arch/carotid sinus detect the stretching of the vessel, leading to inhibition of sympathetic tone and increased parasympathetic tone, which decreases blood pressure. In hypotension, the baroreceptors detect less stretching in the vessel, leading to increased sympathetic tone and decreased parasympathetic tone. In this case, increased sympathetic tone would result in an increase in heart rate.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      64
      Seconds
  • Question 11 - A 75-year-old male is brought to the emergency department after falling at home....

    Correct

    • A 75-year-old male is brought to the emergency department after falling at home. Upon admission, his blood tests reveal a sodium level of 128 mmol/l. Which medication is the most probable cause of this?

      Your Answer: Sertraline

      Explanation:

      Hyponatremia is a common side effect of SSRIs, including Sertraline, which can cause SIADH. However, medications such as Statins, Levothyroxine, and Metformin are not typically linked to hyponatremia.

      SIADH is a condition where the body retains too much water, leading to low sodium levels in the blood. This can be caused by various factors such as malignancy (particularly small cell lung cancer), neurological conditions like stroke or meningitis, infections like tuberculosis or pneumonia, certain drugs like sulfonylureas and SSRIs, and other factors like positive end-expiratory pressure and porphyrias. Treatment involves slowly correcting the sodium levels, restricting fluid intake, and using medications like demeclocycline or ADH receptor antagonists. It is important to correct the sodium levels slowly to avoid complications like central pontine myelinolysis.

    • This question is part of the following fields:

      • Renal System
      69.7
      Seconds
  • Question 12 - A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical...

    Correct

    • A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical history of relapsed multiple myeloma. A renal biopsy is performed, and the Congo red stain with light microscopy shows apple-green birefringence under polarised light.

      What is the probable diagnosis?

      Your Answer: Amyloidosis

      Explanation:

      Understanding Amyloidosis

      Amyloidosis is a medical condition that occurs when an insoluble fibrillar protein called amyloid accumulates outside the cells. This protein is derived from various precursor proteins and contains non-fibrillary components such as amyloid-P component, apolipoprotein E, and heparan sulphate proteoglycans. The accumulation of amyloid fibrils can lead to tissue or organ dysfunction.

      Amyloidosis can be classified as systemic or localized, and further characterized by the type of precursor protein involved. For instance, in myeloma, the precursor protein is immunoglobulin light chain fragments, which is abbreviated as AL (A for amyloid and L for light chain fragments).

      To diagnose amyloidosis, doctors may use Congo red staining, which shows apple-green birefringence, or a serum amyloid precursor (SAP) scan. Biopsy of skin, rectal mucosa, or abdominal fat may also be necessary. Understanding amyloidosis is crucial for early detection and treatment of the condition.

    • This question is part of the following fields:

      • Renal System
      13
      Seconds
  • Question 13 - A 24-year-old male patient visits his GP after observing swelling in his legs....

    Incorrect

    • A 24-year-old male patient visits his GP after observing swelling in his legs. He mentions that his urine has turned frothy. Upon conducting blood tests, the doctor discovers elevated cholesterol levels and reduced albumin.

      What type of electrolyte imbalances should the GP anticipate in this individual?

      Your Answer: Hypervolaemic hypernatraemia

      Correct Answer: Hypervolaemic hyponatraemia

      Explanation:

      Hypervolaemic hyponatraemia can be caused by nephrotic syndrome.

      Nephrotic syndrome is characterized by oedema, proteinuria, hypercholesterolaemia, and hypoalbuminaemia. It results in fluid retention, which can lead to hypervolaemic hyponatraemia. Urinary sodium levels would not show an increase if tested.

      Understanding Hyponatraemia: Causes and Diagnosis

      Hyponatraemia is a condition that can be caused by either an excess of water or a depletion of sodium in the body. However, it is important to note that there are also cases of pseudohyponatraemia, which can be caused by factors such as hyperlipidaemia or taking blood from a drip arm. To diagnose hyponatraemia, doctors often look at the levels of urinary sodium and osmolarity.

      If the urinary sodium level is above 20 mmol/l, it may indicate sodium depletion due to renal loss or the use of diuretics such as thiazides or loop diuretics. Other possible causes include Addison’s disease or the diuretic stage of renal failure. On the other hand, if the patient is euvolaemic, it may be due to conditions such as SIADH (urine osmolality > 500 mmol/kg) or hypothyroidism.

