00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Which study design is susceptible to making the erroneous assumption that relationships observed...

    Correct

    • Which study design is susceptible to making the erroneous assumption that relationships observed among groups also hold true for individuals?

      Your Answer: Ecological study

      Explanation:

      An ecological fallacy is a potential error that can occur when generalizing relationships observed among groups to individuals. This is a concern when conducting analyses of ecological studies.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.4
      Seconds
  • Question 2 - A team of investigators aimed to explore the perspectives of experienced psychologists on...

    Correct

    • A team of investigators aimed to explore the perspectives of experienced psychologists on the use of cognitive-behavioral therapy in treating anxiety disorders. They randomly selected a group of psychologists to participate in the study.
      To enhance the credibility of their results, they opted to employ two researchers with different expertise (a clinical psychologist and a social worker) to conduct interviews with the selected psychologists. Furthermore, they collected data from the psychologists not only through interviews but also by organizing focus groups.
      What is the approach used in this qualitative study to improve the credibility of the findings?

      Your Answer: Triangulation

      Explanation:

      Triangulation is a technique commonly employed in research to ensure the accuracy and reliability of results. It involves using multiple methods to verify findings, also known as ‘cross examination’. This approach increases confidence in the results by demonstrating consistency across different methods. Investigator triangulation involves using researchers with diverse backgrounds, while method triangulation involves using different techniques such as interviews and focus groups. The goal of triangulation in qualitative research is to enhance the credibility and validity of the findings by addressing potential biases and limitations associated with single-method, single-observer studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      38.3
      Seconds
  • Question 3 - What is the best way to describe the sampling strategy used in the...

    Incorrect

    • What is the best way to describe the sampling strategy used in the medical student's study to estimate the average height of patients with schizophrenia in a psychiatric hospital?

      Your Answer: Cluster sampling

      Correct Answer: Simple random sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      41.8
      Seconds
  • Question 4 - What is the term used to describe the rate at which new cases...

    Incorrect

    • What is the term used to describe the rate at which new cases of a disease are appearing, calculated by dividing the number of new cases by the total time that disease-free individuals are observed during a study period?

      Your Answer: Cumulative incidence

      Correct Answer: Incidence rate

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.4
      Seconds
  • Question 5 - In scientific research, what variable type has traditionally been used to record the...

    Incorrect

    • In scientific research, what variable type has traditionally been used to record the age of study participants?

      Your Answer: Ratio

      Correct Answer: Binary

      Explanation:

      Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.7
      Seconds
  • Question 6 - Which of the following is not a method used in qualitative research to...

    Correct

    • Which of the following is not a method used in qualitative research to evaluate validity?

      Your Answer: Content analysis

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      23.2
      Seconds
  • Question 7 - Which of the following checklists would be most helpful in preparing the manuscript...

    Correct

    • Which of the following checklists would be most helpful in preparing the manuscript of a survey analyzing the opinions of college students on mental health, as evaluated through a set of questionnaires?

      Your Answer: COREQ

      Explanation:

      There are several reporting guidelines available for different types of research studies. The COREQ checklist, consisting of 32 items, is designed for reporting qualitative research that involves interviews and focus groups. The CONSORT Statement provides a 25-item checklist to aid in reporting randomized controlled trials (RCTs). For reporting the pooled findings of multiple studies, the QUOROM and PRISMA guidelines are useful. The STARD statement includes a checklist of 30 items and is designed for reporting diagnostic accuracy studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      23.5
      Seconds
  • Question 8 - Which of the following is not a valid type of validity? ...

    Correct

    • Which of the following is not a valid type of validity?

      Your Answer: Internal consistency

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      24
      Seconds
  • Question 9 - What qualitative research approach aims to understand individuals' inner experiences and perspectives? ...

    Incorrect

    • What qualitative research approach aims to understand individuals' inner experiences and perspectives?

      Your Answer:

      Correct Answer: Phenomenology

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 10 - What is another term for case-mix bias? ...

    Incorrect

    • What is another term for case-mix bias?

      Your Answer:

      Correct Answer: Disease spectrum bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 11 - What is the term used to describe the proposed idea that a researcher...

    Incorrect

    • What is the term used to describe the proposed idea that a researcher is attempting to validate?

      Your Answer:

      Correct Answer: Alternative hypothesis

      Explanation:

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 12 - What is the ratio of the risk of stroke within a 3 year...

    Incorrect

    • What is the ratio of the risk of stroke within a 3 year period for high-risk psychiatric patients taking the new oral antithrombotic drug compared to those taking warfarin, based on the given data below? Number who had a stroke within a 3 year period vs Number without stroke New drug: 10 vs 190 Warfarin: 10 vs 490

      Your Answer:

      Correct Answer: 2.5

      Explanation:

      The relative risk (RR) of the event of interest in the exposed group compared to the unexposed group is 2.5.

