00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - During surgery on her neck, a woman in her 50s suffers a vagus...

    Incorrect

    • During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.

      What other features would be expected with a vagus nerve injury?

      Your Answer: Pupillary constriction

      Correct Answer: Hoarse voice

      Explanation:

      The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.

      However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      45.8
      Seconds
  • Question 2 - Oliver is an 80-year-old man with known left-sided heart failure. He has a...

    Incorrect

    • Oliver is an 80-year-old man with known left-sided heart failure. He has a left ventricular ejection fraction of 31%. He has recently been admitted to the cardiology ward as the doctors are concerned his condition is worsening. He is short of breath on exertion and has peripheral oedema.

      Upon reviewing his ECG, you note a right bundle branch block (RBBB) indicative of right ventricular hypertrophy. You also observe that this was present on an ECG of his on an emergency department admission last month.

      What is the most likely cause of the RBBB in Oliver?

      Your Answer: Pulmonary embolism

      Correct Answer: Cor pulmonale

      Explanation:

      A frequent underlying cause of RBBB that persists over time is right ventricular hypertrophy, which may result from the spread of left-sided heart failure to the right side of the heart. Oliver’s shortness of breath is likely due to an accumulation of fluid in the lungs, which can increase pulmonary perfusion pressure and lead to right ventricular strain and hypertrophy. This type of right heart failure that arises from left heart failure is known as cor-pulmonale. While a pulmonary embolism or rheumatic heart disease can also cause right ventricular strain, they are less probable in this case. Myocardial infarction typically presents with chest pain, which is not mentioned in the question stem regarding Oliver’s symptoms.

      Right bundle branch block is a frequently observed abnormality on ECGs. It can be differentiated from left bundle branch block by remembering the phrase WiLLiaM MaRRoW. In RBBB, there is a ‘M’ in V1 and a ‘W’ in V6, while in LBBB, there is a ‘W’ in V1 and a ‘M’ in V6.

      There are several potential causes of RBBB, including normal variation which becomes more common with age, right ventricular hypertrophy, chronically increased right ventricular pressure (such as in cor pulmonale), pulmonary embolism, myocardial infarction, atrial septal defect (ostium secundum), and cardiomyopathy or myocarditis.

    • This question is part of the following fields:

      • Cardiovascular System
      14.9
      Seconds
  • Question 3 - A 72-year-old male with a history of severe aortic stenosis undergoes valve replacement...

    Incorrect

    • A 72-year-old male with a history of severe aortic stenosis undergoes valve replacement surgery. Following the procedure, he is prescribed dipyridamole. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Non-specific phosphodiesterase antagonist

      Explanation:

      Dipyridamole is a non-specific phosphodiesterase antagonist that inhibits platelet aggregation and thrombus formation by elevating platelet cAMP levels. It also reduces cellular uptake of adenosine and inhibits thromboxane synthase.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 4 - A 67-year-old woman visited her physician complaining of palpitations. She has a medical...

    Incorrect

    • A 67-year-old woman visited her physician complaining of palpitations. She has a medical history of type 2 diabetes, hypertension, and ischemic heart disease. Her current medications include Metformin, insulin injections, candesartan, and metoprolol. The doctor reviewed her medical records and decided to prescribe a medication to prevent complications related to the underlying cause of her palpitations. The doctor informed her that she would need to visit the hospital laboratory regularly to have her blood checked due to the medication's risk of bleeding. Which blood clotting factors are affected by this condition?

      Your Answer:

      Correct Answer: Factor IX

      Explanation:

      This patient with a medical history of diabetes, hypertension, and diabetes is likely experiencing atrial fibrillation, which increases the risk of stroke due to the formation of blood clots in the left atrium. To minimize this risk, the anticoagulant warfarin is commonly prescribed, but it also increases the risk of bleeding. Regular monitoring of the International Normalized Ratio is necessary to ensure the patient’s safety. Warfarin works by inhibiting Vitamin K epoxide reductase, which affects the synthesis of clotting factors II, VII, IX, and X, as well as protein C and S. Factor IX is a vitamin K dependent clotting factor and is deficient in Hemophilia B. Factors XI and V are not vitamin K dependent clotting factors, while Factor I is not a clotting factor at all.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A 6-year-old boy is brought to the paediatrician by his parents due to...