      If the urinary sodium level is below 20 mmol/l, it may indicate sodium depletion due to extrarenal loss caused by conditions such as diarrhoea, vomiting, sweating, burns, or adenoma of rectum. Alternatively, it may be due to water excess, which can cause the patient to be hypervolaemic and oedematous. This can be caused by conditions such as secondary hyperaldosteronism, nephrotic syndrome, IV dextrose, or psychogenic polydipsia.

      In summary, hyponatraemia can be caused by a variety of factors, and it is important to diagnose the underlying cause in order to provide appropriate treatment. By looking at the levels of urinary sodium and osmolarity, doctors can determine the cause of hyponatraemia and provide the necessary interventions.

    • This question is part of the following fields:

      • Renal System
      65.6
      Seconds
  • Question 14 - A 50-year-old male is brought back to a surgical ward after a renal...

    Incorrect

    • A 50-year-old male is brought back to a surgical ward after a renal transplant. Diuresis suddenly decreases 2 hours after the transplantation. The patient is quickly transferred back to surgery where the transplanted kidney displays signs of hyperacute rejection and is removed. Histopathological examination confirms hyperacute rejection.

      What type of reaction has this patient undergone?

      Your Answer: Type IV hypersensitivity

      Correct Answer: Type II hypersensitivity

      Explanation:

      Hyperacute transplant rejection is a type II hypersensitivity reaction, which is characterized by a cytotoxic response caused by pre-existing antibodies to the ABO or HLA antigens. This reaction leads to widespread thrombosis and ischaemia/necrosis within the transplanted organ, necessitating its surgical removal.

      In contrast, type I hypersensitivity is an immediate IgE-mediated reaction that occurs within minutes, while type III hypersensitivity is an IgM-mediated reaction that involves the formation of circulating immune complexes. Type IV hypersensitivity is a cell-mediated response that takes weeks to develop and is seen in chronic graft rejections. Finally, type V hypersensitivity is an autoimmune reaction that involves the binding of auto-antibodies to cell surface receptors, either preventing the intended ligand binding or mimicking its effects.

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      12.2
      Seconds
  • Question 15 - A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to...

    Correct

    • A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?

      Your Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta

      Explanation:

      The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.

      The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.

      If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      20.4
      Seconds
  • Question 16 - A 65-year-old man comes in with symptoms related to his lower urinary tract...

    Correct

    • A 65-year-old man comes in with symptoms related to his lower urinary tract and is given the option to take a PSA test. What factor could potentially affect the accuracy of his PSA level?

      Your Answer: Vigorous exercise in the past 48 hours

      Explanation:

      Understanding PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.

    • This question is part of the following fields:

      • Renal System
      8.3
      Seconds
  • Question 17 - A 65-year-old male presents with a six month history of weight loss and...

    Incorrect

    • A 65-year-old male presents with a six month history of weight loss and tiredness. He is a smoker of 10 cigarettes per day and drinks approximately 10 units of alcohol daily.

      On examination, he appears slightly plethoric, but otherwise has no obvious abnormality. Investigations reveal a haemoglobin level of 202 g/L (130-180), platelets of 310 ×109/L (150-400), and a white cell count of 9.2 ×109/L (4-11). His U+Es are normal and his glucose level is 5.5 mmol/L (3.0-6.0). Urine analysis reveals blood 2+.

      What is the most appropriate investigation for this patient that will aid in the diagnosis?

      Your Answer: Chest x ray

      Correct Answer: Abdominal ultrasound scan

      Explanation:

      Salient Features and Possible Causes of Polycythaemia

      The patient presents with weight loss, no obvious physical abnormalities, and a polycythaemia with 2+ blood on dipstick analysis. These symptoms suggest the need for investigation of a genitourinary (GU) malignancy, with an ultrasound abdomen being the most appropriate test. It is important to note that smoking may cause polycythaemia, but it could also be caused by a hypernephroma that produces ectopic erythropoietin. Therefore, further investigation is necessary to determine the underlying cause of the patient’s polycythaemia.

    • This question is part of the following fields:

      • Renal System
      56.1
      Seconds
  • Question 18 - A 39-year-old male visits his GP for a routine check-up of his high...

    Correct

    • A 39-year-old male visits his GP for a routine check-up of his high blood pressure. Despite being on a maximum dose of ramipril, amlodipine, and spironolactone, his blood pressure remains consistently at or above 160/100 mmHg. During the consultation, the patient reveals that he has been experiencing episodes of intense anxiety, sweating, palpitations, and fear about twice a week for the past six months.

      What is the source of the hormone responsible for the symptoms experienced by this man?

