-
Question 1
Correct
-
A 22-year-old man suffers a depressed skull fracture at the vertex after being struck with a hammer. Which of the following sinuses is in danger due to this injury?
Your Answer: Superior sagittal sinus
Explanation:The pattern of injury poses the highest threat to the superior sagittal sinus, which starts at the crista galli’s front and runs along the falx cerebri towards the back. It merges with the right transverse sinus close to the internal occipital protuberance.
Overview of Cranial Venous Sinuses
The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.
There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.
To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.
Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A teenage boy is brought in with clinical indications of Herpes Simplex Virus (HSV) encephalitis. In an MRI, where would the lesions be typically observed?
Your Answer: Frontal lobes
Correct Answer: Temporal lobes
Explanation:HSV encephalitis is commonly linked with damage to the bitemporal lobes, but it can also affect the inferior frontal lobe. However, the parietal lobes, occipital lobes, and cerebellum are not typically affected by this condition.
Herpes Simplex Encephalitis: Symptoms, Diagnosis, and Treatment
Herpes simplex encephalitis is a common topic in medical exams. This viral infection affects the temporal lobes of the brain, causing symptoms such as fever, headache, seizures, and vomiting. Focal features like aphasia may also be present. It is important to note that peripheral lesions, such as cold sores, are not related to the presence of HSV encephalitis.
HSV-1 is responsible for 95% of cases in adults and typically affects the temporal and inferior frontal lobes. Diagnosis is made through CSF analysis, PCR for HSV, and imaging studies like CT or MRI. EEG patterns may also show lateralized periodic discharges at 2 Hz.
Early treatment with intravenous acyclovir is crucial for a good prognosis. Mortality rates can range from 10-20% with prompt treatment, but can approach 80% if left untreated. MRI is a better imaging modality for detecting changes in the medial temporal and inferior frontal lobes.
In summary, herpes simplex encephalitis is a serious viral infection that affects the brain. It is important to recognize the symptoms and seek prompt medical attention for early diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Correct
-
The following statements about the femoral nerve are all true except for one. Which statement is incorrect?
Your Answer: It supplies adductor longus
Explanation:The obturator nerve supplies the adductor longus.
The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.
To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
A 65-year-old man comes to the clinic complaining of arm weakness. During the examination, it is observed that he has a weakness in elbow extension and has lost sensation on the dorsal aspect of his first digit. Where is the most probable location of the underlying defect?
Your Answer: Radial nerve
Explanation:Even if there are nerve lesions located proximally, complete loss of triceps muscle function may not occur as the axillary nerve can innervate the long head of the triceps muscle.
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 25-year-old individual visits a maxillofacial clinic complaining of facial pain that has persisted for 3 months after sustaining a basal skull fracture in a car accident. According to neuroimaging reports, where is the lesion most likely located, indicating damage to the maxillary nerve as it traverses the sphenoid bone?
Your Answer: Foramen rotundum
Explanation:The correct location for the passage of the maxillary nerve is the foramen rotundum. In the case of a basal skull fracture involving the sphenoid bone, the lesion is most likely located in the foramen rotundum. The foramen ovale is not the correct location as it is where the mandibular nerve passes through. The foramen spinosum is also not the correct location as it transmits the middle meningeal artery and vein, not the maxillary nerve. The hypoglossal canal is also not the correct location as it transmits the twelfth cranial nerve, not the maxillary nerve.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 33-year-old woman visits her GP complaining of persistent headaches. During a cranial nerve examination, the GP observes normal direct and consensual reflexes when shining light into the left eye. However, when shining light into the right eye, direct and consensual reflexes are present, but both pupils do not constrict as much. The GP then swings a pen torch from one eye to the other and notes that both pupils constrict when swung to the left eye. However, when swung from the left eye to the right eye, both pupils appear to dilate slightly, although not back to normal. Based on these findings, where is the probable lesion located?
Your Answer: Lateral geniculate nucleus
Correct Answer: Optic nerve
Explanation:A relative afferent pupillary defect (RAPD) is indicative of an optic nerve lesion or severe retinal disease. During the swinging light test, if less light is detected in the affected eye, both pupils appear to dilate. The optic nerve is responsible for this condition.