      RR = EER / CER
      EER = 10 / 200 = 0.05
      CER = 10 / 500 = 0.02
      RR = EER / CER
      = 0.05 / 0.02 = 2.5

      This means that the exposed group has a 2.5 times higher risk of experiencing the event compared to the unexposed group.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 13 - The clinical director of a pediatric unit conducts an economic evaluation study to...

    Incorrect

    • The clinical director of a pediatric unit conducts an economic evaluation study to determine which type of treatment results in the greatest improvement in asthma symptoms (as measured by the Asthma Control Test). She compares the costs of three different treatment options against the average improvement in asthma symptoms achieved by each. What type of economic evaluation method did she employ?

      Your Answer:

      Correct Answer: Cost-effectiveness analysis

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 14 - Out of the 5 trials included in a meta-analysis comparing the effects of...

    Incorrect

    • Out of the 5 trials included in a meta-analysis comparing the effects of depot olanzapine and depot risperidone on psychotic symptoms (measured by PANSS), which trial showed a statistically significant difference between the two treatments at a significance level of 5%?

      Your Answer:

      Correct Answer: Trial 2 shows a reduction of 2 on the PANSS (p=0.001)

      Explanation:

      The results of Trial 4 indicate a decrease of 10 points on the PANSS scale, with a p-value of 0.9.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 15 - What is the likelihood of weight gain when a patient is prescribed risperidone,...

    Incorrect

    • What is the likelihood of weight gain when a patient is prescribed risperidone, given that 6 out of 10 patients experience weight gain as a side effect?

      Your Answer:

      Correct Answer: 1.5

      Explanation:

      1. The odds of an event happening are calculated by dividing the number of times it occurs by the number of times it does not occur.
      2. The odds of an event happening in a given situation are 6 to 4.
      3. This translates to a ratio of 1.5, meaning the event is more likely to happen than not.
      4. The risk of the event happening is calculated by dividing the number of times it occurs by the total number of possible outcomes.
      5. In this case, the risk of the event happening is 6 out of 10.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 16 - What type of evidence is considered the most robust and reliable? ...

    Incorrect

    • What type of evidence is considered the most robust and reliable?

      Your Answer:

      Correct Answer: Meta-analysis

      Explanation:

      Levels and Grades of Evidence in Evidence-Based Medicine

      To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.

      The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 17 - Which data type does age in years belong to? ...

    Incorrect

    • Which data type does age in years belong to?

      Your Answer:

      Correct Answer: Ratio

      Explanation:

      Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 18 - What topics do the STARD guidelines provide recommendations for? ...

    Incorrect

    • What topics do the STARD guidelines provide recommendations for?

      Your Answer:

      Correct Answer: Studies of diagnostic accuracy

      Explanation:

      The aim of the STARD initiative is to enhance the precision and comprehensiveness of reporting diagnostic accuracy studies, enabling readers to evaluate the study’s potential for bias (internal validity) and generalizability (external validity). The STARD statement comprises a checklist of 25 items and suggests utilizing a flow diagram that outlines the study’s design and patient flow.

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 19 - Which statement accurately describes the measurement of serum potassium in 1,000 patients with...

    Incorrect

    • Which statement accurately describes the measurement of serum potassium in 1,000 patients with anorexia nervosa, where the mean potassium is 4.6 mmol/l and the standard deviation is 0.3 mmol/l?

      Your Answer:

      Correct Answer: 68.3% of values lie between 4.3 and 4.9 mmol/l

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 20 - After creating a scatter plot of the data, what would be the next...

    Incorrect

    • After creating a scatter plot of the data, what would be the next step for the researcher to determine if there is a linear relationship between a person's age and blood pressure?

      Your Answer:

      Correct Answer: Pearson's coefficient

      Explanation:

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 21 - What is the appropriate interpretation of a standardised mortality ratio of 120% (95%...

    Incorrect

    • What is the appropriate interpretation of a standardised mortality ratio of 120% (95% CI 90-130) for a cohort of patients diagnosed with antisocial personality disorder?

      Your Answer:

      Correct Answer: The result is not statistically significant

      Explanation:

      The statistical significance of the result is questionable as the confidence interval encompasses values below 100. This implies that there is a possibility that the actual value could be lower than 100, which contradicts the observed value of 120 indicating a rise in mortality in this population.

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 22 - What is the appropriate significance test to use when analyzing the data of...

    Incorrect

    • What is the appropriate significance test to use when analyzing the data of patients' serum cholesterol levels before and after receiving a new lipid-lowering therapy?

      Your Answer:

      Correct Answer: Paired t-test

      Explanation:

      Since the serum cholesterol level is continuous data and assumed to be normally distributed, and the data is paired from the same individuals, the most suitable statistical test is the paired t-test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 23 - What is the purpose of using Cohen's kappa coefficient? ...

