00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A slender 50-year-old man with a past of alcoholism arrives at the ER...

    Incorrect

    • A slender 50-year-old man with a past of alcoholism arrives at the ER with ataxia, anterograde and retrograde amnesia, and ophthalmoplegia. According to his family member, he was previously treated for a comparable episode, but his memory has remained poor since then, and he appears to be fabricating false stories when testing his memory. The specialist suspects that he may be displaying symptoms of Korsakoff's syndrome.

      What vitamin deficiency is responsible for causing this syndrome?

      Your Answer: Vitamin B6

      Correct Answer: Vitamin B1

      Explanation:

      Korsakoff’s syndrome is primarily caused by a severe deficiency in thiamine (vitamin B1). Thiamine is essential for brain cells to produce energy, and without it, brain cells cannot function properly. This deficiency can lead to Wernicke’s encephalopathy, which, if left untreated, can progress to Korsakoff’s syndrome. Alcoholism is the most common cause of thiamine deficiency, but it can also be caused by other conditions such as anorexia nervosa, renal dialysis, and certain forms of cancer.

      Deficiencies in vitamins B2, B3, B6, and B12 are not the primary cause of Korsakoff’s syndrome. Vitamin B2 deficiency can cause fatigue, angular stomatitis, and dermatitis. Mild vitamin B3 deficiency can cause similar symptoms to other vitamin B deficiencies, while severe deficiency can lead to pellagra. Vitamin B6 deficiency is rare and is usually associated with low levels of other B-complex vitamins. Vitamin B12 or folate deficiency can cause symptoms such as fatigue, anaemia, mouth ulcers, and shortness of breath.

      Understanding Korsakoff’s Syndrome

      Korsakoff’s syndrome is a memory disorder that is commonly observed in individuals who have a history of alcoholism. This condition is caused by a deficiency in thiamine, which leads to damage and haemorrhage in the mammillary bodies of the hypothalamus and the medial thalamus. Korsakoff’s syndrome often follows untreated Wernicke’s encephalopathy, which is another condition caused by thiamine deficiency.

      The primary features of Korsakoff’s syndrome include anterograde amnesia, which is the inability to acquire new memories, and retrograde amnesia. Individuals with this condition may also experience confabulation, which is the production of fabricated or distorted memories to fill gaps in their recollection.

      Understanding Korsakoff’s syndrome is crucial for individuals who have a history of alcoholism or thiamine deficiency. Early diagnosis and treatment can help prevent further damage and improve the individual’s quality of life. Proper nutrition and abstinence from alcohol are essential for managing this condition.

    • This question is part of the following fields:

      • Psychiatry
      47
      Seconds
  • Question 2 - A 55-year-old man presents with a 3-month history of a progressive headache that...

    Incorrect

    • A 55-year-old man presents with a 3-month history of a progressive headache that is worse in the morning, nausea and reduced appetite. He reports that he has been bumping into hanging objects more frequently.

      During the examination of his cranial nerves, a left superior homonymous quadrantanopia is detected. However, his visual acuity is normal.

      Given the ophthalmological finding, where is the suspected location of the space-occupying lesion? An urgent MRI brain has been scheduled.

      Your Answer:

      Correct Answer: Right temporal lobe

      Explanation:

      Lesions in the temporal lobe inferior optic radiations are responsible for causing superior homonymous quadrantanopias.

      When the contralateral inferior parts of the posterior visual pathway, specifically the inferior optic radiation (Meyer loop) of the temporal lobe, are damaged, it results in homonymous superior quadrantanopia.

      Patients with this condition may experience difficulty navigating through their blind quadrant-field, such as bumping into objects located above their head or on the upper portion of their computer or television screen. They may also exhibit symptoms of the underlying cause, such as a brain tumor. Additionally, the non-dominant right temporal lobe is responsible for learning and remembering non-verbal information, which may also be affected.

      Despite the visual field defect, patients typically report normal visual acuity since only half a macula is required for it.

      Other visual field defects associated with different areas of the brain include right inferior homonymous quadrantanopia with left parietal lobe damage, right superior homonymous quadrantanopia with left temporal lobe damage, left homonymous hemianopia with macular sparing with right occipital lobe damage, and left inferior homonymous quadrantanopia with right parietal lobe damage.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 3 - A 45-year-old woman is currently being treated with lithium for bipolar depression. It...

    Incorrect

    • A 45-year-old woman is currently being treated with lithium for bipolar depression. It is believed that the drug affects the phosphoinositide cycle, resulting in a decrease in both Km and Vmax. This can be observed on a Lineweaver-Burk plot, where the Y-intercept shifts upwards, the X-intercept shifts to the left, and the slope remains constant. What type of inhibition is being described in this situation?

      Your Answer:

      Correct Answer: Uncompetitive

      Explanation:

      Types of Reversible Enzyme Inhibition

      There are three types of reversible enzyme inhibition: competitive, non-competitive, and uncompetitive. Competitive inhibitors are similar in structure to the substrate and compete for the active site of the enzyme. This results in an increase in Km, but Vmax remains unchanged. Non-competitive inhibitors bind to a different site on the enzyme and do not resemble the substrate. This causes a decrease in Vmax, but Km remains unchanged. Uncompetitive inhibitors bind to the enzyme-substrate complex and render the enzyme inactive, leading to a decrease in both Km and Vmax. On a Lineweaver-Burk plot, the slope increases for competitive and non-competitive inhibitors, but remains the same for uncompetitive inhibitors. The Y-intercept shifts upwards for non-competitive inhibitors, but remains unchanged for competitive and uncompetitive inhibitors. The X-intercept shifts to the right for competitive inhibitors, but remains unchanged for non-competitive and uncompetitive inhibitors. It is important to note that irreversible inhibitors covalently bind to the enzyme and permanently inactivate it, causing the same kinetic effects as non-competitive inhibitors. Dilution is not a mechanism of enzyme inhibition.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 4 - A 56-year-old woman comes to the clinic with a breast lump that she...