The options ‘Lateral geniculate nucleus’, ‘Oculomotor nucleus’, and ‘Optic chiasm’ are incorrect. Lesions in the lateral geniculate nucleus are not associated with RAPD. A lesion in the oculomotor nucleus would cause ophthalmoplegia, mydriasis, and ptosis. Lesions in the optic chiasm usually result in bitemporal hemianopia and are not associated with RAPD.
A relative afferent pupillary defect, also known as the Marcus-Gunn pupil, can be identified through the swinging light test. This condition is caused by a lesion that is located anterior to the optic chiasm, which can be found in the optic nerve or retina. When light is shone on the affected eye, it appears to dilate while the normal eye remains unchanged.
The causes of a relative afferent pupillary defect can vary. For instance, it may be caused by a detachment of the retina or optic neuritis, which is often associated with multiple sclerosis. The pupillary light reflex pathway involves the afferent pathway, which starts from the retina and goes through the optic nerve, lateral geniculate body, and midbrain. The efferent pathway, on the other hand, starts from the Edinger-Westphal nucleus in the midbrain and goes through the oculomotor nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 28-year-old female experienced a crush injury while working, causing an air vent to fall and trap her arm. As a result, she developed fixed focal dystonia that led to flexion contracture of her right wrist and digits.
During the examination, the doctor observed intrinsic hand muscle wasting. The patient's right forearm was supinated, her wrist was hyperextended, and her fingers were flexed. Additionally, there was a decrease in sensation along the medial aspect of her hand and arm, and a reduction in handgrip strength.
Which nerve roots are affected in this case?Your Answer: C8/T1
Explanation:T1 nerve root damage can result in Klumpke’s paralysis.
Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis
Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.
On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.
It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
The blood-brain barrier is not easily penetrated by which of the following substances?
Your Answer: Barbituates
Correct Answer: Hydrogen ions
Explanation:The blood brain barrier restricts the passage of highly dissociated compounds.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
As a third year medical student in an outpatient department with a dermatology consultant, you are evaluating a 27-year-old patient who is unresponsive to current hyperhidrosis treatment. The consultant suggests starting botox injections to prevent sweating. Can you explain the mechanism of action of botulinum toxin at the neuromuscular junction?
Your Answer: Blocks acetylcholine receptors on postsynaptic membrane
Correct Answer: Inhibits vesicles containing acetylcholine binding to presynaptic membrane
Explanation:Botulinum Toxin and its Mechanism of Action
Botulinum toxin is becoming increasingly popular in the medical field for treating various conditions such as cervical dystonia and achalasia. The toxin works by binding to the presynaptic cleft on the neurotransmitter and forming a complex with the attached receptor. This complex then invaginates the plasma membrane of the presynaptic cleft around the attached toxin. Once inside the cell, the toxin cleaves an important cytoplasmic protein that is required for efficient binding of the vesicles containing acetylcholine to the presynaptic membrane. This prevents the release of acetylcholine across the neurotransmitter.
It is important to note that the blockage of Ca2+ channels on the presynaptic membrane occurs in Lambert-Eaton syndrome, which is associated with small cell carcinoma of the lung and is a paraneoplastic syndrome. However, this is not related to the mechanism of action of botulinum toxin.
The effects of botox typically last for two to six months. Once complete denervation has occurred, the synapse produces new axonal terminals which bind to the motor end plate in a process called neurofibrillary sprouting. This allows for interrupted release of acetylcholine. Overall, botulinum toxin is a powerful tool in the medical field for treating various conditions by preventing the release of acetylcholine across the neurotransmitter.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A patient presents with difficulties with swallowing, muscle cramps, tiredness and fasciculations. A diagnosis of a motor neuron disease is made. Which is the most common type?
Your Answer: Primary lateral sclerosis
Correct Answer: Amyotrophic lateral sclerosis
Explanation:The majority of individuals diagnosed with motor neuron disease suffer from amyotrophic lateral sclerosis, which is the prevailing form of the condition.