    Incorrect

    • A 6-year-old boy is brought to the paediatrician by his parents due to a fever and sore throat that has been bothering him for the past 24 hours. The boy is experiencing significant discomfort in his throat and has been refusing to eat or drink. He does not report having a cough or a runny nose. The boy was delivered via spontaneous vaginal delivery and has been developing normally. He has two healthy older siblings. During the examination, the doctor observes that the boy's tonsils are inflamed and enlarged, with some white exudates, as well as enlarged cervical lymph nodes. The boy's temperature is 38.2 °C. The doctor informs the parents that the boy requires antibiotics to treat the current infection and prevent the risk of a severe complication commonly associated with this particular infection. What complication can be prevented with prompt antibiotic treatment?

      Your Answer:

      Correct Answer: Acute rheumatic fever

      Explanation:

      Pharyngitis is the likely diagnosis for this patient based on their presenting symptoms. Group A streptococcus, also known as Streptococcus pyogenes, is a common cause of pharyngitis in young patients. One of the most concerning complications of this infection is acute rheumatic fever, which can lead to damage to the heart valves. Early antibiotic treatment can prevent the development of this serious condition.

      1: Septicemia can result from various bacterial infections, but it is not typically associated with Group A streptococcal pharyngitis. Additionally, septicemia is rare in patients with this type of pharyngitis, as the condition usually resolves on its own without treatment.

      2: Acute rheumatic fever is a serious complication of Group A streptococcal pharyngitis. It is an immune system reaction that damages the heart valves, particularly the mitral valve. Mitral valve regurgitation is common in the early stages of the disease, followed by mitral stenosis later on.

      3: Post-streptococcal glomerulonephritis is another possible complication of Group A streptococcal pharyngitis. Unlike acute rheumatic fever, however, prompt antibiotic treatment does not prevent its development.

      4: While Group A streptococcus can cause cellulitis, this is a separate condition from pharyngitis and is not a complication of the same bacterial infection.

      5:

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - A 34-year-old woman visits her doctor after discovering she is pregnant. She is...

    Incorrect

    • A 34-year-old woman visits her doctor after discovering she is pregnant. She is currently taking the following medications:

      - Loratadine 10mg once daily
      - Omeprazole 10mg once daily
      - Metformin 500mg three times daily
      - Warfarin 5 mg once daily
      - Senna 15mg at night

      Which medication(s) should she discontinue during her pregnancy?

      Your Answer:

      Correct Answer: Warfarin

      Explanation:

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart...

    Incorrect

    • A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart failure and a systolic murmur. He is referred for an echocardiogram, which reveals an ejection fraction of 62% and impaired diastolic function of the myocardial tissue. Additionally, the report notes a septal wall thickness of 17mm. What is the most probable condition responsible for these findings?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Hypertrophic obstructive cardiomyopathy (HOCM) is a likely cause of diastolic dysfunction, which can lead to heart failure with preserved ejection fraction (HF-pEF). This genetic cardiomyopathy is associated with sudden cardiac death, syncope, and heart failure. Unlike other conditions, such as degenerative calcification of the aortic valve or dilated cardiomyopathy, HOCM typically presents with diastolic dysfunction rather than systolic dysfunction. Ischaemic heart disease is also unlikely to be the cause of diastolic dysfunction and would typically present with heart failure and systolic dysfunction.

      Types of Heart Failure

      Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - A 67-year-old man with heart failure visits his physician and inquires about the...

    Incorrect

    • A 67-year-old man with heart failure visits his physician and inquires about the factors that influence stroke volume. What interventions can enhance stroke volume in a healthy person?

      Your Answer:

      Correct Answer: Increased central venous pressure

      Explanation:

      There are four factors that impact stroke volume: cardiac size, contractility, preload, and afterload. When someone has heart failure, their stroke volume decreases. If there is an increase in parasympathetic activation, it would lead to a reduction in contractility. Hypertension would increase afterload, which means the ventricle would have to work harder to pump blood into the aorta. If there is an increase in central venous pressure, it would lead to an increase in preload due to an increase in venous return.