    Incorrect

    • A 56-year-old woman comes to the clinic with a breast lump that she has noticed for a few weeks. She is worried because her family has a history of breast cancer. She undergoes an urgent referral for further evaluation. A biopsy of the lump is performed to check for chromosomal abnormalities, specifically extra copies of the HER2 gene.

      Which method is best suited for detecting these abnormalities?

      Your Answer:

      Correct Answer: Fluorescence in situ hybridisation

      Explanation:

      Eastern blotting is a technique that can be used to study post-translational modifications of proteins, including the addition of lipids and phosphates. It is a valuable tool for investigating protein function and regulation.

      Overview of Molecular Biology Techniques

      Molecular biology techniques are essential tools used in the study of biological molecules such as DNA, RNA, and proteins. These techniques are used to detect and analyze these molecules in various biological samples. The most commonly used techniques include Southern blotting, Northern blotting, Western blotting, and enzyme-linked immunosorbent assay (ELISA).

      Southern blotting is a technique used to detect DNA, while Northern blotting is used to detect RNA. Western blotting, on the other hand, is used to detect proteins. This technique involves the use of gel electrophoresis to separate native proteins based on their 3-D structure. It is commonly used in the confirmatory HIV test.

      ELISA is a biochemical assay used to detect antigens and antibodies. This technique involves attaching a colour-changing enzyme to the antibody or antigen being detected. If the antigen or antibody is present in the sample, the sample changes colour, indicating a positive result. ELISA is commonly used in the initial HIV test.

      In summary, molecular biology techniques are essential tools used in the study of biological molecules. These techniques include Southern blotting, Northern blotting, Western blotting, and ELISA. Each technique is used to detect specific molecules in biological samples and is commonly used in various diagnostic tests.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 5 - A father brings his 14-year-old son to see you as he is concerned...

    Incorrect

    • A father brings his 14-year-old son to see you as he is concerned about his growth. He is taller than his peers, has not yet experienced puberty and has developed excessive body hair. He is referred to a specialist who diagnoses mild congenital adrenal hyperplasia.

      What is the most frequent deficiency leading to this condition?

      Your Answer:

      Correct Answer: 21-hydroxylase deficiency

      Explanation:

      The most common cause of congenital adrenal hyperplasia is 21-hydroxylase deficiency, while 17-hydroxylase deficiency is a rare cause. 17β-hydroxysteroid dehydrogenase deficiency results in a rare condition of sexual development, while 5-alpha reductase deficiency affects male sexual development.

      Understanding Congenital Adrenal Hyperplasia

      Congenital adrenal hyperplasia is a group of genetic disorders that affect the production of adrenal steroids. It is an autosomal recessive disorder, which means that both parents must carry the gene for the disorder to be passed on to their child. The most common cause of congenital adrenal hyperplasia is a deficiency in the enzyme 21-hydroxylase, which is responsible for the production of cortisol and aldosterone. This deficiency leads to low levels of cortisol, which triggers the anterior pituitary gland to produce high levels of adrenocorticotropic hormone (ACTH). ACTH then stimulates the adrenal glands to produce excess androgens, which can cause virilization in female infants.

      Other less common forms of congenital adrenal hyperplasia include 11-beta hydroxylase deficiency and 17-hydroxylase deficiency. These conditions also affect the production of adrenal steroids and can lead to similar symptoms.

      It is important to diagnose and treat congenital adrenal hyperplasia early to prevent complications such as adrenal crisis, growth failure, and infertility. Treatment typically involves hormone replacement therapy to replace the deficient hormones and suppress the excess androgens. With proper management, individuals with congenital adrenal hyperplasia can lead healthy and normal lives.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - A 45-year-old man visits his GP complaining of weakness in his right hand...

    Incorrect

    • A 45-year-old man visits his GP complaining of weakness in his right hand that has been ongoing for 2 months. He reports difficulty gripping objects and writing with his right hand. He denies any changes in sensation. The patient has a history of rheumatoid arthritis.

      During the examination, there are no apparent signs of muscle wasting or fasciculation in the right hand. However, the patient is unable to form an 'OK sign' with his right thumb and index finger upon request.

      Which nerve is the most likely culprit?

      Your Answer:

      Correct Answer: Anterior interosseous nerve

      Explanation:

      The anterior interosseous nerve can be compressed between the heads of pronator teres, leading to an inability to perform a pincer grip with the thumb and index finger (known as the ‘OK sign’).

      The correct answer is the anterior interosseous nerve, which is a branch of the median nerve responsible for innervating pronator quadratus, flexor pollicis longus, and flexor digitorum profundus. Damage to this nerve, such as through compression by pronator teres, can result in the inability to perform a pincer grip. Patients with rheumatoid arthritis may be more susceptible to anterior interosseous nerve entrapment.

      The dorsal digital nerve is a sensory branch of the ulnar nerve and does not cause motor deficits.

      The palmar cutaneous nerve is a sensory branch of the median nerve that provides sensation to the palm of the hand.

      The posterior interosseus nerve supplies muscles in the posterior compartment of the forearm with C7 and C8 fibers. Lesions of this nerve cause pure-motor neuropathy, resulting in finger drop and radial wrist deviation during extension.

      Patients with ulnar nerve lesions can still perform a pincer grip with the thumb and index finger. Ulnar nerve lesions may cause paraesthesia in the fifth finger and hypothenar aspect of the palm.

      The anterior interosseous nerve is a branch of the median nerve that supplies the deep muscles on the front of the forearm, excluding the ulnar half of the flexor digitorum profundus. It runs alongside the anterior interosseous artery along the anterior of the interosseous membrane of the forearm, between the flexor pollicis longus and flexor digitorum profundus. The nerve supplies the whole of the flexor pollicis longus and the radial half of the flexor digitorum profundus, and ends below in the pronator quadratus and wrist joint. The anterior interosseous nerve innervates 2.5 muscles, namely the flexor pollicis longus, pronator quadratus, and the radial half of the flexor digitorum profundus. These muscles are located in the deep level of the anterior compartment of the forearm.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 65-year-old male with a diagnosis of lung cancer presents with fatigue and...