Understanding the Different Types of Motor Neuron Disease
Motor neuron disease is a neurological condition that affects both upper and lower motor neurons. It is a rare condition that usually occurs after the age of 40. There are different patterns of the disease, including amyotrophic lateral sclerosis, primary lateral sclerosis, progressive muscular atrophy, and progressive bulbar palsy. Some patients may also have a combination of these patterns.
Amyotrophic lateral sclerosis is the most common type of motor neuron disease, accounting for 50% of cases. It typically presents with lower motor neuron signs in the arms and upper motor neuron signs in the legs. In familial cases, the gene responsible for the disease is located on chromosome 21 and codes for superoxide dismutase.
Primary lateral sclerosis, on the other hand, presents with upper motor neuron signs only. Progressive muscular atrophy affects only the lower motor neurons and usually starts in the distal muscles before progressing to the proximal muscles. It carries the best prognosis among the different types of motor neuron disease.
Finally, progressive bulbar palsy affects the muscles of the tongue, chewing and swallowing, and facial muscles due to the loss of function of brainstem motor nuclei. It carries the worst prognosis among the different types of motor neuron disease. Understanding the different types of motor neuron disease is crucial in providing appropriate treatment and care for patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Correct
-
You are requested to assess a patient on the acute medical ward as they seem to be experiencing jerking movements. There is no prior history of a movement disorder, and the patient is not taking any medication. The patient has recently fallen asleep and can be awakened easily. Could these be hypnagogic jerks?
At what stage of sleep is it most probable that this patient is in?Your Answer: Non-REM stage 1
Explanation:Understanding Sleep Stages: The Sleep Doctor’s Brain
Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.
N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.
REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 → N2 → N3 → REM, with each stage lasting for different durations throughout the night.
Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 76-year-old woman arrives at the emergency department with sudden loss of vision in the right side of her visual field and difficulty in identifying familiar objects. Which artery is most likely affected in this case?
Your Answer: Anterior cerebral artery
Correct Answer: Posterior cerebral artery
Explanation:The correct answer is posterior cerebral artery. When this artery is affected by a stroke, it can cause contralateral homonymous hemianopia with macular sparing and visual agnosia, which is the inability to recognize familiar objects. In this case, the left-sided homonymous hemianopia indicates that the right posterior cerebral artery is affected.
The other options are incorrect. Strokes affecting the anterior cerebral artery can cause contralateral hemiparesis and sensory loss, but not visual disturbance or agnosia. Strokes affecting the anterior inferior cerebellar artery can cause vertigo, facial paralysis, and deafness, but not homonymous hemianopia or visual agnosia. Strokes affecting the middle cerebral artery can cause contralateral hemiparesis and sensory loss, homonymous hemianopia, and aphasia, but not visual agnosia. The stem also does not mention any motor dysfunction or loss of sensation.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Correct
-
An unconscious 18-year-old male has been airlifted to the hospital following a dirt bike accident. The trauma team quickly takes him to the CT scanner where they notice signs of increased intracranial pressure. To manage this, they decide to administer a diuretic that is freely filtered through the renal tubules but not reabsorbed. Which diuretic would be appropriate in this situation? The team is awaiting the opinion of the neurosurgical team.
Your Answer: Mannitol (osmotic diuretic)
Explanation:Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
An 80-year-old man is recuperating after undergoing a right total hip replacement. During a session with the physiotherapists, it is observed that his right foot is dragging on the ground while walking.
Upon conducting a neurological examination of his lower limbs, it is found that his left leg is completely normal. However, his right leg has 0/5 power of dorsiflexion and knee flexion, a reduced ankle and plantar reflex, and no sensation over the lateral calf, sole, and dorsum of the foot.
What is the nerve lesion that has occurred?Your Answer: Tibial nerve
Correct Answer: Sciatic nerve
Explanation:Foot drop can be caused by a lesion to the sciatic nerve.
