-
Question 1
Incorrect
-
Can you identify a condition that falls under the category of tauopathy?
Your Answer: Huntington's disease
Correct Answer: Pick's disease
Explanation:Tau and Tauopathies
Tau proteins are essential for maintaining the stability of microtubules in neurons. Microtubules provide structural support to the cell and facilitate the transport of molecules within the cell. Tau proteins are predominantly found in the axons of neurons and are absent in dendrites. The gene that codes for tau protein is located on chromosome 17.
When tau proteins become hyperphosphorylated, they clump together, forming neurofibrillary tangles. This process leads to the disintegration of cells, which is a hallmark of several neurodegenerative disorders collectively known as tauopathies.
The major tauopathies include Alzheimer’s disease, Pick’s disease (frontotemporal dementia), progressive supranuclear palsy, and corticobasal degeneration. These disorders are characterized by the accumulation of tau protein in the brain, leading to the degeneration of neurons and cognitive decline. Understanding the role of tau proteins in these disorders is crucial for developing effective treatments for these devastating diseases.
-
This question is part of the following fields:
- Genetics
-
-
Question 2
Correct
-
What is the condition caused by inheriting a deletion of chromosome 15q from the father?
Your Answer: Prader-Willi
Explanation:Genomic Imprinting and its Role in Psychiatric Disorders
Genomic imprinting is a phenomenon where a piece of DNA behaves differently depending on whether it is inherited from the mother of the father. This is because DNA sequences are marked of imprinted in the ovaries and testes, which affects their expression. In psychiatry, two classic examples of genomic imprinting disorders are Prader-Willi and Angelman syndrome.
Prader-Willi syndrome is caused by a deletion of chromosome 15q when inherited from the father. This disorder is characterized by hypotonia, short stature, polyphagia, obesity, small gonads, and mild mental retardation. On the other hand, Angelman syndrome, also known as Happy Puppet syndrome, is caused by a deletion of 15q when inherited from the mother. This disorder is characterized by an unusually happy demeanor, developmental delay, seizures, sleep disturbance, and jerky hand movements.
Overall, genomic imprinting plays a crucial role in the development of psychiatric disorders. Understanding the mechanisms behind genomic imprinting can help in the diagnosis and treatment of these disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 3
Correct
-
Which base pairs are found within DNA?
Your Answer: Adenine and thymine
Explanation:Genomics: Understanding DNA, RNA, Transcription, and Translation
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around each other to form a double helix. DNA is organised into chromosomes, and each chromosome is made up of DNA coiled around proteins called histones. RNA, on the other hand, is made from a long chain of nucleotide units and is usually single-stranded. RNA is transcribed from DNA by enzymes called RNA polymerases and is central to protein synthesis.
Transcription is the synthesis of RNA from a DNA template, and it consists of three main steps: initiation, elongation, and termination. RNA polymerase binds at a sequence of DNA called the promoter, and the transcriptome is the collection of RNA molecules that results from transcription. Translation, on the other hand, refers to the synthesis of polypeptides (proteins) from mRNA. Translation takes place on ribosomes in the cell cytoplasm, where mRNA is read and translated into the string of amino acid chains that make up the synthesized protein.
The process of translation involves messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). Transfer RNAs, of tRNAs, connect mRNA codons to the amino acids they encode, while ribosomes are the structures where polypeptides (proteins) are built. Like transcription, translation also consists of three stages: initiation, elongation, and termination. In initiation, the ribosome assembles around the mRNA to be read and the first tRNA carrying the amino acid methionine. In elongation, the amino acid chain gets longer, and in termination, the finished polypeptide chain is released.
-
This question is part of the following fields:
- Genetics
-
-
Question 4
Incorrect
-
Who is credited with introducing the concept of endophenotypes?
Your Answer: Delay and Deniker
Correct Answer: Gottesman & Shields
Explanation:Delay and Deniker are credited with introducing chlorpromazine, a medication used to treat various mental illnesses, including schizophrenia. This drug was a breakthrough in the field of psychiatry and helped to revolutionize the treatment of mental illness.
Rutter is often referred to as the ‘father of child psychiatry’ due to his significant contributions to the field. He was instrumental in developing new approaches to the diagnosis and treatment of childhood mental health disorders, and his work has had a lasting impact on the field.
Cerletti is known for his role in the development of electroconvulsive therapy (ECT), a treatment for severe mental illness that involves passing an electric current through the brain to induce a seizure. While controversial, ECT has been shown to be effective in treating certain mental health conditions, and Cerletti’s work helped to establish it as a viable treatment option.