      Your Answer: Adrenal medulla

      Explanation:

      The patient’s symptoms suggest a phaeochromocytoma, which is caused by a tumor in the adrenal medulla that leads to the release of excess epinephrine. This results in refractory hypertension and severe episodes of sweating, palpitations, and anxiety.

      While the pituitary gland produces hormones like thyroid-stimulating hormone and adrenocorticotropic hormone, these hormones do not directly cause the symptoms seen in this patient. Additionally, excess ACTH production is associated with Cushing’s syndrome, which does not fit the clinical picture.

      The adrenal cortex has three distinct zones, each responsible for producing different hormones. The zona fasciculata produces glucocorticoids like cortisol, which can lead to Cushing’s syndrome. The zona glomerulosa produces mineralocorticoids like aldosterone, which can cause uncontrolled hypertension and electrolyte imbalances. The zona reticularis produces androgens like testosterone. However, none of these conditions match the symptoms seen in this patient.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      20.2
      Seconds
  • Question 19 - A 55-year-old man presents to the emergency department after his GP performed an...

    Correct

    • A 55-year-old man presents to the emergency department after his GP performed an ECG due to complaints of palpitations, which showed active changes associated with hyperkalaemia. The emergency department confirms these changes and an arterial blood gas reveals a serum potassium level of 6.9 mmol/l. The patient is promptly initiated on treatment. What intervention will stabilize the cardiac membrane?

      Your Answer: Calcium gluconate

      Explanation:

      Hyperkalaemia is present in the patient.

      Although all the options are used in treating hyperkalaemia, they have distinct roles. Calcium gluconate is the only option used to stabilise the cardiac membrane.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      12.7
      Seconds
  • Question 20 - A 73-year-old man visits the urology clinic due to an elevated PSA level....

    Correct

    • A 73-year-old man visits the urology clinic due to an elevated PSA level. Despite undergoing a biopsy, there are no indications of cancer or benign prostatic hypertrophy.

      The patient has a medical history of diabetes mellitus, hypertension, scrotal varicocele, renal calculi, and acute urine retention.

      Out of his existing medical conditions, which one is the probable culprit for his increased PSA level?

      Your Answer: Urine retention

      Explanation:

      Urinary retention is a common cause of a raised PSA reading, as it can lead to bladder enlargement. Other conditions such as diabetes mellitus, hypertension, and renal calculi are not direct causes of elevated PSA levels.

      Understanding PSA Testing for Prostate Cancer

      Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.

      PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.

    • This question is part of the following fields:

      • Renal System
      26.2
      Seconds
  • Question 21 - A 32-year-old single mum has been recommended for genetic testing after her 10-months-old...

    Incorrect

    • A 32-year-old single mum has been recommended for genetic testing after her 10-months-old daughter was diagnosed with congenital nephrogenic diabetes insipidus. She has no symptoms and does not know of any family history of this disorder.

      Which part of the kidney is frequently impacted in this condition?

      Your Answer: Aquaporin 1 channel (AQP1)

      Correct Answer: Vasopressin receptor

      Explanation:

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      30.5
      Seconds
  • Question 22 - A 25-year-old suffers a groin stab wound resulting in hypovolaemic shock. What would...

    Correct

    • A 25-year-old suffers a groin stab wound resulting in hypovolaemic shock. What would be the probable observation on examining his urine?

      Your Answer: Increased specific gravity

      Explanation:

      When blood pressure drops below the level at which the kidney can regulate its blood flow, hypovolemic shock can lead to a reduction in renal blood flow. This can cause an increase in specific gravity as the body tries to retain water to maintain blood volume.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      20.9
      Seconds
  • Question 23 - A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract...

    Correct

    • A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract infection. She has a medical history of type 2 diabetes, hypertension, and a previous cerebrovascular accident. After three days, she experiences an altered sensorium and her urine output has been 100 ml over the past 12 hours. Her creatinine level has increased from 1 mg/dl to almost 5 mg/dl, and her blood pressure is currently 180/100 mmHg. The patient is currently taking amikacin, insulin, atorvastatin, atenolol, ramipril, and clopidogrel.

      Which medication, other than ramipril, should be discontinued for this patient?

      Your Answer: Amikacin

      Explanation:

      The patient’s symptoms suggest that they may be experiencing acute kidney injury (AKI) as a result of a severe urinary tract infection and potential sepsis. It is important to note that ACE inhibitors such as ramipril should not be used in cases of AKI, and aminoglycosides like amikacin should also be discontinued. Beta-blockers like atenolol, on the other hand, are generally safe to use in AKI patients and may be preferred over ACE inhibitors and ARBs as antihypertensives. While statins like atorvastatin are generally safe in AKI, they can rarely cause rhabdomyolysis, which can worsen renal function and lead to renal failure. Therefore, patients who experience muscle pain should be evaluated further to rule out the possibility of rhabdomyolysis.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      34.1
      Seconds
  • Question 24 - A 45-year-old female is admitted to the hospital for investigation of recently developed...