    Incorrect

    • What is the purpose of using Cohen's kappa coefficient?

      Your Answer:

      Correct Answer: Inter-rater reliability

      Explanation:

      Kappa is used to assess the consistency of agreement between different raters.

      Understanding the Kappa Statistic for Measuring Interobserver Variation

      The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 24 - A study which aims to see if women over 40 years old have...

    Incorrect

    • A study which aims to see if women over 40 years old have a different length of pregnancy, compare the mean in a group of women of this age against the population mean. Which of the following tests would you use to compare the means?

      Your Answer:

      Correct Answer: One sample t-test

      Explanation:

      The appropriate statistical test for the study is a one-sample t-test as it involves the calculation of a single mean.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 25 - A masters student had noticed that nearly all of her patients with arthritis...

    Incorrect

    • A masters student had noticed that nearly all of her patients with arthritis were over the age of 50. She was keen to investigate this further to see if there was an association.
      She selected 100 patients with arthritis and 100 controls. of the 100 patients with arthritis, 90 were over the age of 50. of the 100 controls, only 40 were over the age of 50.
      What is the odds ratio?

      Your Answer:

      Correct Answer: 3.77

      Explanation:

      The odds of being married are 3.77 times higher in individuals with panic disorder compared to controls.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 26 - What is a criterion used to evaluate the quality of meta-analysis reporting? ...

    Incorrect

    • What is a criterion used to evaluate the quality of meta-analysis reporting?

      Your Answer:

      Correct Answer: QUORUM

      Explanation:

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 27 - A team of scientists aims to perform a systematic review and meta-analysis of...

    Incorrect

    • A team of scientists aims to perform a systematic review and meta-analysis of the effects of caffeine on sleep quality. They want to determine if there is any variation in the results across the studies they have gathered.
      Which of the following is not a technique that can be employed to evaluate heterogeneity?

      Your Answer:

      Correct Answer: Receiver operating characteristic curve

      Explanation:

      The receiver operating characteristic (ROC) curve is a useful tool for evaluating the diagnostic accuracy of a test in distinguishing between healthy and diseased individuals. It helps to identify the optimal cut-off point between sensitivity and specificity.

      Other methods, such as visual inspection of forest plots and Cochran’s Q test, can be used to assess heterogeneity in meta-analysis. Visual inspection of forest plots is a quick and easy method, while Cochran’s Q test is a more formal and widely accepted approach.

      For more information on heterogeneity in meta-analysis, further reading is recommended.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 28 - The Diagnostic Project between the UK and US revealed that the increased prevalence...

    Incorrect

    • The Diagnostic Project between the UK and US revealed that the increased prevalence of schizophrenia in New York, as opposed to London, was due to what factor?

      Your Answer:

      Correct Answer: Bias

      Explanation:

      The US-UK Diagnostic Project found that the higher rates of schizophrenia in New York were due to diagnostic bias, as US psychiatrists used broader diagnostic criteria. However, the use of standardised clinical interviews and operationalised diagnostic criteria greatly reduced the variability of both incidence and prevalence rates of schizophrenia. This was demonstrated in a study by Sartorius et al. (1986) which examined early manifestations and first-contact incidence of schizophrenia in different cultures.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 29 - What is a true statement about correlation? ...

    Incorrect

    • What is a true statement about correlation?

      Your Answer:

      Correct Answer: Complete absence of correlation is expressed by a value of 0

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 30 - Which statement about confounding is incorrect? ...

    Incorrect

    • Which statement about confounding is incorrect?

      Your Answer:

      Correct Answer: In the analytic stage of a study confounding can be controlled for by randomisation

      Explanation:

      In the analytic stage of a study, confounding cannot be controlled for by the technique of stratification. (This is false, as stratification is a technique commonly used to control for confounding in observational studies.)

      Stats Confounding

      A confounding factor is a factor that can obscure the relationship between an exposure and an outcome in a study. This factor is associated with both the exposure and the disease. For example, in a study that finds a link between coffee consumption and heart disease, smoking could be a confounding factor because it is associated with both drinking coffee and heart disease. Confounding occurs when there is a non-random distribution of risk factors in the population, such as age, sex, and social class.

      To control for confounding in the design stage of an experiment, researchers can use randomization, restriction, of matching. Randomization aims to produce an even distribution of potential risk factors in two populations. Restriction involves limiting the study population to a specific group to ensure similar age distributions. Matching involves finding and enrolling participants who are similar in terms of potential confounding factors.

      In the analysis stage of an experiment, researchers can control for confounding by using stratification of multivariate models such as logistic regression, linear regression, of analysis of covariance (ANCOVA). Stratification involves creating categories of strata in which the confounding variable does not vary of varies minimally.

      Overall, controlling for confounding is important in ensuring that the relationship between an exposure and an outcome is accurately assessed in a study.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (5/8) 63%
Passmed