Understanding Endophenotypes in Psychiatry
Endophenotypes are measurable components that are not visible to the naked eye, but are present along the pathway between disease and distal genotype. These components may be neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, of neuropsychological. They provide simpler clues to genetic underpinnings than the disease syndrome itself, making genetic analysis more straightforward and successful.
Endophenotypes are important in biological psychiatry research as they specifically require heritability and state independence. They must segregate with illness in the general population, be heritable, manifest whether illness is present of in remission, cosegregate with the disorder within families, be present at a higher rate within affected families than in the general population, and be a characteristic that can be measured reliably and is specific to the illness of interest.
Understanding endophenotypes is crucial in delineating the pathophysiology of mental illness, as genes are the biological bedrock of these disorders. By identifying and measuring endophenotypes, researchers can gain insight into the underlying genetic causes of mental illness and develop more effective treatments.
-
This question is part of the following fields:
- Genetics
-
-
Question 5
Incorrect
-
What combination of symptoms and signs would strongly indicate the presence of tuberous sclerosis?
Your Answer: Developmental delay, epicanthic folds, and single palmar crease
Correct Answer: Seizures, developmental delay, and skin lesions
Explanation:Tuberous Sclerosis: A Neurocutaneous Syndrome with Psychiatric Comorbidity
Tuberous sclerosis is a genetic disorder that affects multiple organs, including the brain, and is associated with significant psychiatric comorbidity. This neurocutaneous syndrome is inherited in an autosomal dominant pattern with a high penetrance rate of 95%, but its expression can vary widely. The hallmark of this disorder is the growth of multiple non-cancerous tumors in vital organs, including the brain. These tumors result from mutations in one of two tumor suppressor genes, TSC1 and TSC2. The psychiatric comorbidities associated with tuberous sclerosis include autism, ADHD, depression, anxiety, and even psychosis.
-
This question is part of the following fields:
- Genetics
-
-
Question 6
Incorrect
-
Which condition is characterized by microcephaly?
Your Answer: Costello syndrome
Correct Answer: Fetal alcohol syndrome
Explanation:Microcephaly is a characteristic of fetal alcohol syndrome, while macrocephaly is associated with all the other options except for Asperger’s, which is not typically linked to any abnormality in head size.
Microcephaly: A Condition of Small Head Size
Microcephaly is a condition characterized by a small head size. It can be a feature of various conditions, including fetal alcohol syndrome, Down’s syndrome, Edward’s syndrome, Patau syndrome, Angelman syndrome, De Lange syndrome, Prader-Willi syndrome, and Cri-du-chat syndrome. Each of these conditions has its own unique set of symptoms and causes, but they all share the common feature of microcephaly. This condition can have a range of effects on a person’s development, including intellectual disability, seizures, and motor problems. Early diagnosis and intervention can help manage the symptoms and improve outcomes for individuals with microcephaly.
-
This question is part of the following fields:
- Genetics
-
-
Question 7
Incorrect
-
Which of the following is not a trinucleotide repeat disorder?
Your Answer: Myotonic dystrophy
Correct Answer: Williams syndrome
Explanation:Deletion of genetic material on chromosome 7 is the underlying cause of William’s syndrome.
Trinucleotide Repeat Disorders: Understanding the Genetic Basis
Trinucleotide repeat disorders are genetic conditions that arise due to the abnormal presence of an expanded sequence of trinucleotide repeats. These disorders are characterized by the phenomenon of anticipation, which refers to the amplification of the number of repeats over successive generations. This leads to an earlier onset and often a more severe form of the disease.
The table below lists the trinucleotide repeat disorders and the specific repeat sequences involved in each condition:
Condition Repeat Sequence Involved
Fragile X Syndrome CGG
Myotonic Dystrophy CTG
Huntington’s Disease CAG
Friedreich’s Ataxia GAA
Spinocerebellar Ataxia CAGThe mutations responsible for trinucleotide repeat disorders are referred to as ‘dynamic’ mutations. This is because the number of repeats can change over time, leading to a range of clinical presentations. Understanding the genetic basis of these disorders is crucial for accurate diagnosis, genetic counseling, and the development of effective treatments.
-
This question is part of the following fields:
- Genetics
-
-
Question 8
Correct
-
From which region of genetic material is deleted in Angelman syndrome?