    Incorrect

    • A 65-year-old male with a diagnosis of lung cancer presents with fatigue and lightheadedness. Upon examination, the following results are obtained:

      Plasma sodium concentration 115 mmol/L (137-144)
      Potassium 3.5 mmol/L (3.5-4.9)
      Urea 3.2 mmol/L (2.5-7.5)
      Creatinine 67 µmol/L (60-110)

      What is the probable reason for his symptoms based on these findings?

      Your Answer:

      Correct Answer: Syndrome of inappropriate ADH secretion

      Explanation:

      Syndrome of Inappropriate ADH Secretion

      Syndrome of inappropriate ADH secretion (SIADH) is a condition characterized by low levels of sodium in the blood. This is caused by the overproduction of antidiuretic hormone (ADH) by the posterior pituitary gland. Tumors such as bronchial carcinoma can cause the ectopic elaboration of ADH, leading to dilutional hyponatremia. The diagnosis of SIADH is one of exclusion, but it can be supported by a high urine sodium concentration with high urine osmolality.

      Hypoadrenalism is less likely to cause hyponatremia, as it is usually associated with hyperkalemia and mild hyperuricemia. On the other hand, diabetes insipidus is a condition where the kidneys are unable to reabsorb water, leading to excessive thirst and urination.

      It is important to diagnose and treat SIADH promptly to prevent complications such as seizures, coma, and even death. Treatment options include fluid restriction, medications to block the effects of ADH, and addressing the underlying cause of the condition.

      In conclusion, SIADH is a condition that can cause low levels of sodium in the blood due to the overproduction of ADH. It is important to differentiate it from other conditions that can cause hyponatremia and to treat it promptly to prevent complications.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 8 - A 70-year-old retired delivery man visits his family physician with a complaint of...

    Incorrect

    • A 70-year-old retired delivery man visits his family physician with a complaint of knee pain. He reports that the pain is present in both knees and worsens towards the end of the day. The pain usually subsides after resting and in the morning. He has been experiencing knee pain for the past few years and used to take paracetamol, which provided relief. However, the pain has recently intensified, limiting his ability to work. The patient occasionally experiences right hip pain, but it does not bother him much. The patient has a medical history of well-controlled diabetes mellitus, hypertension, and lower back pain. He has a body mass index of 32 kg per m2 and takes metformin, insulin, and candesartan regularly. On examination, there is no redness, swelling, or tenderness over the knees. The physician recommends an X-ray of both knees. What is the most probable X-ray finding?

      Your Answer:

      Correct Answer: Narrowed joint space, subchondral sclerosis, osteophytes

      Explanation:

      The patient’s symptoms are most consistent with osteoarthritis, with no signs of inflammation. Radiographic findings of narrowed joint space and osteophytes support this diagnosis. Other differential diagnoses include rheumatoid arthritis, gout, and pseudogout. The patient’s occupation as a delivery man may have contributed to the development of osteoarthritis. The presence of symptoms and limitations in daily activities should be considered in developing a management plan.

      Comparison of Osteoarthritis and Rheumatoid Arthritis

      Osteoarthritis and rheumatoid arthritis are two types of arthritis that affect the joints. Osteoarthritis is caused by mechanical wear and tear, resulting in the localized loss of cartilage, remodelling of adjacent bone, and associated inflammation. On the other hand, rheumatoid arthritis is an autoimmune disease that affects women more commonly than men and can occur in adults of all ages. It typically affects the MCP and PIP joints, causing bilateral symptoms and systemic upset, while osteoarthritis affects large weight-bearing joints such as the hip and knee, as well as the carpometacarpal joint and DIP and PIP joints, causing unilateral symptoms and no systemic upset.

      The typical history of osteoarthritis involves pain following use, which improves with rest, while rheumatoid arthritis involves morning stiffness that improves with use. X-ray findings for osteoarthritis include loss of joint space, subchondral sclerosis, subchondral cysts, and osteophytes forming at joint margins. For rheumatoid arthritis, X-ray findings include loss of joint space, juxta-articular osteoporosis, periarticular erosions, and subluxation.

      In summary, while both osteoarthritis and rheumatoid arthritis affect the joints, they have different causes, affected joints, symptoms, and X-ray findings. Understanding these differences can help with accurate diagnosis and appropriate treatment.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 9 - A 2-day old baby is found to have classic galactosaemia on heel prick...

    Incorrect

    • A 2-day old baby is found to have classic galactosaemia on heel prick test. The parents ask for clarification.

      The doctor clarifies that the deficiency of galactose-1-phosphate uridyltransferase (GALT) enzyme is responsible for classic galactosaemia. This enzyme is essential for the metabolism of galactose, a type of sugar.

      Your Answer:

      Correct Answer: Converts galactose-1-P to glucose-1-P

      Explanation:

      The conversion of galactose-1-P to glucose-1-P requires the presence of Galactose-1-phosphate uridyltransferase (GALT).

      Disorders of Galactose Metabolism

      Galactose metabolism is a complex process that involves the breakdown of galactose, a type of sugar found in milk and dairy products. There are two main disorders associated with galactose metabolism: classic galactosemia and galactokinase deficiency. Both of these disorders are inherited in an autosomal recessive manner.

      Classic galactosemia is caused by a deficiency in the enzyme galactose-1-phosphate uridyltransferase, which leads to the accumulation of galactose-1-phosphate. This disorder is characterized by symptoms such as failure to thrive, infantile cataracts, and hepatomegaly.

      On the other hand, galactokinase deficiency is caused by a deficiency in the enzyme galactokinase, which results in the accumulation of galactitol. This disorder is characterized by infantile cataracts, as galactitol accumulates in the lens. Unlike classic galactosemia, there is no hepatic involvement in galactokinase deficiency.

      In summary, disorders of galactose metabolism can have serious consequences and require careful management. Early diagnosis and treatment are essential for improving outcomes and preventing complications.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 10 - A 25-year-old female comes to the clinic concerned about her risk of developing...