    Correct

    • A 45-year-old female is admitted to the hospital for investigation of recently developed hypertension, myalgia, and a facial rash. She experiences a decline in kidney function and complains of muscle aches and ankle swelling during her hospital stay. A kidney biopsy and urine sample are taken, revealing a proliferative 'wire-loop' glomerular lesion on histopathological assessment. The urinalysis shows proteinuria but no presence of leukocytes or nitrites. What is the most probable diagnosis?

      Your Answer: Systemic lupus erythematosus

      Explanation:

      Lupus nephritis is characterized by proliferative ‘wire-loop’ glomerular histology, proteinuria, and systemic symptoms. This condition occurs when autoimmune processes in SLE cause inflammation and damage to the glomeruli. Symptoms may include oedema, myalgia, arthralgia, hypertension, and foamy-appearing urine due to high levels of protein. Acute tubular necrosis primarily affects the tubules and does not typically present with proteinuria. Congestive heart failure and IgA nephropathy can cause proteinuria, but they do not result in the ‘wire-loop’ glomerular lesion seen in lupus nephritis. Pyelonephritis may also cause proteinuria, but it is an infectious process and would present with additional symptoms such as nitrites, leukocytes, and blood in the urine.

      Renal Complications in Systemic Lupus Erythematosus

      Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.

      Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.

    • This question is part of the following fields:

      • Renal System
      64.7
      Seconds
  • Question 25 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Correct

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      58.3
      Seconds
  • Question 26 - A 54-year-old man visits the outpatient clinic complaining of feeling generally unwell with...

    Incorrect

    • A 54-year-old man visits the outpatient clinic complaining of feeling generally unwell with increased diarrhoea and vomiting for the past week. He has a medical history of hypertension and type 2 diabetes mellitus and is currently taking amlodipine, candesartan, doxazosin, metformin, gliclazide, and insulin.

      The following investigations were conducted:

      Results today 3 months ago Reference ranges
      Na+ 137 mmol/L 133 mmol/L (135 - 145)
      K+ 6.1 mmol/L 3.6 mmol/L (3.5 - 5.0)
      Urea 8.9 mmol/L 4.5 mmol/L (2.0 - 7.0)
      Creatinine 155 µmol/L 65 µmol/L (55 - 120)
      eGFR 35 mL/min/1.73m² 90 mL/min/1.73m² (> 60)

      Which medication should be discontinued?

      Your Answer: Gliclazide

      Correct Answer: Candesartan

      Explanation:

      In cases of acute kidney injury, it is important to identify and treat the underlying cause while preventing further deterioration. However, certain medications must be discontinued, including angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, NSAIDs, and diuretics. Therefore, candesartan, an angiotensin receptor blocker, should be stopped in this patient. On the other hand, amlodipine, a calcium channel blocker, and doxazosin, an alpha antagonist, are safe to continue in patients with acute kidney injury.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      53.2
      Seconds
  • Question 27 - A 59-year-old man comes to the GP complaining of lower back pain, weight...

    Incorrect

    • A 59-year-old man comes to the GP complaining of lower back pain, weight loss, an abdominal mass, and visible haematuria. The GP eliminates the possibility of a UTI and refers him through a 2-week wait pathway. An ultrasound reveals a tumour, and a biopsy confirms renal cell carcinoma. From which part of the kidney does his cancer originate?

      Your Answer: Transitional cell

      Correct Answer: Proximal renal tubular epithelium

      Explanation:

      Renal cell carcinoma originates from the proximal renal tubular epithelium, while the other options, such as blood vessels, distal renal tubular epithelium, and glomerular basement membrane, are all parts of the kidney but not the site of origin for renal cell carcinoma. Transitional cell carcinoma, on the other hand, arises from the transitional cells in the lining of the renal pelvis.

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      35.5
      Seconds
  • Question 28 - A health-conscious 45-year-old presents with an unexplained acute kidney injury (AKI) and a...

    Correct

    • A health-conscious 45-year-old presents with an unexplained acute kidney injury (AKI) and a kidney biopsy reveals the presence of calcium oxalate crystals in the renal tubules. The patient's calcium levels are normal, oxalate levels are elevated, and vitamin D levels are within normal range. Which vitamin overdose could potentially account for this condition?