Your Answer: Chromosome 15
Explanation:Genomic Imprinting and its Role in Psychiatric Disorders
Genomic imprinting is a phenomenon where a piece of DNA behaves differently depending on whether it is inherited from the mother of the father. This is because DNA sequences are marked of imprinted in the ovaries and testes, which affects their expression. In psychiatry, two classic examples of genomic imprinting disorders are Prader-Willi and Angelman syndrome.
Prader-Willi syndrome is caused by a deletion of chromosome 15q when inherited from the father. This disorder is characterized by hypotonia, short stature, polyphagia, obesity, small gonads, and mild mental retardation. On the other hand, Angelman syndrome, also known as Happy Puppet syndrome, is caused by a deletion of 15q when inherited from the mother. This disorder is characterized by an unusually happy demeanor, developmental delay, seizures, sleep disturbance, and jerky hand movements.
Overall, genomic imprinting plays a crucial role in the development of psychiatric disorders. Understanding the mechanisms behind genomic imprinting can help in the diagnosis and treatment of these disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 9
Incorrect
-
What is the most accurate description of how Pick's disease is inherited?
Your Answer: Mitochondrial
Correct Answer: Autosomal dominant
Explanation:Genes Associated with Dementia
Dementia is a complex disorder that can be caused by various genetic and environmental factors. Several genes have been implicated in different forms of dementia. For instance, familial Alzheimer’s disease, which represents less than 1-6% of all Alzheimer’s cases, is associated with mutations in PSEN1, PSEN2, APP, and ApoE genes. These mutations are inherited in an autosomal dominant pattern. On the other hand, late-onset Alzheimer’s disease is a genetic risk factor associated with the ApoE gene, particularly the APOE4 allele. However, inheriting this allele does not necessarily mean that a person will develop Alzheimer’s.
Other forms of dementia, such as familial frontotemporal dementia, Huntington’s disease, CADASIL, and dementia with Lewy bodies, are also associated with specific genes. For example, C9orf72 is the most common mutation associated with familial frontotemporal dementia, while Huntington’s disease is caused by mutations in the HTT gene. CADASIL is associated with mutations in the Notch3 gene, while dementia with Lewy bodies is associated with the APOE, GBA, and SNCA genes.
In summary, understanding the genetic basis of dementia is crucial for developing effective treatments and preventive measures. However, it is important to note that genetics is only one of the many factors that contribute to the development of dementia. Environmental factors, lifestyle choices, and other health conditions also play a significant role.
-
This question is part of the following fields:
- Genetics
-
-
Question 10
Correct
-
What is the most frequently occurring viable trisomy?
Your Answer: Trisomy 21
Explanation:Aneuploidy: Abnormal Chromosome Numbers
Aneuploidy refers to the presence of an abnormal number of chromosomes, which can result from errors during meiosis. Typically, human cells have 23 pairs of chromosomes, but aneuploidy can lead to extra of missing chromosomes. Trisomies, which involve the presence of an additional chromosome, are the most common aneuploidies in humans. However, most trisomies are not compatible with life, and only trisomy 21 (Down’s syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) survive to birth. Aneuploidy can result in imbalances in gene expression, which can lead to a range of symptoms and developmental issues.
Compared to autosomal trisomies, humans are more able to tolerate extra sex chromosomes. Klinefelter’s syndrome, which involves the presence of an extra X chromosome, is the most common sex chromosome aneuploidy. Individuals with Klinefelter’s and XYY often remain undiagnosed, but they may experience reduced sexual development and fertility. Monosomies, which involve the loss of a chromosome, are rare in humans. The only viable human monosomy involves the X chromosome and results in Turner’s syndrome. Turner’s females display a wide range of symptoms, including infertility and impaired sexual development.
The frequency and severity of aneuploidies vary widely. Down’s syndrome is the most common viable autosomal trisomy, affecting 1 in 800 births. Klinefelter’s syndrome affects 1-2 in 1000 male births, while XYY syndrome affects 1 in 1000 male births and Triple X syndrome affects 1 in 1000 births. Turner syndrome is less common, affecting 1 in 5000 female births. Edwards syndrome and Patau syndrome are rare, affecting 1 in 6000 and 1 in 10,000 births, respectively. Understanding the genetic basis and consequences of aneuploidy is important for diagnosis, treatment, and genetic counseling.
-
This question is part of the following fields:
- Genetics
-
-
Question 11
Correct
-
What is the term used to refer to the inactive X chromosome that occurs due to Lyonization?