    Incorrect

    • A 25-year-old female comes to the clinic concerned about her risk of developing cancer due to her family history. Her grandfather recently passed away from lung cancer, and there are other cases of prostate, breast, and malignant melanoma in her family. She asks which type of cancer has the highest mortality rate in the UK. What is the correct answer?

      Your Answer:

      Correct Answer: Lung cancer

      Explanation:

      The leading cause of cancer deaths in the UK is lung cancer, while malignant melanoma does not rank in the top 10. Prostate cancer is the most prevalent cancer in men and the second most common cause of cancer-related deaths in men. Breast cancer is the second most common cause of cancer deaths in women.

      Cancer in the UK: Common Types and Causes of Death

      Cancer is a major health concern in the UK, with several types of cancer affecting a significant number of people. The most common types of cancer in the UK are breast, lung, colorectal, prostate, bladder, non-Hodgkin’s lymphoma, melanoma, stomach, oesophagus, and pancreas. However, when it comes to causes of death from cancer, lung cancer tops the list, followed by colorectal, breast, prostate, and pancreatic cancer. Other types of cancer that contribute to cancer-related deaths in the UK include oesophageal, stomach, bladder, non-Hodgkin’s lymphoma, and ovarian cancer. It is important to note that non-melanoma skin cancer is not included in these statistics. Despite the prevalence of cancer in the UK, there are various treatments and support available for those affected by the disease.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 11 - A woman who is 16 weeks pregnant has visited her general practitioner complaining...

    Incorrect

    • A woman who is 16 weeks pregnant has visited her general practitioner complaining of pain during urination. She has no other symptoms and no significant medical or drug history. Upon conducting a urine dipstick test, the results show positive for nitrites and leukocytes. The general practitioner suspects a potential urinary tract infection and wants to prescribe antibiotics. What is the most suitable antibiotic to prescribe in this situation?

      Your Answer:

      Correct Answer: Nitrofurantoin

      Explanation:

      Urinary tract infections (UTIs) are common in adults and can affect different parts of the urinary tract. Lower UTIs are more common and can be managed with antibiotics. For non-pregnant women, local antibiotic guidelines should be followed, and a urine culture should be sent if they are aged over 65 years or have visible or non-visible haematuria. Trimethoprim or nitrofurantoin for three days are recommended by NICE Clinical Knowledge Summaries. Pregnant women with symptoms should have a urine culture sent, and first-line treatment is nitrofurantoin, while amoxicillin or cefalexin can be used as second-line treatment. Asymptomatic bacteriuria in pregnant women should also be treated with antibiotics. Men with UTIs should be offered antibiotics for seven days, and a urine culture should be sent before starting treatment. Catheterised patients should not be treated for asymptomatic bacteria, but if they are symptomatic, a seven-day course of antibiotics should be given, and the catheter should be removed or changed if it has been in place for more than seven days. For patients with signs of acute pyelonephritis, hospital admission should be considered, and local antibiotic guidelines should be followed. The BNF recommends a broad-spectrum cephalosporin or a quinolone for 10-14 days for non-pregnant women.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 12 - A female infant is being assessed for recurrent urinary tract infections. An abdominal...

    Incorrect

    • A female infant is being assessed for recurrent urinary tract infections. An abdominal ultrasound scan displays bilateral hydronephrosis, a thickened bladder wall with thickened smooth muscle trabeculations. Voiding cystourethrogram (VCUG) reveals reflux.

      What is the most probable diagnosis, which is commonly seen in this scenario?

      Your Answer:

      Correct Answer: Posterior urethral valves

      Explanation:

      Posterior urethral valves are a common cause of bladder outlet obstruction in male infants, which can be detected before birth through the presence of hydronephrosis. On the other hand, epispadias and hypospadias are conditions where the urethra opens on the dorsal and ventral surface of the penis, respectively, but they are not typically associated with bladder outlet obstruction. Urethral atresia, a rare condition where the urethra is absent, can also cause bladder outlet obstruction.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 13 - A 58-year-old man has arrived at the emergency department via ambulance following a...

    Incorrect

    • A 58-year-old man has arrived at the emergency department via ambulance following a sudden onset of symptoms during lunch with his daughter. He reports feeling extremely dizzy and nauseous, and has since lost hearing in his left ear and the ability to move the left side of his face. An urgent CT scan reveals a thrombus blocking an artery in his brain. Which artery is most likely affected by the thrombus?

      Your Answer:

      Correct Answer: Anterior inferior cerebellar artery

      Explanation:

      The correct answer is the anterior inferior cerebellar artery, as sudden onset vertigo and vomiting, ipsilateral facial paralysis, and deafness are all symptoms of lesions in this area.

      The middle cerebral artery is an incorrect answer, as lesions in this area cause contralateral hemiparesis and sensory loss, contralateral homonymous hemianopia, and aphasia.

      The posterior cerebral artery is also an incorrect answer, as lesions in this area cause contralateral homonymous hemianopia with macular sparing and visual agnosia.

      Similarly, the posterior inferior cerebellar artery is an incorrect answer, as lesions in this area cause ipsilateral facial pain and temperature loss, contralateral limb/torso pain and temperature loss, ataxia, and nystagmus.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - A general practitioner is involved in a charity project to build a hospital...

    Incorrect

    • A general practitioner is involved in a charity project to build a hospital in Uganda and holds a weekly clinic. A 50-year-old farmer comes to the clinic with swollen legs and an enlarged scrotum. He is experiencing tenderness in his scrotum and is worried about being ostracised by his family if he does not receive treatment. On examination, there is evidence of hydrocele and the scrotal skin is swollen, leading to a suspected diagnosis of lymphatic filariasis (elephantiasis). What is the most likely pathogen responsible for this patient's condition?

      Your Answer:

      Correct Answer: Wuchereria bancrofti

      Explanation:

      African farmer experiences significant swelling in his legs and scrotum.