      The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - As a medical student on placement in the pathology lab, you are observing...

    Incorrect

    • As a medical student on placement in the pathology lab, you are observing the pathologist examine a section of a blood vessel. Specifically, what can be found within the tunica media of a blood vessel?

      Your Answer:

      Correct Answer: Smooth muscle

      Explanation:

      Artery Histology: Layers of Blood Vessel Walls

      The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A 48-year-old man comes to the clinic for a hypertension follow-up. He was...

    Incorrect

    • A 48-year-old man comes to the clinic for a hypertension follow-up. He was diagnosed with high blood pressure two months ago and started on ramipril. However, his blood pressure remained uncontrolled, so amlodipine was added to his treatment four weeks ago. Today, his blood pressure reading is 161/91mmHg. You decide to prescribe indapamide, a thiazide diuretic. Can you identify the primary site of action of thiazides in the nephron?

      Your Answer:

      Correct Answer: Distal convoluted tubule

      Explanation:

      Thiazide diuretics, such as indapamide, work by blocking the Na+-Cl− symporter at the beginning of the distal convoluted tubule, which inhibits sodium reabsorption. Loop diuretics, on the other hand, inhibit Na+/K+ 2Cl- channels in the thick ascending loop of Henle. There are currently no diuretic agents that specifically target the descending limb of the loop of Henle. Carbonic anhydrase inhibitors prevent the exchange of luminal Na+ for cellular H+ in both the proximal and distal tubules. Potassium-sparing diuretics, such as amiloride, inhibit the Na+/K+ ATPase in the cortical collecting ducts either directly or by blocking aldosterone receptors, as seen in spironolactone.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - Sarah, a 73-year-old woman, is currently admitted to the medical ward after experiencing...

    Incorrect

    • Sarah, a 73-year-old woman, is currently admitted to the medical ward after experiencing chest pain. A recent blood test revealed low levels of potassium. The doctors explained that potassium plays a crucial role in the normal functioning of the heart and any changes in its concentration can affect the heart's ability to contract and relax properly.

      How does potassium contribute to a normal cardiac action potential?

      Your Answer:

      Correct Answer: A slow influx of the electrolyte causes a plateau in the myocardial action potential

      Explanation:

      Calcium causes a plateau in the cardiac action potential, prolonging contraction and reflected in the ST-segment of an ECG. A low concentration of calcium ions can result in a prolonged QT-segment. Sodium ions cause depolarisation, potassium ions cause repolarisation, and their movement maintains the resting potential. Calcium ions also bind to troponin-C to trigger muscle contraction.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The...

    Incorrect

    • A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The physician opts to initiate oral amiodarone at 200 mg thrice daily, and gradually decrease at weekly intervals until a maintenance dose of 200 mg once daily.

      What is the rationale behind this dosing plan?

      Your Answer:

      Correct Answer: Amiodarone has a very long half-life

      Explanation:

      Amiodarone’s long half-life is due to its high lipophilicity and extensive tissue absorption, resulting in reduced bioavailability in serum. To achieve stable therapeutic levels, a prolonged loading regimen is necessary.

      To quickly achieve therapeutic levels, high doses of oral amiodarone are required due to poor absorption. Once achieved, a once-daily regimen can be continued. Amiodarone’s plasma half-life ranges from 20 to 100 days, meaning its effects persist long after discontinuation. Patients should be counseled on this and advised to recognize adverse effects and avoid drugs that interact with amiodarone even after stopping it.

      The statement that amiodarone has a short half-life is incorrect; it has a long half-life.

      Patients do not need to stay admitted for monitoring during the loading regimen. However, thyroid and liver function tests should be performed every 6 months for up to 12 months after discontinuation due to the long half-life.

      Amiodarone is excreted via the liver and biliary system, not rapidly metabolized and eliminated by the kidneys. Therefore, patients with amiodarone overdose or toxicity are not suitable for dialysis.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate...

    Incorrect

    • A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate the function of her heart. The goal is to measure her ejection fraction, however, to do this first her stroke volume must be measured.