      Your Answer: Vitamin C

      Explanation:

      The deposition of calcium oxalate in the renal tubules indicates that the patient is experiencing oxalate nephropathy, which is commonly caused by an overdose of vitamin C. Therefore, the correct answer is vitamin C overdose. It should be noted that elevated calcium levels are associated with vitamin D overdose, which is not applicable in this case.

      Understanding Oxalate Nephropathy

      Oxalate nephropathy is a type of sudden kidney damage that occurs when calcium oxalate crystals accumulate in the renal tubules. This condition can be caused by various factors, including the ingestion of ethylene glycol or an overdose of vitamin C. When these crystals build up in the renal tubules, they can cause damage to the tubular epithelium, leading to kidney dysfunction.

      To better understand oxalate nephropathy, it is important to note that the renal tubules are responsible for filtering waste products from the blood and excreting them in the urine. When calcium oxalate crystals accumulate in these tubules, they can disrupt this process and cause damage to the tubular epithelium. This can lead to a range of symptoms, including decreased urine output, swelling in the legs and feet, and fatigue.

    • This question is part of the following fields:

      • Renal System
      13.5
      Seconds
  • Question 29 - A 40-year-old man visits his doctor for a routine check-up and is informed...

    Correct

    • A 40-year-old man visits his doctor for a routine check-up and is informed that his cholesterol levels are elevated. He has a significant family history of high cholesterol and genetic testing reveals that he is heterozygous for the affected allele. If he has a child with a woman who does not carry the affected allele, what is the probability that their child will inherit the condition?

      Your Answer: 50%

      Explanation:

      Familial Hypercholesterolaemia: Causes, Diagnosis, and Management

      Familial hypercholesterolaemia (FH) is a genetic condition that affects approximately 1 in 500 people. It is an autosomal dominant disorder that results in high levels of LDL-cholesterol, which can lead to early cardiovascular disease if left untreated. FH is caused by mutations in the gene that encodes the LDL-receptor protein.

      To diagnose FH, NICE recommends suspecting it as a possible diagnosis in adults with a total cholesterol level greater than 7.5 mmol/l and/or a personal or family history of premature coronary heart disease. For children of affected parents, testing should be arranged by age 10 if one parent is affected and by age 5 if both parents are affected.

      The Simon Broome criteria are used for clinical diagnosis, which includes a total cholesterol level greater than 7.5 mmol/l and LDL-C greater than 4.9 mmol/l in adults or a total cholesterol level greater than 6.7 mmol/l and LDL-C greater than 4.0 mmol/l in children. Definite FH is diagnosed if there is tendon xanthoma in patients or first or second-degree relatives or DNA-based evidence of FH. Possible FH is diagnosed if there is a family history of myocardial infarction below age 50 years in second-degree relatives, below age 60 in first-degree relatives, or a family history of raised cholesterol levels.

      Management of FH involves referral to a specialist lipid clinic and the use of high-dose statins as first-line treatment. CVD risk estimation using standard tables is not appropriate in FH as they do not accurately reflect the risk of CVD. First-degree relatives have a 50% chance of having the disorder and should be offered screening, including children who should be screened by the age of 10 years if there is one affected parent. Statins should be discontinued in women 3 months before conception due to the risk of congenital defects.

    • This question is part of the following fields:

      • Renal System
      6.7
      Seconds
  • Question 30 - A 73-year-old man comes to the clinic with complaints of increasing nocturia, a...

    Correct

    • A 73-year-old man comes to the clinic with complaints of increasing nocturia, a feeble urinary stream, and some weight loss in the past few months. Upon examination, an enlarged prostate with nodules is observed, and he is promptly referred for further testing, which reveals prostate cancer cells.

      During the local urology cancer multidisciplinary team meeting, his case is discussed, and the team recommends a course of bicalutamide. What is the mechanism of action of this medication?

      Your Answer: Androgen receptor blocker

      Explanation:

      Bicalutamide, a non-steroidal drug, is utilized in the treatment of prostate cancer as an androgen receptor blocker. It is often used in combination with other approaches such as hormonal treatment, radiotherapy, chemotherapy, and prostatectomy. Abiraterone, on the other hand, is an androgen synthesis blocker that inhibits enzymes required for production. It is typically used for hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after anti-androgen therapy has failed. Goserelin is a gonadotrophin-releasing hormone (GnRH) agonist that ultimately downregulates sex hormones. It is initially co-prescribed with an anti-androgen due to its potential to cause an initial flare in testosterone levels. More recently, GnRH antagonists like abarelix have been used to quickly suppress testosterone without the initial flare seen with agonists. Cyproterone acetate, which exhibits progestogenic activity and steroidal and antiandrogenic effects, is another drug used in prostate cancer management but is less commonly used due to the widespread use of non-steroidal drugs like bicalutamide.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      18.4
      Seconds
  • Question 31 - An 82-year-old woman with a history of chronic kidney disease presents to the...