      Helminths are a group of parasitic worms that can infect humans and cause various diseases. Nematodes, also known as roundworms, are one type of helminth. Strongyloides stercoralis is a type of roundworm that enters the body through the skin and can cause symptoms such as diarrhea, abdominal pain, and skin lesions. Treatment for this infection typically involves the use of ivermectin or benzimidazoles. Enterobius vermicularis, also known as pinworm, is another type of roundworm that can cause perianal itching and other symptoms. Diagnosis is made by examining sticky tape applied to the perianal area. Treatment typically involves benzimidazoles.

      Hookworms, such as Ancylostoma duodenale and Necator americanus, are another type of roundworm that can cause gastrointestinal infections and anemia. Treatment typically involves benzimidazoles. Loa loa is a type of roundworm that is transmitted by deer fly and mango fly and can cause red, itchy swellings called Calabar swellings. Treatment involves the use of diethylcarbamazine. Trichinella spiralis is a type of roundworm that can develop after eating raw pork and can cause fever, periorbital edema, and myositis. Treatment typically involves benzimidazoles.

      Onchocerca volvulus is a type of roundworm that causes river blindness and is spread by female blackflies. Treatment involves the use of ivermectin. Wuchereria bancrofti is another type of roundworm that is transmitted by female mosquitoes and can cause blockage of lymphatics and elephantiasis. Treatment involves the use of diethylcarbamazine. Toxocara canis, also known as dog roundworm, is transmitted through ingestion of infective eggs and can cause visceral larva migrans and retinal granulomas. Treatment involves the use of diethylcarbamazine. Ascaris lumbricoides, also known as giant roundworm, can cause intestinal obstruction and occasionally migrate to the lung. Treatment typically involves benzimidazoles.

      Cestodes, also known as tapeworms, are another type of helminth. Echinococcus granulosus is a tapeworm that is transmitted through ingestion of eggs in dog feces and can cause liver cysts and anaphylaxis if the cyst ruptures

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 15 - A 26-year-old man arrives at the emergency department stating that his severe depression...

    Incorrect

    • A 26-year-old man arrives at the emergency department stating that his severe depression has worsened due to a recent breakup. He admits to taking multiple packs of paracetamol in the past 24 hours but denies taking any other medications. As per national guidelines, you initiate the appropriate therapy to prevent liver damage.

      What is the mechanism behind this treatment?

      Your Answer:

      Correct Answer: Replenish glutathione stores within the liver

      Explanation:

      Paracetamol overdose occurs when the body’s glutathione stores are depleted, leading to an increase in the production of N-acetyl-p-benzoquinone imine (NAPQI), a highly toxic molecule. In therapeutic doses, the liver produces small amounts of NAPQI, which is quickly metabolized into safer compounds by reacting with glutathione. However, in cases of overdose, the liver’s supply of glutathione is exhausted, resulting in the accumulation of NAPQI and subsequent liver damage. To counteract this, N-acetyl cysteine (NAC) is used as a precursor to glutathione, which helps convert NAPQI into less toxic metabolites. Chelation medications like penicillamine can remove heavy metals from the blood, but there are no drugs that can speed up the excretion of paracetamol. Methionine, an amino acid important in angiogenesis, is not relevant to the management of paracetamol overdose. While many drugs activate CYP450, NAC is not one of them, and upregulating this pathway could actually worsen the outcomes of an overdose since it produces the toxic NAPQI by-product.

      Paracetamol Overdose and Metabolic Pathways

      Paracetamol overdose can lead to saturation of the liver’s conjugation system, which normally conjugates paracetamol with glucuronic acid/sulphate. This saturation results in the oxidation of paracetamol by P450 mixed function oxidases, producing a toxic metabolite known as N-acetyl-B-benzoquinone imine. Glutathione usually acts as a defence mechanism by conjugating with the toxin, forming the non-toxic mercapturic acid. However, if glutathione stores run out, the toxin forms covalent bonds with cell proteins, denaturing them and leading to cell death. This process occurs not only in hepatocytes but also in the renal tubules.

      To manage paracetamol overdose, N-acetyl cysteine is used as it is a precursor of glutathione and can increase hepatic glutathione production. It is important to note that there is a lower threshold for treating patients who take P450 inducing medications, such as phenytoin or rifampicin, due to the increased risk of paracetamol overdose. Proper management of paracetamol overdose is crucial to prevent liver and renal damage, and N-acetyl cysteine plays a vital role in this process.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 16 - A patient in his 60s with dilated cardiomyopathy visits his primary care physician...

    Incorrect

    • A patient in his 60s with dilated cardiomyopathy visits his primary care physician complaining of heart failure symptoms. What is the reason behind his heart condition causing heart failure?

      Your Answer:

      Correct Answer: Ventricular dilatation increases afterload due to Laplace's law

      Explanation:

      Laplace’s law states that the pressure in a lumen is equal to the wall tension divided by the lumen radius. Heart failure occurs when the heart is unable to meet the body’s demands for cardiac output. While an increased end diastolic volume can initially increase cardiac output, if myocytes become too stretched, cardiac output will decrease. Insufficient blood supply to the myocardium can also cause heart failure, but this is not related to dilated cardiomyopathy. The Bainbridge reflex and baroreceptor reflex are the main controllers of heart rate, with the former responding to increased stretch in the atrium. Ventricular dilatation does not directly cause an increase in aortic pressure. Laplace’s law shows that as the ventricle dilates, tension must increase to maintain pressure, but at a certain point, myocytes will no longer be able to exert enough force, leading to heart failure. Additionally, as the ventricle dilates, afterload increases, which is the force the heart must contract against.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 25-year-old graduate student is brought to the emergency department after he refused...

    Incorrect

    • A 25-year-old graduate student is brought to the emergency department after he refused to leave his apartment for the past three weeks. His roommate tried to convince him but he has been insisting that the government is monitoring his every move. In the emergency department, he refused to cooperate with the attending doctor but later agrees to talk to one of the nurses. He says that the government has implanted a device into his brain so that they can wirelessly control his thoughts and actions. He has been feeling that way for the past 10 months but during the last three weeks, he refused to leave his apartment as he believes the government agents are watching him through his computer. What is the primary neurotransmitter affected in this patient's condition?

