-
Question 1
Correct
-
Which data type does age in years belong to?
Your Answer: Ratio
Explanation:Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Incorrect
-
How do the odds of excessive drinking differ between patients with liver cirrhosis and those without cirrhosis?
Your Answer: 3
Correct Answer: 16
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Correct
-
If a study has a Type I error rate of <0.05 and a Type II error rate of 0.2, what is the power of the study?
Your Answer: 0.8
Explanation:A study’s ability to correctly detect a true effect of difference may be calculated as Power = 1 – Type II error rate. In the given scenario, the power can be calculated as Power = 1 – 0.2 = 0.8. Type I error refers to a false positive, while Type II error refers to a false negative.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Correct
-
In what way can the study on depression be deemed as having limited applicability to the average patient population?
Your Answer: External validity
Explanation:When a study has good external validity, its findings can be applied to other populations with confidence.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Correct
-
What is the appropriate denominator for calculating the incidence rate?
Your Answer: The total person time at risk during a specified time period
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
What is the nature of the hypothesis that a researcher wants to test regarding the effect of a drug on a person's heart rate?
Your Answer: Two-tailed alternative hypothesis
Correct Answer: One-tailed alternative hypothesis
Explanation:A one-tailed hypothesis indicates a specific direction of association between groups. The researcher not only declares that there will be a distinction between the groups but also defines the direction in which the difference will occur.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Correct
-
What does a smaller p-value indicate in terms of the strength of evidence?
Your Answer: The alternative hypothesis
Explanation:A p-value represents the likelihood of rejecting a null hypothesis that is actually true. A smaller p-value indicates a lower chance of mistakenly rejecting the null hypothesis, providing evidence in favor of the alternative hypothesis.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Correct
-
What test would be the most effective in verifying the suitability of using a parametric test on a given dataset?
Your Answer: Lilliefors test
Explanation:Normality Testing in Statistics
In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Incorrect
-
In a study, the null hypothesis posits that there is no disparity between the mean values of group A and group B. Upon analysis, the study discovers a difference and presents a p-value of 0.04. Which statement below accurately reflects this scenario?
Your Answer: There is a 96% chance of the alternative hypothesis being correct
Correct Answer: Assuming the null hypothesis is correct, there is a 4% chance that the difference detected between A and B has arisen by chance
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
A study was conducted to investigate the correlation between body mass index (BMI) and mortality in patients with schizophrenia. The study involved a cohort of 1000 patients with schizophrenia who were evaluated by measuring their weight and height, and calculating their BMI. The participants were then monitored for up to 15 years after the study commenced. The BMI levels were classified into three categories (high, average, low). The findings revealed that, after adjusting for age, gender, treatment method, and comorbidities, a high BMI at the beginning of the study was linked to a twofold increase in mortality.
How is this study best described?Your Answer:
Correct Answer:
Explanation:The study is a prospective cohort study that observes the effect of BMI as an exposure on the group over time, without manipulating any risk factors of interventions.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Incorrect
-
Which statement accurately describes bar charts?
Your Answer: The quantity on the Y scale is the relative frequency
Correct Answer: The height of the bar indicates the frequency
Explanation:The frequency of each category of characteristic is displayed through the height of the bars in a bar chart. When dealing with discrete data, it is typically organized into distinct categories and presented in a bar chart. On the other hand, continuous data covers a range and the categories are not separate but rather blend into one another. This type of data is best represented through a histogram, which is similar to a bar chart but with bars that are connected.
Differences between Bar Charts and Histograms
Bar charts and histograms are both used to represent data, but they differ in their application and design. Bar charts are used to summarize nominal of ordinal data, while histograms are used for quantitative data. In a bar chart, the x-axis represents categories without a scale, and the y-axis represents frequencies. The columns are of equal width, and the height of the bar indicates the frequency. On the other hand, histograms have a scale on both axes, with the y-axis representing the relative frequency of frequency density. The width of the columns in a histogram can vary, and the area of the column indicates the true frequency. Overall, bar charts and histograms are useful tools for visualizing data, but their differences in design and application make them better suited for different types of data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Correct
-
How many people need to be treated with the new drug to prevent one case of Alzheimer's disease in individuals with a positive family history, based on the results of a randomised controlled trial with 1,000 people in group A taking the drug and 1,400 people in group B taking a placebo, where the Alzheimer's rate was 2% in group A and 4% in group B?
Your Answer: 50
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Correct
-
A study is being planned to investigate whether exposure to pesticides is a risk factor for Parkinson's disease. The researchers are considering conducting a case-control study instead of a cohort study. What is one advantage of using a case-control study design in this situation?
Your Answer: It is possible to study diseases that are rare
Explanation:The benefits of conducting a case-control study include its suitability for examining rare diseases, the ability to investigate a broad range of risk factors, no loss to follow-up, and its relatively low cost and quick turnaround time. The findings of such studies are typically presented as an odds ratio.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Correct
-
Which of the following is not a factor considered when determining causality?
Your Answer: Sensitivity
Explanation:Stats Association and Causation
When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.
Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Correct
-
A team of scientists aims to conduct a systematic review on the effectiveness of a new medication for elderly patients with dementia. They decide to search for studies published in languages other than English, as they know that positive results are more likely to be published in English-language journals, while negative results are more likely to be published in non-English language journals. What type of bias are they trying to prevent?
Your Answer: Tower of Babel bias
Explanation:When conducting a systematic review, restricting the selection of studies to those published only in English may introduce a bias known as the Tower of Babel effect. This occurs because studies conducted in non-English speaking countries that report positive results are more likely to be published in English language journals, while those with negative results are more likely to be published in non-English language journals.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Incorrect
-
What is the GRADE approach used in evidence based medicine and what are its characteristics?
Your Answer: It offers five levels of evidence quality
Correct Answer: The system can be applied to observational studies
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Correct
-
The researcher conducted a study to test his hypothesis that a new drug would effectively treat depression. The results of the study indicated that his hypothesis was true, but in reality, it was not. What happened?
Your Answer: Type I error
Explanation:Type I errors occur when we reject a null hypothesis that is actually true, leading us to believe that there is a significant difference of effect when there is not.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Incorrect
-
What is the most appropriate indicator of internal consistency?
Your Answer: Cohen's kappa
Correct Answer: Split half correlation
Explanation:Cronbach’s Alpha is a statistical measure used to assess the internal consistency of a test of questionnaire. It is a widely used method to determine the reliability of a test by measuring the extent to which the items on the test are measuring the same construct. Cronbach’s Alpha ranges from 0 to 1, with higher values indicating greater internal consistency. A value of 0.7 of higher is generally considered acceptable for research purposes. The calculation of Cronbach’s Alpha involves comparing the variance of the total score with the variance of the individual items. It is important to note that Cronbach’s Alpha assumes that all items are measuring the same construct, and therefore, it may not be appropriate for tests that measure multiple constructs.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Correct
-
A new drug is trialled for the treatment of heart disease. Drug A is given to 500 people with early stage heart disease and a placebo is given to 450 people with the same condition. After 5 years, 300 people who received drug A had survived compared to 225 who received the placebo. What is the number needed to treat to save one life?
Your Answer: 10
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Correct
-
The QALY is utilized in which of the following approaches for economic assessment?
Your Answer: Cost-utility analysis
Explanation:Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)