When the sciatic nerve is damaged, it can result in various symptoms such as foot drop, loss of power below the knee, loss of knee flexion, loss of ankle jerk and plantar response. The sciatic nerve innervates the hamstring muscles in the posterior thigh and indirectly innervates other muscles via its two terminal branches: the tibial nerve and the common fibular nerve. The tibial nerve supplies the calf muscles and some intrinsic muscles of the foot, while the common fibular nerve supplies the muscles of the anterior and lateral leg, as well as the remaining intrinsic foot muscles. Although the sciatic nerve has no direct sensory inputs, it receives information from its two terminal branches, which supply the skin of various areas of the leg and foot.
Sciatic nerve lesions can occur due to various reasons, such as neck of femur fractures and total hip replacement trauma. However, it is important to note that a femoral nerve lesion would cause different symptoms, such as weakness in anterior thigh muscles, reduced hip flexion and knee extension, and loss of sensation to the anteromedial thigh and medial leg and foot. Similarly, lesions to the lower gluteal nerve or superior gluteal nerve would cause weakness in specific muscles and no sensory loss.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Correct
-
A young woman presents with a bilateral intention tremor. She is also found to have a range of other bilateral deficits, including dysdiadochokinesia, ataxia, nystagmus, and dysarthria. Which anatomical structure has likely been affected?
Your Answer: Cerebellar vermis
Explanation:The individual has a defect in the cerebellar vermis, which is located between the two hemispheres of the cerebellum. As a result, they are experiencing bilateral cerebellar abnormalities, which is evident from their symptoms. Vermin lesions can be caused by conditions such as Joubert Syndrome, Dandy Walker malformation, and rhombencephalosynapsis. On the other hand, lesions in the spinocerebellar tract or one side of the cerebellar hemisphere would cause unilateral, ipsilateral symptoms, making these options incorrect.
Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Correct
-
A 27-year-old man is brought to the emergency department by paramedics following a gunshot wound sustained during a violent altercation. Despite being conscious, he is experiencing severe pain and is unable to respond to any inquiries.
Upon initial evaluation, his airway is unobstructed, he is breathing normally, and there are no indications of cardiovascular distress.
During an examination of his lower extremities, a bullet wound is discovered 2 cm below his popliteal fossa. The emergency physician suspects that the tibial nerve, which runs just beneath the popliteal fossa, has been damaged.
Which of the following clinical findings is most likely to be observed in this patient?Your Answer: Loss of plantar flexion, loss of flexion of toes and weakened inversion
Explanation:When the tibial nerve is damaged, it can cause a variety of symptoms such as the loss of plantar flexion, weakened inversion, and the inability to flex the toes. This type of injury is uncommon and can occur due to direct trauma, entrapment in a narrow space, or prolonged compression. It’s important to note that while the tibialis anterior muscle can still invert the foot, the overall strength of foot inversion is reduced. Other options that do not accurately describe the clinical signs of tibial nerve damage are incorrect.
The Tibial Nerve: Muscles Innervated and Termination
The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.
The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Correct
-
A 50-year-old woman visits her doctor with concerns about her vision. She reports experiencing double vision and had a recent fall while descending the stairs at her home. She denies experiencing any eye pain.
Which cranial nerve is most likely responsible for her symptoms?Your Answer: Trochlear nerve
Explanation:If you experience worsened vision while descending stairs, it may be indicative of 4th nerve palsy, which is characterized by vertical diplopia. This is because the 4th nerve is responsible for downward eye movement.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A builder in his 40s falls off a ladder while laying roof tiles and suffers a burst fracture of L3. The MRI scan reveals complete nerve transection at this level due to the injury. What clinical sign will be absent in the beginning?
Your Answer: Flaccid paralysis of the legs
Correct Answer: Extensor plantar response
Explanation:In cases of lower motor neuron lesions, there is a reduction in various features such as muscle strength, muscle size, reflexes, and the occurrence of muscle fasciculation.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 19-year-old male is brought to the emergency room following ingestion of a significant quantity of cocaine. He is experiencing excessive sweating and heart palpitations. During the examination, his pupils are found to be dilated and he is exhibiting tachycardia and tachypnea.