      Your Answer:

      Correct Answer: Ventral tegmentum

      Explanation:

      The individual exhibited indications of psychosis, including delusions and auditory hallucinations, which have persisted for over six months, indicating a potential diagnosis of schizophrenia. The patient’s delusion involved a steadfast belief that their brain could be manipulated wirelessly, which is considered a delusion due to its inconsistency with the individual’s cultural, social, and educational background. Schizophrenia primarily affects the neurotransmitter dopamine, which is synthesized in the brain’s primary source.

      Understanding Dopamine: Its Production, Effects, and Role in Diseases

      Dopamine is a neurotransmitter that is produced in the substantia nigra pars compacta, a region in the brain that is responsible for movement control. It plays a crucial role in regulating various bodily functions, including movement, motivation, and reward. Dopamine is also associated with feelings of pleasure and satisfaction, which is why it is often referred to as the feel-good neurotransmitter.

      However, dopamine levels can be affected by certain diseases. For instance, patients with schizophrenia have increased levels of dopamine, which can lead to symptoms such as hallucinations and delusions. On the other hand, patients with Parkinson’s disease have depleted levels of dopamine in the substantia nigra, which can cause movement problems such as tremors and rigidity.

      Aside from its effects on the brain, dopamine also has an impact on the kidneys. It causes renal vasodilation, which means that it widens the blood vessels in the kidneys, leading to increased blood flow and improved kidney function.

      In summary, dopamine is a vital neurotransmitter that affects various bodily functions. Its production and effects are closely linked to certain diseases, and understanding its role can help in the development of treatments for these conditions.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 18 - A patient in her 50s has been diagnosed with duodenal ulcers caused by...

    Incorrect

    • A patient in her 50s has been diagnosed with duodenal ulcers caused by excessive gastric acid secretion. Upon reviewing her pancreatic function, the consultant found that her S cells are not functioning properly, resulting in decreased secretion of secretin. How will this impact her treatment plan?

      Your Answer:

      Correct Answer: Secretion of bicarbonate-rich fluid

      Explanation:

      The secretion of bicarbonate-rich fluid from pancreas and hepatic duct cells is increased by secretin.

      Overview of Gastrointestinal Hormones

      Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.

      One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.

      Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.

      Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 19 - A 25-year-old climber sustains a humerus fracture and requires surgery. The surgeons opt...

    Incorrect

    • A 25-year-old climber sustains a humerus fracture and requires surgery. The surgeons opt for a posterior approach to the middle third of the bone. Which nerve is most vulnerable in this procedure?

      Your Answer:

      Correct Answer: Radial

      Explanation:

      The humerus can cause damage to the radial nerve when approached from the back. To avoid the need for intricate bone exposure, an IM nail may be a better option.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - A 45-year-old woman is scheduled to have an axillary lymph node dissection as...

    Incorrect

    • A 45-year-old woman is scheduled to have an axillary lymph node dissection as a component of her breast cancer treatment. During the surgical approach to the axilla, which fascial layer will be cut?

      Your Answer:

      Correct Answer: Clavipectoral fascia

      Explanation:

      The clavipectoral fascia is located beneath the clavicular part of the pectoralis major muscle and serves as a protective barrier for the axillary vessels and nodes. In cases of breast cancer requiring axillary node clearance, the clavipectoral fascia is incised to allow access to the nodal stations. These stations include level 1 nodes located below the pectoralis minor muscle, level 2 nodes situated behind it, and level 3 nodes above it. In some cases, such as during a Patey Mastectomy, surgeons may need to divide the pectoralis minor muscle to access level 3 nodes. However, with the use of sentinel node biopsy and improved techniques, this procedure is becoming less common.

      Anatomy of the Axilla

      The axilla, also known as the armpit, is a region of the body that contains important structures such as nerves, veins, and lymph nodes. It is bounded medially by the chest wall and serratus anterior, laterally by the humeral head, and anteriorly by the lateral border of the pectoralis major. The floor of the axilla is formed by the subscapularis muscle, while the clavipectoral fascia forms its fascial boundary.

      One of the important nerves that passes through the axilla is the long thoracic nerve, which supplies the serratus anterior muscle. The thoracodorsal nerve and trunk, on the other hand, innervate and vascularize the latissimus dorsi muscle. The axillary vein, which is the continuation of the basilic vein, lies at the apex of the axilla and becomes the subclavian vein at the outer border of the first rib. The intercostobrachial nerves, which provide cutaneous sensation to the axillary skin, traverse the axillary lymph nodes and are often divided during axillary surgery.

      The axilla is also an important site of lymphatic drainage for the breast. Therefore, any pathology or surgery involving the breast can affect the lymphatic drainage of the axilla and lead to lymphedema. Understanding the anatomy of the axilla is crucial for healthcare professionals who perform procedures in this region, as damage to any of the structures can lead to significant complications.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 21 - Sophie is a 5-year-old girl who has presented with a complicated urinary tract...

    Incorrect

    • Sophie is a 5-year-old girl who has presented with a complicated urinary tract infection. She has been treated with the most appropriate antibiotic for 72-hours now and there is no improvement.

      What is the appropriate action to take regarding an ultrasound scan?

      Your Answer:

      Correct Answer: He will need an ultrasound scan during the course of the infection

      Explanation:

      According to NICE guidelines, an ultrasound scan should be performed on all children who present with a UTI and abnormal features during the acute phase of the infection. This is particularly important in cases of complicated UTIs, where there is no improvement in symptoms after 72 hours of appropriate treatment. It is crucial to perform the ultrasound scan during the infection rather than waiting for six weeks, as there could be underlying issues that need to be addressed. It is important to note that the need for an ultrasound scan should not compromise the need for further urine sampling or a change in antibiotics. Additionally, an ultrasound scan is a non-invasive procedure that poses no direct risk of infection and will not exacerbate the UTI.