    Incorrect

    • An 82-year-old woman with a history of chronic kidney disease presents to the general practice with a painful left foot. The pain is sharp in nature and is felt mostly towards the posterior of the sole of the foot. The pain is most severe when the patient takes her first few steps after getting out of bed in the morning. There is no history of trauma. You diagnose plantar fasciitis. The usual treatment of plantar fasciitis is with NSAIDs. However, NSAIDs are contraindicated in severe renal disease. What is the effect of NSAIDs on the glomerular filtration pressure?

      Your Answer: Vasoconstriction of the efferent arteriole

      Correct Answer: Vasoconstriction of the afferent arteriole

      Explanation:

      The correct answer is vasoconstriction of the afferent arteriole, as explained in the following notes.

      ACE inhibitors and ARBs cause vasodilation of the efferent arteriole, which reduces glomerular filtration pressure. This effect is particularly significant in individuals with renal artery stenosis, as their kidneys receive limited perfusion, including the glomeruli.

      In a healthy individual, the afferent arteriole remains dilated, while the efferent arteriole remains constricted to maintain a fine balance of glomerular pressure. Vasodilation of the afferent arteriole or vasoconstriction of the efferent arteriole would both increase glomerular filtration pressure.

      The patient in the given question is experiencing symptoms that suggest plantar fasciitis, a common condition caused by inflammation of the plantar fascia in the foot.

      The Impact of NSAIDs on Kidney Function

      NSAIDs are commonly used anti-inflammatory drugs that work by inhibiting the enzymes COX-1 and COX-2, which are responsible for the synthesis of prostanoids such as prostaglandins and thromboxanes. In the kidneys, prostaglandins play a crucial role in vasodilating the afferent arterioles of the glomeruli, allowing for increased blood flow and a higher glomerular filtration rate (GFR).

      However, when NSAIDs inhibit the COX enzymes, the levels of prostaglandins decrease, leading to a reduction in afferent arteriole vasodilation and subsequently, a decrease in renal perfusion and GFR. This can have negative consequences for kidney function, particularly in individuals with pre-existing kidney disease or those taking high doses of NSAIDs for prolonged periods of time.

      It is important for healthcare providers to consider the potential impact of NSAIDs on kidney function and to monitor patients accordingly, especially those at higher risk for kidney damage. Alternative treatments or lower doses of NSAIDs may be recommended to minimize the risk of kidney injury.

    • This question is part of the following fields:

      • Renal System
      37.3
      Seconds
  • Question 32 - What substance is most effective in obtaining the most precise measurement of the...

    Incorrect

    • What substance is most effective in obtaining the most precise measurement of the glomerular filtration rate?

      Your Answer: Glucose

      Correct Answer: Inulin

      Explanation:

      The decrease in renal function and muscle mass as one ages leads to a decline in creatinine levels. The kidney reabsorbs glucose, protein (amino acids), and PAH.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      17.2
      Seconds
  • Question 33 - A 27-year-old man is involved in a car crash resulting in a fracture...

    Incorrect

    • A 27-year-old man is involved in a car crash resulting in a fracture of his right tibia. He undergoes fasciotomies and an external fixator is applied. Within 48 hours, his serum creatinine levels increase and his urine is analyzed, revealing the presence of muddy brown casts. What is the probable underlying diagnosis?

      Your Answer: Thin basement membrane disease

      Correct Answer: Acute tubular necrosis

      Explanation:

      It is probable that the patient suffered from compartment syndrome due to a tibial fracture and subsequent fasciotomies, which can result in myoglobinuria. The combination of deteriorating kidney function and the presence of muddy brown casts in the urine strongly indicate acute tubular necrosis. Acute interstitial nephritis is typically caused by drug toxicity and does not typically lead to the presence of muddy brown casts in the urine.

      Understanding the Difference between Acute Tubular Necrosis and Prerenal Uraemia

      Acute kidney injury can be caused by various factors, including prerenal uraemia and acute tubular necrosis. It is important to differentiate between the two to determine the appropriate treatment. Prerenal uraemia occurs when the kidneys hold on to sodium to preserve volume, leading to decreased blood flow to the kidneys. On the other hand, acute tubular necrosis is caused by damage to the kidney tubules, which can be due to various factors such as toxins, infections, or ischemia.

