-
Question 1
Incorrect
-
An 80-year-old man arrives at the emergency department with complaints of lightheadedness, fatigue, and shortness of breath during exertion. Upon examination, you observe a pulse rate of 42 beats per minute, mild bibasal crepitations, and bilateral peripheral pitting edema. The patient's ECG reveals a dissociation between the P waves and QRS complexes. Which aspect of the JVP waveform is most likely to be impacted in this individual?
Your Answer: x descent
Correct Answer: a wave
Explanation:A complete heart block is indicated by a pulse rate of approximately 40 beats per minute and ECG results. This means that the atria and ventricles are contracting in an unsynchronized manner. When the tricuspid valve is closed and the right atrium contracts, the JVP will experience a significant increase, which is referred to as cannon a waves.
Understanding the Jugular Venous Pulse
The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.
The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.
The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.
Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?
Your Answer: Troponin I
Correct Answer: Myoglobin
Explanation:Enzyme Markers for Myocardial Infarction
Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
What is the average stroke volume in a resting 75 Kg man?
Your Answer: 10ml
Correct Answer: 70ml
Explanation:The range of stroke volumes is between 55 and 100 milliliters.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
An 82-year-old woman visits her doctor with a medical history of myocardial infarction that has resulted in permanent damage to the conduction system of her heart. The damage has affected the part of the conduction system with the highest velocities, causing desynchronisation of the ventricles.
What is the part of the heart that conducts the fastest?Your Answer: Purkinje fibres
Explanation:The Purkinje fibres have the highest conduction velocities in the heart’s electrical conduction system. The process starts with the SA node generating spontaneous action potentials, which are then conducted across both atria through cell to cell conduction at a speed of approximately 1 m/s. The only pathway for the action potential to enter the ventricles is through the AV node, which has a slow conduction speed of 0.05ms to allow for complete atrial contraction and ventricular filling. The action potentials are then conducted through the Bundle of His, which splits into the left and right bundle branches, with a conduction speed of approximately 2m/s. Finally, the action potential reaches the Purkinje fibres, which are specialized conducting cells that allow for a faster conduction speed of 2-4m/s. This fast conduction speed is crucial for a synchronized and efficient contraction of the ventricle, generating pressure during systole.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.
The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?Your Answer: Ventricular myocardium
Explanation:BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 78-year-old man with an ST-elevation myocardial infarction receives bivalirudin, aspirin, and clopidogrel before undergoing percutaneous coronary intervention. What is the mode of action of bivalirudin?
Your Answer: COX inhibitor
Correct Answer: Reversible direct thrombin inhibitor
Explanation:Bivalirudin inhibits thrombin directly in a reversible manner.
Warfarin prevents the conversion of vitamin K to its active hydroquinone form by acting as an antagonist.
Heparins activate antithrombin II and also form inactive complexes with other clotting factors.
Aspirin inhibits COX.
Clopidogrel functions as a/an.
Bivalirudin: An Anticoagulant for Acute Coronary Syndrome
Bivalirudin is a medication that acts as a direct thrombin inhibitor, meaning it prevents the formation of blood clots. It is commonly used as an anticoagulant in the treatment of acute coronary syndrome, a condition where blood flow to the heart is blocked or reduced. Bivalirudin is a reversible inhibitor, meaning its effects can be reversed if necessary.
Acute coronary syndrome is a serious condition that can lead to heart attack or other complications if left untreated. Bivalirudin is an effective treatment option for preventing blood clots and reducing the risk of further complications. Its reversible nature also makes it a safer option for patients who may need to undergo surgery or other procedures while on anticoagulant therapy. Overall, bivalirudin is an important medication in the management of acute coronary syndrome and plays a crucial role in improving patient outcomes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?
Your Answer: Hypohidrosis
Explanation:Hypohidrosis is a possible side-effect of Atropine.
Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.
Understanding Atropine and Its Uses
Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.
Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
Which one of the following is not considered a major branch of the ascending thoracic aorta?
Your Answer:
Correct Answer: Inferior thyroid artery
Explanation:The thyrocervical trunk, which is a branch of the subclavian artery, is typically the source of the inferior thyroid artery.
Anatomy of the Thoracic Aorta
The thoracic aorta is a major blood vessel that originates from the fourth thoracic vertebrae and terminates at the twelfth thoracic vertebrae. It is located in the chest cavity and has several important relations with surrounding structures. Anteriorly, it is related to the root of the left lung, the pericardium, the oesophagus, and the diaphragm. Posteriorly, it is related to the vertebral column and the azygos vein. On the right side, it is related to the hemiazygos veins and the thoracic duct, while on the left side, it is related to the left pleura and lung.
The thoracic aorta has several branches that supply blood to different parts of the body. The lateral segmental branches are the posterior intercostal arteries, which supply blood to the muscles and skin of the back. The lateral visceral branches are the bronchial arteries, which supply blood to the bronchial walls and lung, excluding the alveoli. The midline branches are the oesophageal arteries, which supply blood to the oesophagus.
In summary, the thoracic aorta is an important blood vessel that supplies blood to various structures in the chest cavity. Its anatomy and relations with surrounding structures are crucial for understanding its function and potential clinical implications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?
Your Answer:
Correct Answer: 2 cm from the vertical height above the sternal angle
Explanation:The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45º angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.