Your Answer: Barr body
Explanation:Lyonization: The Process of X-Inactivation
The X chromosome is crucial for proper development and cell viability, containing over 1,000 essential genes. However, females carry two copies of the X chromosome, which can result in a potentially toxic double dose of X-linked genes. To address this imbalance, females undergo a process called Lyonization, of X-inactivation, where one of their two X chromosomes is transcriptionally silenced. The silenced X chromosome then condenses into a compact structure known as a Barr body, which remains in a silent state.
X-inactivation occurs randomly, with no preference for the paternal or maternal X chromosome. It takes place early in embryogenesis, soon after fertilization when the dividing conceptus is about 16-32 cells big. This process occurs in all somatic cells of women, but not in germ cells involved in forming gametes. X-inactivation affects most, but not all, genes on the X chromosome. If a cell has more than two X chromosomes, the extra Xs are also inactivated.
-
This question is part of the following fields:
- Genetics
-
-
Question 12
Incorrect
-
On which chromosome is the gene associated with Huntington's disease located?
Your Answer: 21
Correct Answer: 4
Explanation:Huntington’s Disease: Genetics and Pathology
Huntington’s disease is a genetic disorder that follows an autosomal dominant pattern of inheritance. It is caused by a mutation in the Huntington gene, which is located on chromosome 4. The mutation involves an abnormal expansion of a trinucleotide repeat sequence (CAG), which leads to the production of a toxic protein that damages brain cells.
The severity of the disease and the age of onset are related to the number of CAG repeats. Normally, the CAG sequence is repeated less than 27 times, but in Huntington’s disease, it is repeated many more times. The disease shows anticipation, meaning that it tends to worsen with each successive generation.
The symptoms of Huntington’s disease typically begin in the third of fourth decade of life, but in rare cases, they can appear in childhood of adolescence. The most common symptoms include involuntary movements (chorea), cognitive decline, and psychiatric disturbances.
The pathological hallmark of Huntington’s disease is the gross bilateral atrophy of the head of the caudate and putamen, which are regions of the brain involved in movement control. The EEG of patients with Huntington’s disease shows a flattened trace, indicating a loss of brain activity.
Macroscopic pathological findings include frontal atrophy, marked atrophy of the caudate and putamen, and enlarged ventricles. Microscopic findings include neuronal loss and gliosis in the cortex, neuronal loss in the striatum, and the presence of inclusion bodies in the neurons of the cortex and striatum.
In conclusion, Huntington’s disease is a devastating genetic disorder that affects the brain and causes a range of motor, cognitive, and psychiatric symptoms. The disease is caused by a mutation in the Huntington gene, which leads to the production of a toxic protein that damages brain cells. The pathological changes in the brain include atrophy of the caudate and putamen, neuronal loss, and the presence of inclusion bodies.
-
This question is part of the following fields:
- Genetics
-
-
Question 13
Incorrect
-
Which statement accurately describes ribonucleic acid (RNA)?
Your Answer: RNA is transcribed from DNA by enzymes called RNA transferases
Correct Answer: RNA is typically shorter than DNA
Explanation:Enzymes called RNA polymerases, not transferases, transcribe RNA from DNA.
Genomics: Understanding DNA, RNA, Transcription, and Translation
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around each other to form a double helix. DNA is organised into chromosomes, and each chromosome is made up of DNA coiled around proteins called histones. RNA, on the other hand, is made from a long chain of nucleotide units and is usually single-stranded. RNA is transcribed from DNA by enzymes called RNA polymerases and is central to protein synthesis.
Transcription is the synthesis of RNA from a DNA template, and it consists of three main steps: initiation, elongation, and termination. RNA polymerase binds at a sequence of DNA called the promoter, and the transcriptome is the collection of RNA molecules that results from transcription. Translation, on the other hand, refers to the synthesis of polypeptides (proteins) from mRNA. Translation takes place on ribosomes in the cell cytoplasm, where mRNA is read and translated into the string of amino acid chains that make up the synthesized protein.
The process of translation involves messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). Transfer RNAs, of tRNAs, connect mRNA codons to the amino acids they encode, while ribosomes are the structures where polypeptides (proteins) are built. Like transcription, translation also consists of three stages: initiation, elongation, and termination. In initiation, the ribosome assembles around the mRNA to be read and the first tRNA carrying the amino acid methionine. In elongation, the amino acid chain gets longer, and in termination, the finished polypeptide chain is released.