      To differentiate between the two, several factors can be considered. In prerenal uraemia, the urine sodium level is typically less than 20 mmol/L, while in acute tubular necrosis, it is usually greater than 40 mmol/L. The urine osmolality is also higher in prerenal uraemia, typically above 500 mOsm/kg, while in acute tubular necrosis, it is usually below 350 mOsm/kg. The fractional sodium excretion is less than 1% in prerenal uraemia, while it is greater than 1% in acute tubular necrosis. Additionally, the response to fluid challenge is typically good in prerenal uraemia, while it is poor in acute tubular necrosis.

      Other factors that can help differentiate between the two include the serum urea:creatinine ratio, fractional urea excretion, urine:plasma osmolality, urine:plasma urea, specific gravity, and urine sediment. By considering these factors, healthcare professionals can accurately diagnose and treat acute kidney injury.

    • This question is part of the following fields:

      • Renal System
      10.4
      Seconds
  • Question 34 - A 64-year-old man is seen in the endocrinology clinic for review of his...

    Correct

    • A 64-year-old man is seen in the endocrinology clinic for review of his type II diabetes. He is currently on metformin and gliclazide, but his HbA1c is 68 mmol/mol. To improve his glycaemic control, you plan to initiate empagliflozin as a third agent. What is the site of action of this medication to achieve its mechanism of action?

      Your Answer: Proximal convoluted tubule of the nephron

      Explanation:

      The proximal convoluted tubule of the nephron is where the majority of glucose reabsorption occurs. Empagliflozin, which inhibits the SGLT-2 receptor, prevents glucose reabsorption in this area. Insulin receptors are found throughout the body, not SGLT-2 receptors. The distal convoluted tubule regulates sodium, potassium, calcium, and pH, while the loop of Henle is involved in water resorption. Sulphonylureas act on pancreatic beta cells to increase insulin production and improve glucose metabolism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      84.8
      Seconds
  • Question 35 - A 28-year-old man presents to his GP complaining of abdominal pain and diarrhea....

    Correct

    • A 28-year-old man presents to his GP complaining of abdominal pain and diarrhea. The GP suspects gastritis but decides to perform a urine test to rule out a UTI. The results of the urine dipstick test are as follows:

      Blood: Negative mmol/l
      Protein: Negative mmol/l
      Leukocytes: ++ mmol/l
      Nitrites: Negative mmol/l

      What could be the reason for the abnormal urine dipstick result?

      Your Answer: Chlamydia

      Explanation:

      Sterile pyuria can be caused by urethritis as a result of a sexually transmitted disease such as chlamydia.

      Understanding Sterile Pyuria and Its Causes

      Sterile pyuria is a medical condition characterized by the presence of white blood cells in the urine without any bacterial growth. It is a common finding in patients with urinary tract infections (UTIs) but can also be caused by other underlying conditions.

      Some of the common causes of sterile pyuria include partially treated UTIs, urethritis (such as Chlamydia), renal tuberculosis, renal stones, appendicitis, bladder or renal cell cancer, adult polycystic kidney disease, and analgesic nephropathy.

      It is important to identify the underlying cause of sterile pyuria to ensure proper treatment and prevent complications. Patients with this condition should seek medical attention and undergo further evaluation to determine the root cause of their symptoms. Early detection and treatment can help prevent further damage to the urinary tract and improve overall health outcomes.

    • This question is part of the following fields:

      • Renal System
      9.6
      Seconds
  • Question 36 - A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash....

    Incorrect

    • A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash. He is limping and complaining of abdominal pain. He had a recent bout of tonsillitis but is typically healthy. Upon examination, there are numerous palpable purpura in a symmetrical pattern, mainly on his buttocks and the backs of his legs. A urine dipstick reveals mild proteinuria and 2+ blood.

      What is the probable underlying pathophysiology of this presentation?

      Your Answer: ANCA associated vasculitis

      Correct Answer: IgA mediated small vessel vasculitis

      Explanation:

      The correct answer is IgA mediated small vessel vasculitis, specifically Henoch-Schonlein purpura (HSP). This condition is characterized by palpable purpura, arthralgia, abdominal pain, and haematuria, and typically affects children aged 4-6 years. HSP is often triggered by infections such as streptococcal pharyngitis, but can also be caused by other infections like Mycoplasma pneumoniae, Epstein-Barr virus, and adenovirus.