From which spinal level do the preganglionic neurons of the system responsible for his symptoms originate?Your Answer: C5-T1
Correct Answer: T1-L2/3
Explanation:The lateral horns of grey matter give rise to the preganglionic neurons of the sympathetic nervous system.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Correct
-
A 94-year-old male, previously diagnosed with Parkinson's disease, passed away due to aspirational pneumonia and underwent a post-mortem examination. As part of the examination, a histological analysis of the basal ganglia was conducted. What types of inclusion bodies are anticipated to be observed?
Your Answer: Lewy bodies
Explanation:Lewy bodies are commonly associated with Parkinson’s disease, but they can also be present in other conditions. These bodies are characterized by the presence of neuromelanin pigment and are typically found in the remaining Dopaminergic neurons in the substantia nigra pars compacta (SNc). They can be identified through staining for various proteins, including a-synuclein and ubiquitin. While their exact function is not yet fully understood, it is believed that Lewy bodies may play a role in managing proteins that are not properly broken down due to protein dysfunction.
Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Correct
-
A 12-year-old child has sustained a supracondylar fracture of the right humerus. After undergoing closed reduction, the child reports experiencing tingling sensations in their first and second fingers on the right hand, as well as difficulty moving their thumb. Which nerve is the most probable culprit for this injury?
Your Answer: Median nerve
Explanation:The median nerve is responsible for providing sensation to the lateral part of the palm and the palmar surface of the three most lateral digits. It is commonly injured at the elbow after supracondylar fractures of the humerus or at the wrist.
The ulnar nerve is responsible for providing sensation to the palmar surface of the fifth digit and medial part of the fourth digit, along with their associated palm region.
The musculoskeletal nerve only has one sensory branch, the lateral cutaneous nerve of the forearm, which provides sensation to the lateral aspect of the forearm. Therefore, damage to the musculocutaneous nerve cannot explain tingling sensations or compromised movements of any of the digits.
The medial cutaneous nerve of the forearm does not run near supracondylar humeral fractures and its branches only reach as far as the wrist, so it cannot explain tingling sensations in the digits.
The radial nerve is not typically injured at supracondylar humeral fractures and would cause altered sensations localized at the dorsal side of the palm and digits if it were damaged.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Correct
-
A 65-year-old hypertensive woman comes to the clinic complaining of a sudden decline in her memory. She had a similar episode a few months ago. Apart from that, she is in good health but has a history of a STEMI three years ago and peripheral arterial disease in her legs. What type of dementia is most probable?
Your Answer: Vascular dementia
Explanation:Dementia comes in various forms, with Alzheimer’s dementia (AD) being the most prevalent. AD is characterized by a gradual onset that is difficult to pinpoint, and there are no other indications of any other cause. Vascular Dementia, on the other hand, has a sudden onset and progresses in a stepwise manner. Patients may remain stable for a while before suddenly progressing to the next level, resulting in a fluctuating course. They also have uneven impairment and neurological signs, and typically have vascular risk factors such as cardiovascular disease or peripheral vascular disease. Lewy body dementia is characterized by fluctuating levels of consciousness, visual hallucinations, parkinsonian-like symptoms, falls, and neuroleptic sensitivity.
Vascular dementia is a group of syndromes of cognitive impairment caused by different mechanisms resulting from cerebrovascular disease. It is the second most common form of dementia after Alzheimer’s disease and accounts for around 17% of dementia in the UK. The main subtypes of VD are stroke-related VD, subcortical VD, and mixed dementia. Risk factors include a history of stroke or TIA, atrial fibrillation, hypertension, diabetes mellitus, hyperlipidaemia, smoking, obesity, and coronary heart disease. Diagnosis is made based on a comprehensive history and physical examination, formal screen for cognitive impairment, and MRI scan. Treatment is mainly symptomatic, and non-pharmacological management includes tailored cognitive stimulation programs, multisensory stimulation, music and art therapy, and animal-assisted therapy. There is no specific pharmacological treatment approved for cognitive symptoms, and AChE inhibitors or memantine should only be considered for people with suspected comorbid Alzheimer’s disease, Parkinson’s disease dementia, or dementia with Lewy bodies.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
An 80-year-old man arrives at the emergency department accompanied by his wife. According to her, he has experienced sudden hearing loss and is currently unable to perceive any sounds. A stroke is suspected, and he is sent for an MRI scan which reveals a thalamic lesion.