      What is the formula for stroke volume?

      Your Answer:

      Correct Answer: End diastolic volume - end systolic volume

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 55-year-old woman with resistant hypertension is currently on ramipril and amlodipine. The...

    Incorrect

    • A 55-year-old woman with resistant hypertension is currently on ramipril and amlodipine. The GP wants to add a diuretic that primarily acts on the distal convoluted tubule. What diuretic should be considered?

      Your Answer:

      Correct Answer: Bendroflumethiazide (thiazide diuretic)

      Explanation:

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 50-year-old man presents to the emergency department with excruciating chest pain that...

    Incorrect

    • A 50-year-old man presents to the emergency department with excruciating chest pain that raises suspicion of aortic dissection. Which layers are the blood expected to be flowing between?

      Your Answer:

      Correct Answer: Tunica intima and tunica media

      Explanation:

      In an aortic dissection, the tunica intima becomes separated from the tunica media. The tunica intima is the innermost layer of a blood vessel, while the tunica media is the second layer and the tunica adventitia is the third layer. Normally, the tunica media would be situated between the tunica intima and adventitia in the aorta. Capillaries have layers called endothelium and basal laminae, while the internal and external elastic laminae are found on either side of the tunica media.

      Artery Histology: Layers of Blood Vessel Walls

      The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 45-year-old man undergoes a routine medical exam and his blood pressure is...

    Incorrect

    • A 45-year-old man undergoes a routine medical exam and his blood pressure is measured at 155/95 mmHg, which is unusual as it has been normal for the past five annual check-ups. What could be the reason for this sudden change?

      Your Answer:

      Correct Answer: An undersized blood pressure cuff

      Explanation:

      Ensuring Accurate Blood Pressure Measurements

      Blood pressure is a crucial physiological measurement in medicine, and it is essential to ensure that the values obtained are accurate. Inaccurate readings can occur due to various reasons, such as using the wrong cuff size, incorrect arm positioning, and unsupported arms. For instance, using a bladder that is too small can lead to an overestimation of blood pressure, while using a bladder that is too large can result in an underestimation of blood pressure. Similarly, lowering the arm below heart level can lead to an overestimation of blood pressure, while elevating the arm above heart level can result in an underestimation of blood pressure.

      It is recommended to measure blood pressure in both arms when considering a diagnosis of hypertension. If there is a difference of more than 20 mmHg between the readings obtained from both arms, the measurements should be repeated. If the difference remains greater than 20 mmHg, subsequent blood pressures should be recorded from the arm with the higher reading. By following these guidelines, healthcare professionals can ensure that accurate blood pressure measurements are obtained, which is crucial for making informed medical decisions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - An 82-year-old woman visits her doctor with a medical history of myocardial infarction...

    Incorrect

    • An 82-year-old woman visits her doctor with a medical history of myocardial infarction that has resulted in permanent damage to the conduction system of her heart. The damage has affected the part of the conduction system with the highest velocities, causing desynchronisation of the ventricles.

      What is the part of the heart that conducts the fastest?

      Your Answer:

      Correct Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the highest conduction velocities in the heart’s electrical conduction system. The process starts with the SA node generating spontaneous action potentials, which are then conducted across both atria through cell to cell conduction at a speed of approximately 1 m/s. The only pathway for the action potential to enter the ventricles is through the AV node, which has a slow conduction speed of 0.05ms to allow for complete atrial contraction and ventricular filling. The action potentials are then conducted through the Bundle of His, which splits into the left and right bundle branches, with a conduction speed of approximately 2m/s. Finally, the action potential reaches the Purkinje fibres, which are specialized conducting cells that allow for a faster conduction speed of 2-4m/s. This fast conduction speed is crucial for a synchronized and efficient contraction of the ventricle, generating pressure during systole.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - Which vessel is the first to branch from the external carotid artery? ...

    Incorrect

    • Which vessel is the first to branch from the external carotid artery?