      The other options are incorrect. ANCA-associated vasculitis typically involves the respiratory and ENT systems, which this child does not have. Cryoglobulinaemic vasculitis is associated with hepatitis C, haematological malignancies, and autoimmune disease, none of which are present in this case. Deficiency of von Willebrand factor cleaving protein is a feature of TTP, which is rare in children and typically presents with a low platelet count. ITP is another autoimmune condition that can present similarly to HSP, but can be differentiated by a low platelet count.

      Understanding Henoch-Schonlein Purpura

      Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.

      The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.

      Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.

      In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.

    • This question is part of the following fields:

      • Renal System
      25.9
      Seconds
  • Question 37 - A 6-year-old girl presents to the emergency department with her parents, who are...

    Correct

    • A 6-year-old girl presents to the emergency department with her parents, who are concerned about her extremely swollen legs. The patient reports feeling fine and has no significant medical history.

      Upon examination, there is pitting edema that extends to the lower abdominal wall. Laboratory tests confirm hypoalbuminemia.

      A urine dipstick reveals ++++ proteinuria and no red blood cells.

      What is the probable result of electron microscopy of a renal biopsy?

      Your Answer: Effacement of podocyte foot processes

      Explanation:

      Effacement of podocyte foot processes is observed in minimal change disease on electron microscopy, indicating fusion of podocytes. This condition is the most common cause of nephrotic syndrome in children, which is characterized by hypoalbuminemia, edema, and marked proteinuria. Although normal glomerular architecture may be observed in minimal change disease when viewed with a light microscope, electron microscopy is necessary to detect the effacement of podocyte foot processes. Kimmelstiel-Wilson lesions are not a feature of minimal change disease, as they are commonly observed in diabetic nephropathy. Similarly, mesangial cell proliferation is not a hallmark of minimal change disease, as it is typically observed in membranoproliferative glomerulonephritis, which presents as a nephritic syndrome and is not consistent with the patient’s symptoms. Overall, minimal change disease is typically responsive to steroid treatment and has a favorable prognosis.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      28
      Seconds
  • Question 38 - A patient in his 50s becomes dehydrated, resulting in increased water absorption in...

    Incorrect

    • A patient in his 50s becomes dehydrated, resulting in increased water absorption in the collecting duct. If the concentration of his urine is measured, it would be around 1200mOsm/L. At which point in the nephron would a comparable osmolarity be observed?

      Your Answer: Descending Loop of Henle

      Correct Answer: The tip of the Loop of Henle

      Explanation:

      The Loop of Henle creates the highest osmolarity in the nephron, while the proximal tubule absorbs most of the water. The tip of the papilla has the greatest osmolarity, which is also the maximum osmolarity that urine can attain after water absorption in the collecting ducts. The medulla of the kidney facilitates water reabsorption in the collecting ducts due to the osmotic gradient formed by the Loops of Henle.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      57
      Seconds
  • Question 39 - A 37-year-old woman presents to rheumatology with complaints of fatigue and arthralgia persisting...

    Correct

    • A 37-year-old woman presents to rheumatology with complaints of fatigue and arthralgia persisting for the past 3 months. During her evaluation, a urine dipstick test reveals proteinuria, and renal biopsies reveal histological evidence of proliferative 'wire-loop' glomerulonephritis.

      What is the probable diagnosis?

      Your Answer: Systemic lupus erythematosus (SLE)

      Explanation:

      Renal Complications in Systemic Lupus Erythematosus

      Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.

      Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.

    • This question is part of the following fields:

      • Renal System
      2.1
      Seconds
  • Question 40 - A 20-year-old male presents with lethargy and heavy proteinuria on urinalysis. The consultant...

    Correct

    • A 20-year-old male presents with lethargy and heavy proteinuria on urinalysis. The consultant wants to directly measure renal function. What test will you order?

      Your Answer: Inulin clearance

      Explanation:

      Inulin is an ideal substance for measuring creatinine clearance as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. This provides a direct measurement of CrCl, making it the gold standard.

      However, the MDRD equation is commonly used to estimate eGFR by considering creatinine, age, sex, and ethnicity. It may not be accurate for individuals with varying muscle mass, such as a muscular young man who may produce more creatinine and have an underestimated CrCl.

      The Cockcroft-Gault equation is considered superior to MDRD as it also takes into account the patient’s weight, age, sex, and creatinine levels.

      Reabsorption and Secretion in Renal Function

      In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.

      The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).

      Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.

    • This question is part of the following fields:

      • Renal System
      17.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (26/40) 65%
Passmed