Which specific nucleus of the thalamus is most likely affected by the lesion?Your Answer: Lateral geniculate nucleus
Correct Answer: Medial geniculate nucleus
Explanation:Hearing impairment can result from damage to the medial geniculate nucleus of the thalamus, which is responsible for relaying auditory signals to the cerebral cortex. Similarly, damage to other regions of the thalamus can affect different types of sensory and motor functioning, such as visual loss from damage to the lateral geniculate nucleus, facial sensation from damage to the medial portion of the ventral posterior nucleus, and motor functioning from damage to the ventral anterior nucleus.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
Which one of the following does not pass through the inferior orbital fissure?
Your Answer: Lacrimal nerve
Correct Answer: ophthalmic artery
Explanation:The ophthalmic artery originates from the internal carotid as soon as it penetrates the dura and arachnoid. It travels through the optic canal beneath the optic nerve and within its dural and arachnoid coverings. It ends as the supratrochlear and dorsal nasal arteries.
Foramina of the Base of the Skull
The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.
The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.
The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Correct
-
A 50-year-old motorcyclist is seeking treatment at your clinic after a bike accident that occurred 10 months ago. The patient suffered a significant pelvic fracture, which has since healed. However, he is worried about the persistent numbness in his right leg. During the examination, he experiences difficulty in adducting his right hip against resistance and has reduced sensation around the medial aspect of his right thigh. Which nerve is most likely to have been affected?
Your Answer: Obturator
Explanation:The patient is experiencing decreased sensation in the inner thigh and weakened adductor muscles, which are both controlled by the obturator nerve.
Meanwhile, the femoral nerve is responsible for providing sensation to the front of the thigh, while the sciatic nerve is responsible for sensation in the back of the thigh.
Additionally, the ilio-inguinal nerve is responsible for sensation in certain areas of the genital region, and the tibial nerve controls the movement of ankle muscles.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
During a clinical examination of a 26-year-old woman with a history of relapsing-remitting multiple sclerosis, you observe nystagmus of the left eye and significant weakness in adduction of the right eye when she looks to the left. What is the location of the lesion responsible for these findings?
Your Answer: Trochlear nerve
Correct Answer: Midbrain
Explanation:The medial longitudinal fasciculus is situated in the paramedian region of the midbrain and pons.
The patient’s symptoms are indicative of internuclear ophthalmoplegia (INO), a specific gaze abnormality characterized by impaired adduction of the eye on the affected side and nystagmus of the eye on the opposite side of the lesion. Based on the symptoms, the lesion is likely on the right side. INO is caused by damage to the medial longitudinal fasciculus, which coordinates the simultaneous lateral movements of both eyes. Multiple sclerosis is a common cause of this condition, but cerebrovascular disease is also associated with it, especially in older patients.
Optic neuritis, a common manifestation of multiple sclerosis, is not responsible for the patient’s symptoms. Optic neuritis typically presents with eye pain, visual acuity loss, and worsened pain on eye movement, which are not mentioned in the scenario.
Distinguishing between internuclear ophthalmoplegia and oculomotor (third) nerve palsy can be challenging. Symptoms that suggest CN III palsy include ptosis, pupil dilation, and weakness of elevation, which causes the eye to rest in a ‘down and out’ position. Clinical examination findings can help differentiate between trochlear or abducens nerve palsy and internuclear ophthalmoplegia. Abducens nerve damage results in unilateral weakness of the lateral rectus muscle and impaired abduction on the affected side, while trochlear nerve damage leads to unilateral weakness of the superior oblique muscle and impaired intorsion and depression when adducted.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
An 80-year-old man arrives at the emergency department with sudden difficulty in speech, but is otherwise asymptomatic. Upon taking his medical history, it is noted that he is having trouble generating fluent speech, although the meaning of his speech is preserved and appropriate to the questions he is being asked. His Glasgow coma score is 15/15 and cranial nerves examination is unremarkable. Additionally, he has power 5/5 in all four limbs, and his tone, sensation, coordination, and reflexes are normal. A CT head scan reveals an ischaemic stroke in the left lateral aspect of the frontal lobe. Which vessel occlusion is responsible for his symptoms?