      Urinary tract infections (UTIs) in children require investigation to identify any underlying causes and potential kidney damage. Unlike in adults, the development of a UTI in childhood may indicate renal scarring. The National Institute for Health and Care Excellence (NICE) recommends imaging the urinary tract for infants under six months who present with their first UTI and respond to treatment, within six weeks. Children over six months who respond to treatment do not require imaging unless there are features suggestive of an atypical infection, such as being seriously ill, having poor urine flow, an abdominal or bladder mass, raised creatinine, septicaemia, failure to respond to antibiotics within 48 hours, or infection with non-E. coli organisms.

      Further investigations may include a urine microscopy and culture, as only 50% of children with a UTI have pyuria, making microscopy or dipstick of the urine inadequate for diagnosis. A static radioisotope scan, such as DMSA, can identify renal scars and should be done 4-6 months after the initial infection. Micturating cystourethrography (MCUG) can identify vesicoureteral reflux and is only recommended for infants under six months who present with atypical or recurrent infections.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 22 - A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During...

    Incorrect

    • A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?

      Your Answer:

      Correct Answer: Suprascapular nerve

      Explanation:

      The Suprascapular Nerve and its Function

      The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.

      If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 23 - A 45-year-old man presents to the surgical team with abdominal pain, bloating, and...

    Incorrect

    • A 45-year-old man presents to the surgical team with abdominal pain, bloating, and vomiting. Based on an abdominal x-ray, there is suspicion of a malignancy causing intestinal obstruction. Which of the following antiemetics should be avoided for managing the patient's vomiting?

      Your Answer:

      Correct Answer: Metoclopramide

      Explanation:

      It is not recommended to use metoclopramide as an antiemetic in cases of bowel obstruction. This is because metoclopramide works by blocking dopamine receptors and stimulating peripheral 5HT3 receptors, which promote gastric emptying. However, in cases of intestinal obstruction, gastric emptying is not possible and this effect can be harmful. The choice of antiemetic should be based on the patient’s individual needs and the underlying cause of their nausea.

      Understanding the Mechanism and Uses of Metoclopramide

      Metoclopramide is a medication primarily used to manage nausea, but it also has other uses such as treating gastro-oesophageal reflux disease and gastroparesis secondary to diabetic neuropathy. It is often combined with analgesics for the treatment of migraines. However, it is important to note that metoclopramide has adverse effects such as extrapyramidal effects, acute dystonia, diarrhoea, hyperprolactinaemia, tardive dyskinesia, and parkinsonism. It should also be avoided in bowel obstruction but may be helpful in paralytic ileus.

      The mechanism of action of metoclopramide is quite complicated. It is primarily a D2 receptor antagonist, but it also has mixed 5-HT3 receptor antagonist/5-HT4 receptor agonist activity. Its antiemetic action is due to its antagonist activity at D2 receptors in the chemoreceptor trigger zone, and at higher doses, the 5-HT3 receptor antagonist also has an effect. The gastroprokinetic activity is mediated by D2 receptor antagonist activity and 5-HT4 receptor agonist activity.

      In summary, metoclopramide is a medication with multiple uses, but it also has adverse effects that should be considered. Its mechanism of action is complex, involving both D2 receptor antagonist and 5-HT3 receptor antagonist/5-HT4 receptor agonist activity. Understanding the uses and mechanism of action of metoclopramide is important for its safe and effective use.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 24 - A 49-year-old woman comes to the Emergency Department complaining of colicky abdominal pain....

    Incorrect

    • A 49-year-old woman comes to the Emergency Department complaining of colicky abdominal pain. She states that she has been having on-and-off pain in the upper right quadrant for the past few months, especially after consuming fatty foods.

      Which cells are accountable for generating the hormone linked to this presentation?

      Your Answer:

      Correct Answer: I cells

      Explanation:

      The correct answer is I cells, which are located in the upper small intestine. This patient’s symptoms are consistent with biliary colic, which occurs when the gallbladder contracts against an obstruction, typically a gallstone. Fatty foods stimulate the production of cholecystokinin (CCK) from the I cells in the duodenum, which promotes gallbladder contractility and the release of bile into the small intestine to aid in lipid emulsification.

      B cells are not involved in promoting gallbladder contractility and are instead part of the adaptive immune response. D cells release somatostatin, which decreases insulin production, and are found in the stomach, small intestine, and pancreas. G cells are located in the stomach and secrete gastrin to promote acid secretion by the parietal cells of the stomach.

      Overview of Gastrointestinal Hormones

      Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.

      One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.

      Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.

      Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 25 - You are on the train home from your internship when you overhear a...

    Incorrect

    • You are on the train home from your internship when you overhear a group of second-year law students discussing cases they encountered during their studies. They are referring to patients by their last names and medical conditions to enhance their understanding. How would you respond?

      Your Answer:

      Correct Answer: Talk to them and explain they are breaking confidentiality

      Explanation:

      Maintaining confidentiality is crucial for building patients’ trust in the medical field. Therefore, breaching confidentiality is a serious matter, and one should avoid being a part of it. It would be inappropriate to participate in the conversation or remain silent.

      In case of any issues in medical practice, it is customary to escalate the matter to higher authorities, starting with the concerned individuals. In this scenario, it would be advisable to approach the senior medical students. If they do not take any action, then one can inform the higher-ups, including the dean.

      Reporting the matter to the General Medical Council (GMC) would not be necessary at this stage.

      GMC Guidance on Confidentiality

      Confidentiality is a crucial aspect of medical practice that must be upheld at all times. The General Medical Council (GMC) provides extensive guidance on confidentiality, which can be accessed through a link provided. As such, we will not attempt to replicate the detailed information provided by the GMC here. It is important for healthcare professionals to familiarize themselves with the GMC’s guidance on confidentiality to ensure that they are meeting the necessary standards and protecting patient privacy.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 26 - A 14-month-old boy is presented to the surgical clinic by his mother due...

    Incorrect

    • A 14-month-old boy is presented to the surgical clinic by his mother due to the absence of his left testicle in the scrotum. If the testicle were ectopic, where would it be located?

      Your Answer:

      Correct Answer: Superficial inguinal pouch

      Explanation:

      Testes that are located outside of their normal embryological descent range are known as ectopic testes. These can be found in various locations such as the superficial inguinal pouch, base of the penis, femoral triangle, and perineum.