-
This question is part of the following fields:
- Genetics
-
-
Question 14
Incorrect
-
What is the definition of genomic imprinting?
Your Answer: The mechanism by which consanguineous mating results in genetic abnormalities
Correct Answer: The observation that portions of DNA behave differently depending on whether they are inherited from the mother of father
Explanation:Genomic Imprinting and its Role in Psychiatric Disorders
Genomic imprinting is a phenomenon where a piece of DNA behaves differently depending on whether it is inherited from the mother of the father. This is because DNA sequences are marked of imprinted in the ovaries and testes, which affects their expression. In psychiatry, two classic examples of genomic imprinting disorders are Prader-Willi and Angelman syndrome.
Prader-Willi syndrome is caused by a deletion of chromosome 15q when inherited from the father. This disorder is characterized by hypotonia, short stature, polyphagia, obesity, small gonads, and mild mental retardation. On the other hand, Angelman syndrome, also known as Happy Puppet syndrome, is caused by a deletion of 15q when inherited from the mother. This disorder is characterized by an unusually happy demeanor, developmental delay, seizures, sleep disturbance, and jerky hand movements.
Overall, genomic imprinting plays a crucial role in the development of psychiatric disorders. Understanding the mechanisms behind genomic imprinting can help in the diagnosis and treatment of these disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 15
Incorrect
-
Which gene is not considered a candidate gene for schizophrenia?
Your Answer: COMT
Correct Answer: APOE
Explanation:Schizophrenia is a complex disorder that is associated with multiple candidate genes. No single gene has been identified as the sole cause of schizophrenia, and it is believed that the more genes involved, the greater the risk. Some of the important candidate genes for schizophrenia include DTNBP1, COMT, NRG1, G72, RGS4, DAOA, DISC1, and DRD2. Among these, neuregulin, dysbindin, and DISC1 are the most replicated and plausible genes, with COMT being the strongest candidate gene due to its role in dopamine metabolism. Low activity of the COMT gene has been associated with obsessive-compulsive disorder and schizophrenia. Neuregulin 1 is a growth factor that stimulates neuron development and differentiation, and increased neuregulin signaling in schizophrenia may suppress the NMDA receptor, leading to lowered glutamate levels. Dysbindin is involved in the biogenesis of lysosome-related organelles, and its expression is decreased in schizophrenia. DISC1 encodes a multifunctional protein that influences neuronal development and adult brain function, and it is disrupted in schizophrenia. It is located at the breakpoint of a balanced translocation identified in a large Scottish family with schizophrenia, schizoaffective disorder, and other major mental illnesses.
-
This question is part of the following fields:
- Genetics
-
-
Question 16
Incorrect
-
Is macrocephaly associated with Fragile X syndrome?
Your Answer: Foetal alcohol syndrome
Correct Answer: Fragile X syndrome
Explanation:Macrocephaly is a characteristic often seen in individuals with Fragile X syndrome.
Microcephaly: A Condition of Small Head Size
Microcephaly is a condition characterized by a small head size. It can be a feature of various conditions, including fetal alcohol syndrome, Down’s syndrome, Edward’s syndrome, Patau syndrome, Angelman syndrome, De Lange syndrome, Prader-Willi syndrome, and Cri-du-chat syndrome. Each of these conditions has its own unique set of symptoms and causes, but they all share the common feature of microcephaly. This condition can have a range of effects on a person’s development, including intellectual disability, seizures, and motor problems. Early diagnosis and intervention can help manage the symptoms and improve outcomes for individuals with microcephaly.
-
This question is part of the following fields:
- Genetics
-
-
Question 17
Correct
-
Which statement about Williams syndrome is not true?
Your Answer: It results from a microdeletion in chromosome 8
Explanation:Understanding Williams Syndrome
Williams syndrome is a rare neurodevelopmental disorder that is characterized by distinct physical and behavioral traits. Individuals with this syndrome have a unique facial appearance, including a low nasal bridge and a cheerful demeanor. They also tend to have mild to moderate mental retardation and are highly sociable and verbal.
Children with Williams syndrome are particularly sensitive to sound and may overreact to loud of high-pitched noises. The syndrome is caused by a deletion in the q11.23 region of chromosome 7, which codes for more than 20 genes. This deletion typically occurs during the recombination phase of meiosis and can be detected using fluorescent in situ hybridization (FISH).