Your Answer: Temporal left anterior cerebral artery
Correct Answer: Superior left middle cerebral artery
Explanation:Broca’s area is located in the left inferior frontal gyrus and is supplied by the superior division of the left middle cerebral artery. If this artery becomes occluded, it can result in an acute onset of expressive aphasia, which is the type of aphasia that this man is experiencing.
It is important to note that Wernicke’s area is supplied by the inferior left middle cerebral artery, and occlusion of this branch would result in receptive aphasia instead of expressive aphasia.
The external carotid arteries supply blood to the face and neck, not the brain.
Occlusion of an internal carotid artery typically causes amaurosis fugax and does not supply blood to Broca’s area, so it would not result in expressive aphasia.
The anterior cerebral arteries supply the antero-medial areas of each hemisphere of the brain, but they do not have a temporal branch and do not supply Broca’s area, which is located on the temporal aspect of the frontal lobe.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
What is the sensory nerve supply to the corner of the jaw?
Your Answer: Mandibular branch of the trigeminal nerve
Correct Answer: Greater auricular nerve (C2-C3)
Explanation:The greater auricular nerve is responsible for providing sensory innervation to the angle of the jaw, while the trigeminal nerve is the primary sensory nerve for the rest of the face.
The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 35-year-old man suffers a hemisection of the spinal cord at the level T5 due to a stabbing in his back. You conduct an evaluation of the patient's sensory function, including temperature, vibration, and fine touch, as well as muscle strength. What signs would you anticipate observing?
Your Answer: Contralateral loss of temperature, ipsilateral loss of fine touch and vibration, contralateral spastic paresis
Correct Answer: Contralateral loss of temperature, ipsilateral loss of fine touch and vibration, ipsilateral spastic paresis
Explanation:The spinothalamic tract carries sensory fibers for pain and temperature and decussates at the same level as the nerve root entering the spinal cord. As a result, contralateral temperature loss occurs. The dorsal column medial lemniscus carries sensory fibers for fine touch, vibration, and unconscious proprioception. It decussates at the medulla, leading to ipsilateral loss of fine touch and vibration. The corticospinal tract is a descending tract that has already decussated at the medulla and is responsible for inhibiting muscle movement. If affected in the spinal cord, it causes an upper motor neuron lesion on the ipsilateral side.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
You are reviewing a child's notes in the clinic and see that they have recently been seen by an ophthalmologist. Their ocular examination was normal, although they were noted to have significant hyperopia (farsightedness) and would benefit from spectacles. The child's parent mentioned that they do not fully understand why their child requires glasses. You draw them a diagram to explain the cause of their long-sightedness.
Where is the point that light rays converge in this child?Your Answer: Anterior to the fovea
Correct Answer: Behind the retina
Explanation:Hyperopia, also known as hypermetropia, is a condition where the eye’s visual axis is too short, causing the image to be focused behind the retina. This is typically caused by an imbalance between the length of the eye and the power of the cornea and lens system.
In a healthy eye, light is first focused by the cornea and then by the crystalline lens, resulting in a clear image on the retina. However, in hyperopia, the light is refracted to a point of focus behind the retina, leading to blurred vision.
Myopia, on the other hand, is a common refractive error where light rays converge in front of the retina due to the cornea and lens system being too powerful for the length of the eye.
In cases where light rays converge on the crystalline lens capsule, it may indicate severe corneal disruption, such as ocular trauma or keratoconus. This would not be considered a refractive error.
To correct hyperopia, corrective lenses are needed to refract the light before it enters the eye. A convex lens is typically used to correct the refractive error in a hyperopic eye.
A gradual decline in vision is a prevalent issue among the elderly population, leading them to seek guidance from healthcare providers. This condition can be attributed to various causes, including cataracts and age-related macular degeneration. Both of these conditions can cause a gradual loss of vision over time, making it difficult for individuals to perform daily activities such as reading, driving, and recognizing faces. As a result, it is essential for individuals experiencing a decline in vision to seek medical attention promptly to receive appropriate treatment and prevent further deterioration.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)