      Your Answer:

      Correct Answer: Superior thyroid artery

      Explanation:

      Here is a mnemonic to remember the order in which the branches of the external carotid artery originate: Some Attendings Like Freaking Out Potential Medical Students. The first branch is the superior thyroid artery, followed by the ascending pharyngeal, lingual, facial, occipital, post auricular, and finally the maxillary and superficial temporal arteries.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A patient in his late 60s presents with dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea,...

    Incorrect

    • A patient in his late 60s presents with dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea, fatigue, cyanosis. A diagnosis of acute heart failure is made. He is started on diuretics, ACE inhibitors, beta-blockers but shows minimal improvement with medications.

      What should be considered if he continues to fail to improve?

      Your Answer:

      Correct Answer: Continuous positive airway pressure

      Explanation:

      If a patient with acute heart failure does not show improvement with appropriate medication, CPAP should be considered as a viable treatment option.

      Heart failure requires acute management, with recommended treatments including IV loop diuretics such as furosemide or bumetanide. Oxygen may also be given in accordance with British Thoracic Society guidelines to maintain oxygen saturations between 94-98%. Vasodilators such as nitrates should not be routinely given to all patients, but may be considered for those with concomitant myocardial ischaemia, severe hypertension, or regurgitant aortic or mitral valve disease. However, hypotension is a major side-effect and contraindication.

      For patients with respiratory failure, CPAP may be used. In cases of hypotension or cardiogenic shock, treatment can be challenging as loop diuretics and nitrates may exacerbate hypotension. Inotropic agents like dobutamine may be considered for patients with severe left ventricular dysfunction and potentially reversible cardiogenic shock. Vasopressor agents like norepinephrine are typically only used if there is insufficient response to inotropes and evidence of end-organ hypoperfusion. Mechanical circulatory assistance such as intra-aortic balloon counterpulsation or ventricular assist devices may also be used.

      While opiates were previously used routinely to reduce dyspnoea/distress in patients, NICE now advises against routine use due to studies suggesting increased morbidity in patients given opiates. Regular medication for heart failure such as beta-blockers and ACE-inhibitors should be continued, with beta-blockers only stopped if the patient has a heart rate less than 50 beats per minute, second or third degree atrioventricular block, or shock.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 25-year-old man is scheduled for a mitral valve repair to address mitral...

    Incorrect

    • A 25-year-old man is scheduled for a mitral valve repair to address mitral regurgitation. What characteristic is associated with the mitral valve?

      Your Answer:

      Correct Answer: Its closure is marked by the first heart sound

      Explanation:

      To hear the mitral valve clearly, it is recommended to listen over the cardiac apex, as its closure produces the initial heart sound. The valve comprises two cusps that are connected to the ventricle wall by papillary muscles through chordae tendinae.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 56-year-old woman comes to you complaining of severe body aches and pains...

    Incorrect

    • A 56-year-old woman comes to you complaining of severe body aches and pains that have been ongoing for the past 2 weeks. She has been taking atorvastatin for the last 5 years and is aware of its potential side effects, but insists that she has never experienced anything like this before.

      Upon examination, her CK levels are found to be above 3000 U/L. Reviewing her medical records, it is noted that she had a medication review with her cardiologist just 2 weeks ago.

      What could be the possible cause of her current symptoms?

      Your Answer:

      Correct Answer: The cardiologist started her on amiodarone

      Explanation:

      The patient’s symptoms and elevated CK levels suggest that she may have rhabdomyolysis, which is a known risk associated with taking statins while also taking amiodarone. It is likely that her cardiologist prescribed amiodarone. To reduce her risk of statin-induced rhabdomyolysis, her atorvastatin dosage should be lowered.

      It is important to note that digoxin and beta-blockers do not increase the risk of statin-induced rhabdomyolysis, and there is no association between laxatives and this condition.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - A newborn with Down's syndrome presents with a murmur at birth. Upon performing...

    Incorrect

    • A newborn with Down's syndrome presents with a murmur at birth. Upon performing an echocardiogram, what is the most probable congenital cardiac abnormality that will be detected?