      Common Testicular Disorders in Paediatric Urology

      Testicular disorders are frequently encountered in paediatric urological practice. One of the most common conditions is cryptorchidism, which refers to the failure of the testicle to descend from the abdominal cavity into the scrotum. It is important to differentiate between a non-descended testis and a retractile testis. Ectopic testes are those that lie outside the normal path of embryological descent. Undescended testes occur in approximately 1% of male infants and should be placed in the scrotum after one year of age. Magnetic resonance imaging (MRI) may be used to locate intra-abdominal testes, but laparoscopy is often necessary in this age group. Testicular torsion is another common condition that presents with sudden onset of severe scrotal pain. Surgical exploration is the management of choice, and delay beyond six hours is associated with low salvage rates. Hydroceles, which are fluid-filled sacs in the scrotum or spermatic cord, may be treated with surgical ligation of the patent processus vaginalis or scrotal exploration in older children with cystic hydroceles.

      Overall, prompt diagnosis and appropriate management of testicular disorders are crucial in paediatric urology to prevent long-term complications and ensure optimal outcomes for patients.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 27 - Which one of the following statements relating to the hip joint is false?...

    Incorrect

    • Which one of the following statements relating to the hip joint is false?

      Your Answer:

      Correct Answer: The posterior aspect of the patella is extrasynovial

      Explanation:

      The knee is the largest synovial joint in the body and its posterior aspect is located within the synovial membrane. In case of an ACL injury, the knee may swell significantly and cause severe pain due to its extensive innervation from the femoral, sciatic, and obturator nerves. When fully extended, all ligaments are stretched and the knee is in a locked position.

      The knee joint is the largest and most complex synovial joint in the body, consisting of two condylar joints between the femur and tibia and a sellar joint between the patella and femur. The degree of congruence between the tibiofemoral articular surfaces is improved by the presence of the menisci, which compensate for the incongruence of the femoral and tibial condyles. The knee joint is divided into two compartments: the tibiofemoral and patellofemoral compartments. The fibrous capsule of the knee joint is a composite structure with contributions from adjacent tendons, and it contains several bursae and ligaments that provide stability to the joint. The knee joint is supplied by the femoral, tibial, and common peroneal divisions of the sciatic nerve and by a branch from the obturator nerve, while its blood supply comes from the genicular branches of the femoral artery, popliteal, and anterior tibial arteries.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 28 - Which form of vitamin D is the most active in the human body?...

    Incorrect

    • Which form of vitamin D is the most active in the human body?

      Your Answer:

      Correct Answer: 1, 25 (OH) 2 vitamin D

      Explanation:

      The Process of Vitamin D Production and Activation

      Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.

      Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 29 - What is the structure that extends downwards in the sagittal plane between the...

    Incorrect

    • What is the structure that extends downwards in the sagittal plane between the two cerebral hemispheres?

      Your Answer:

      Correct Answer: The falx cerebri

      Explanation:

      Dura Mater Structures in the Brain

      The brain is a complex organ that is protected by several layers of tissue. One of these layers is the dura mater, which is a thick, fibrous membrane that covers the brain and spinal cord. Within the dura mater, there are several structures that play important roles in the functioning of the brain.

      The falx cerebri is one such structure. It is a large sheet of dura mater that partially separates the two cerebral hemispheres. This separation helps to prevent damage to one hemisphere from affecting the other, and also provides support for the brain.

      Another important dura mater structure is the cavernous sinus. This structure is located within the middle cranial fossa and contains several important blood vessels and nerves. Damage to the cavernous sinus can lead to serious health problems, including vision loss and paralysis.

      The diaphragma sellae is a flat piece of dura mater that allows for the passage of the pituitary stalk. This structure is important for the regulation of hormones in the body, and damage to it can lead to hormonal imbalances and other health problems.

      Finally, the tentorium cerebelli is a structure that separates the cerebellum from the inferior areas of the occipital lobes. This separation helps to protect the cerebellum from damage and also provides support for the brain.

      Overall, the dura mater structures in the brain play important roles in protecting and supporting the brain, as well as regulating important bodily functions.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 30 - A 25-year-old patient who works as a graphic designer presents with symptoms and...

    Incorrect

    • A 25-year-old patient who works as a graphic designer presents with symptoms and signs of appendicitis. She is adamant that she does not want surgery as she fears the potential complications and risks associated with it. Despite being informed of the potential consequences of not having surgery, she remains firm in her decision and provides a written declaration to this effect. She consents to hospital admission for intravenous antibiotics.

      However, three hours after admission, her condition worsens and she begins to exhibit signs of peritonitis. She becomes delirious while still conscious. The high dependency unit is currently experiencing a high volume of patients, and the intensive care consultants are hesitant to accept a patient who has declined optimal treatment.

      What is the appropriate course of action in this situation?

      Your Answer:

      Correct Answer: Her wishes should be respected and she should receive the best possible non-surgical treatment, including admission to the high dependency unit for monitoring if appropriate.

      Explanation:

      Advance Decision and Medical Best Interests

      The Mental Capacity Act 2005 requires doctors to consider a patient’s previously known wishes when making decisions in their best interests. If a patient has made an advance decision to refuse surgery, doctors must respect this decision even if the patient loses the capacity to make decisions. In such cases, doctors cannot act solely in what they deem to be the patient’s ‘medical’ best interests.

      A psychiatric assessment is not necessary if the patient’s lack of capacity has an organic cause and there were no previous indicators of mental illness. In situations where a patient’s autonomy and view that surgery will do long-term harm outweigh the medical view that not operating will be more harmful, it is important to seek legal advice to ensure compliance with the law.

      Once a decision has been made that surgery is not possible due to the patient withholding consent, the patient should receive the best possible medical care. Decisions about admitting the patient to the high dependency unit should be based on clinical need rather than compliance with medical advice. It is crucial to prioritize the patient’s well-being and respect their autonomy in making decisions about their own medical care.

    • This question is part of the following fields:

      • Ethics And Law
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Psychiatry (0/1) 0%
Passmed