Although Williams syndrome is an autosomal dominant condition, most cases are not inherited and occur sporadically in individuals with no family history of the disorder. With a prevalence of around 1 in 20,000, Williams syndrome is a rare condition that requires specialized care and support.
-
This question is part of the following fields:
- Genetics
-
-
Question 18
Incorrect
-
What is the truth about the genetics of dementia?
Your Answer: Familial Alzheimer's accounts for 20% of all cases of Alzheimer's disease
Correct Answer: CADASIL follows an autosomal dominant inheritance pattern
Explanation:Genes Associated with Dementia
Dementia is a complex disorder that can be caused by various genetic and environmental factors. Several genes have been implicated in different forms of dementia. For instance, familial Alzheimer’s disease, which represents less than 1-6% of all Alzheimer’s cases, is associated with mutations in PSEN1, PSEN2, APP, and ApoE genes. These mutations are inherited in an autosomal dominant pattern. On the other hand, late-onset Alzheimer’s disease is a genetic risk factor associated with the ApoE gene, particularly the APOE4 allele. However, inheriting this allele does not necessarily mean that a person will develop Alzheimer’s.
Other forms of dementia, such as familial frontotemporal dementia, Huntington’s disease, CADASIL, and dementia with Lewy bodies, are also associated with specific genes. For example, C9orf72 is the most common mutation associated with familial frontotemporal dementia, while Huntington’s disease is caused by mutations in the HTT gene. CADASIL is associated with mutations in the Notch3 gene, while dementia with Lewy bodies is associated with the APOE, GBA, and SNCA genes.
In summary, understanding the genetic basis of dementia is crucial for developing effective treatments and preventive measures. However, it is important to note that genetics is only one of the many factors that contribute to the development of dementia. Environmental factors, lifestyle choices, and other health conditions also play a significant role.
-
This question is part of the following fields:
- Genetics
-
-
Question 19
Correct
-
Among the given chromosomal abnormalities, which one is commonly linked to aggressive behavior?
Your Answer: 47 XYY
Explanation:While XYY has been proposed as a potential contributor to aggressive behavior, it is more likely that the observed increase in aggression among individuals with this genetic makeup is a result of other factors such as low IQ and social deprivation, which are more prevalent in the XYY population. Therefore, XYY is not considered to be the sole cause of aggressiveness.
XYY Syndrome
XYY Syndrome, also known as Jacobs’ Syndrome of super-males, is a genetic condition where males have an extra Y chromosome, resulting in a 47, XYY karyotype. In some cases, mosaicism may occur, resulting in a 47,XYY/46,XY karyotype. The error leading to the 47,XYY genotype occurs during spermatogenesis of post-zygotic mitosis. The prevalence of XYY Syndrome is as high as 1:1000 male live births, but many cases go unidentified as they are not necessarily associated with physical of cognitive impairments. The most common features are high stature and a strong build, and fertility and sexual development are usually unaffected. In the past, XYY Syndrome was linked to aggressiveness and deviance, but this is likely due to intermediate factors such as reduced IQ and social deprivation. XYY Syndrome is best thought of as a risk factor rather than a cause. There is an increased risk of developmental disorders such as learning difficulties, ASD, ADHD, and emotional problems.
-
This question is part of the following fields:
- Genetics
-
-
Question 20
Incorrect
-
What is the closest estimate of heritability in bipolar disorder?
Your Answer: 30%
Correct Answer: 50%
Explanation:Heritability: Understanding the Concept
Heritability is a concept that is often misunderstood. It is not a measure of the extent to which genes cause a condition in an individual. Rather, it is the proportion of phenotypic variance attributable to genetic variance. In other words, it tells us how much of the variation in a condition seen in a population is due to genetic factors. Heritability is calculated using statistical techniques and can range from 0.0 to 1.0. For human behavior, most estimates of heritability fall in the moderate range of .30 to .60.
The quantity (1.0 – heritability) gives the environment ability of the trait. This is the proportion of phenotypic variance attributable to environmental variance. The following table provides estimates of heritability for major conditions:
Condition Heritability estimate (approx)
ADHD 85%
Autism 70%
Schizophrenia 55%
Bipolar 55%
Anorexia 35%
Alcohol dependence 35%
Major depression 30%
OCD 25%It is important to note that heritability tells us nothing about individuals. It is a population-level measure that helps us understand the relative contributions of genetic and environmental factors to a particular condition.
-
This question is part of the following fields:
- Genetics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)