      Your Answer:

      Correct Answer: Atrio-ventricular septal defect

      Explanation:

      Congenital Cardiac Anomalies in Down Syndrome

      Down syndrome is a genetic disorder that is characterized by a range of congenital abnormalities. One of the most common abnormalities associated with Down syndrome is duodenal atresia. However, Down syndrome is also frequently associated with congenital cardiac anomalies. The most common cardiac anomaly in Down syndrome is an atrioventricular septal defect (AVSD), followed by ventricular septal defect (VSD), patent ductus arteriosus (PDA), tetralogy of Fallot, and atrial septal defect (ASD). These anomalies can cause a range of symptoms and complications, including heart failure, pulmonary hypertension, and developmental delays. It is important for individuals with Down syndrome to receive regular cardiac evaluations and appropriate medical care to manage these conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - Which one of the following vessels does not directly drain into the inferior...

    Incorrect

    • Which one of the following vessels does not directly drain into the inferior vena cava?

      Your Answer:

      Correct Answer: Superior mesenteric vein

      Explanation:

      The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 25-year-old man comes to the clinic complaining of shortness of breath during...

    Incorrect

    • A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.

      What findings may be observed on the echocardiogram of this patient?

      Your Answer:

      Correct Answer: Systolic anterior motion (SAM)

      Explanation:

      The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - A 40-year-old male patient complains of shortness of breath, weight loss, and night...

    Incorrect

    • A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?

      Your Answer:

      Correct Answer: Splinter haemorrhages

      Explanation:

      Symptoms and Diagnosis of Infective Endocarditis

      This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A 68-year-old female complains of fatigue and occasional palpitations. During one of these...

    Incorrect

    • A 68-year-old female complains of fatigue and occasional palpitations. During one of these episodes, an ECG shows atrial fibrillation that resolves within half an hour. What would be the most suitable subsequent investigation for this patient?

      Your Answer:

      Correct Answer: Thyroid function tests

      Explanation:

      Diagnosis and Potential Causes of Paroxysmal Atrial Fibrillation

      Paroxysmal atrial fibrillation (AF) can have various underlying causes, including thyrotoxicosis, mitral stenosis, ischaemic heart disease, and alcohol consumption. Therefore, it is crucial to conduct thyroid function tests to aid in the diagnosis of AF, as it can be challenging to identify based solely on clinical symptoms. Additionally, an echocardiogram should be requested to evaluate the function of the left ventricle and valves, which would typically be performed by a cardiologist. However, coronary angiography is unlikely to be necessary.

      Conversely, a full blood count, calcium, erythrocyte sedimentation rate (ESR), or lipid profile would not be useful in determining the nature of AF or its potential treatment. It is essential to consider the various causes of AF to determine the most effective course of treatment. The sources cited in this article provide further information on the diagnosis and management of AF.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been...

    Incorrect

    • A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?

      Your Answer:

      Correct Answer: P2Y12 receptor antagonist

      Explanation:

      Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A 82-year-old male is admitted to the Emergency Room with complaints of severe...

    Incorrect

    • A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?

      Your Answer:

      Correct Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils

      Explanation:

      In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.

      Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.

      From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.

      Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 32-year-old man is shot in the postero-inferior aspect of his thigh. What...

    Incorrect

    • A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?

      Your Answer:

      Correct Answer: Common peroneal nerve

      Explanation:

      The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 47-year-old patient is scheduled for an emergency laparotomy due to bowel perforation....

    Incorrect

    • A 47-year-old patient is scheduled for an emergency laparotomy due to bowel perforation. While performing the procedure, the surgeon comes across the marginal artery of Drummond and decides to preserve it. Can you name the two arteries that combine to form the marginal artery of Drummond?

      Your Answer:

      Correct Answer: Superior mesenteric artery and inferior mesenteric artery

      Explanation:

      The anastomosis known as the marginal artery of Drummond is created by the joining of the superior mesenteric artery and inferior mesenteric artery. This results in a continuous arterial circle that runs along the inner edge of the colon. The artery gives rise to straight vessels, also known as vasa recta, which supply the colon. The ileocolic, right colic, and middle colic branches of the SMA, as well as the left colic and sigmoid branches of the IMA, combine to form the marginal artery of Drummond. All other options are incorrect as they do not contribute to this particular artery.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (0/2) 0%
Passmed