Understanding the Jugular Venous Pulse
The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.
The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.
The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.
Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?
Your Answer:
Correct Answer: Biventricular failure
Explanation:Diagnosis and Assessment of Biventricular Failure
This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.
Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 65-year-old male comes to the GP complaining of mild chest pain and dyspnoea. The patient has no significant medical history but has a family history of heart disease, with his father passing away following a heart attack last year. The GP suspects atrial flutter and decides to perform an ECG to confirm the diagnosis. What ECG findings would you anticipate given the diagnosis?
Your Answer:
Correct Answer: Narrow complex tachycardia
Explanation:Atrial flutter is characterized by a sawtooth pattern on ECG and typically presents as a narrow complex tachycardia. The regular atrial activity in atrial flutter is typically 300 bpm, and the ventricular rate is a fraction of this. For example, a 2:1 block would result in a ventricular rate of 150/min, a 3:1 block would result in a ventricular rate of 100/min, and a 4:1 block would result in a ventricular rate of 75/min.
Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.
Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.
What ion influx causes this rapid depolarisation?Your Answer:
Correct Answer: Na+
Explanation:Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 50-year-old man with a history of rate-controlled atrial fibrillation (AF) presents with chest pain, palpitations, and dizziness. The patient has a past medical history of a transient ischemic episode and is taking warfarin to prevent further ischemic episodes. He also has a history of gout, low back pain, depression, and polymyalgia rheumatica.
Upon immediate ECG, the patient is found to have an irregularly irregular rhythm consistent with fast AF. You decide to perform electrical cardioversion and prescribe a course of amiodarone to prevent recurrence.
What drug interaction should you be cautious of in this patient?Your Answer:
Correct Answer: Warfarin and amiodarone
Explanation:The metabolism of warfarin is reduced by amiodarone, which can increase the risk of bleeding. However, there are no known interactions between amiodarone and naproxen, paracetamol, codeine, or allopurinol. It should be noted that the patient in question is not diabetic and therefore should not be taking metformin.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain during physical activity. After initial investigations, an outpatient coronary angiography is performed which reveals severe stenosis/atheroma in multiple vessels. The patient is informed that this condition is a result of various factors, including the detrimental effects of smoking on the blood vessels.
What is the ultimate stage in the development of this patient's condition?Your Answer:
Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart failure and a systolic murmur. He is referred for an echocardiogram, which reveals an ejection fraction of 62% and impaired diastolic function of the myocardial tissue. Additionally, the report notes a septal wall thickness of 17mm. What is the most probable condition responsible for these findings?
Your Answer:
Correct Answer: Hypertrophic obstructive cardiomyopathy
Explanation:Hypertrophic obstructive cardiomyopathy (HOCM) is a likely cause of diastolic dysfunction, which can lead to heart failure with preserved ejection fraction (HF-pEF). This genetic cardiomyopathy is associated with sudden cardiac death, syncope, and heart failure. Unlike other conditions, such as degenerative calcification of the aortic valve or dilated cardiomyopathy, HOCM typically presents with diastolic dysfunction rather than systolic dysfunction. Ischaemic heart disease is also unlikely to be the cause of diastolic dysfunction and would typically present with heart failure and systolic dysfunction.
Types of Heart Failure
Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 78-year-old woman has recently been diagnosed with heart failure following 10 months of progressive ankle swelling and shortness of breath. She has been prescribed various medications, provided with lifestyle recommendations, and informed about her prognosis. Due to her new diagnosis, what are the two types of valve dysfunction that she is most susceptible to?
Your Answer:
Correct Answer: Mitral regurgitation and tricuspid regurgitation
Explanation:Functional mitral and tricuspid regurgitations are the most frequent valve dysfunctions that occur as a result of heart failure. This is due to the fact that the enlarged ventricles prevent the valves from fully closing during diastole.
Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 72-year-old man presents with biliary colic and an abdominal aortic aneurysm measuring 4.8 cm is discovered. Which of the following statements regarding this condition is false?
Your Answer:
Correct Answer: The wall will be composed of dense fibrous tissue only
Explanation:These aneurysms are genuine and consist of all three layers of the arterial wall.
Understanding Abdominal Aortic Aneurysms
Abdominal aortic aneurysms occur when the elastic proteins in the extracellular matrix fail, causing the arterial wall to dilate. This is typically caused by degenerative disease and can be identified by a diameter of 3 cm or greater. The development of aneurysms is complex and involves the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration.
Smoking and hypertension are major risk factors for the development of aneurysms, while rare causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. It is important to understand the underlying causes and risk factors for abdominal aortic aneurysms in order to prevent and treat this potentially life-threatening condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
Which of the following clotting factors is unaffected by warfarin?
Your Answer:
Correct Answer: Factor XII
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
Sarah is a 52-year-old patient with hypertension. Her blood pressure remains high despite taking ramipril therefore add-on therapy with a thiazide-like diuretic is being considered.
What is a contraindication to starting this therapy?Your Answer:
Correct Answer: Gout
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.
He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.
On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.
An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².
His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.
What is the most likely diagnosis?Your Answer:
Correct Answer: Hypertrophic obstructive cardiomyopathy
Explanation:The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.
Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.
Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.
Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)