-
Question 1
Incorrect
-
Which type of cell makes up the majority of yellow bone marrow?
Your Answer: Haematopoietic stem cells
Correct Answer: Adipocytes
Explanation:Anatomy of Bones and Bone Marrow
Bones are composed of two types of bone tissue: compact bone and cancellous bone. The medullary cavity is located within the cancellous bone and contains trabeculae. Blood vessels and bone marrow are also present within the cavity. The bone marrow is responsible for producing blood cells, with red marrow being the site of active haematopoiesis. Yellow marrow, on the other hand, is predominantly made up of adipocytes and fibroblasts.
Chondrocytes are specialized cells found in cartilage that secrete the collagen matrix. Fibroblasts also contribute to the extracellular matrix by secreting collagen. Haematopoietic stem cells are found in bone marrow and are the common ancestor of all haematologic cells. Megakaryocytes, which are also found in bone marrow, are the precursor to platelets. the anatomy of bones and bone marrow is crucial in their functions and the processes that occur within them.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Correct
-
A 15-year-old girl is brought to the clinic by her mother due to complaints of severe abdominal cramps and heavy menstrual bleeding.
Which term accurately describes an excessive amount of menstrual bleeding?Your Answer: Menorrhagia
Explanation:Menstrual Disorders
Menstrual disorders are common among women and can cause discomfort and inconvenience. Menorrhagia is a condition where women experience prolonged and heavy periods at regular intervals. On the other hand, metrorrhagia, also known as spotting, is characterized by vaginal bleeding that is not in line with a regular menstrual cycle. Cryptomenorrhoea is a condition where menstruation occurs but is concealed, such as in the case of an imperforate hymen. Dysmenorrhoea, which often coexists with menorrhagia, refers to severe uterine pain experienced by some women during and around the time of menstruation.
Oligomenorrhoea, on the other hand, is a condition where menstrual bleeding occurs infrequently, with periods of non-menstruation for more than 35 days. When menstruation does not occur at all, this is called amenorrhoea. It is important for women to be aware of these conditions and seek medical attention if they experience any abnormal menstrual symptoms. Proper diagnosis and treatment can help manage these conditions and improve the quality of life for women.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 3
Incorrect
-
What is the substrate utilized for gluconeogenesis in humans?
Your Answer: Lysine
Correct Answer: Lactate
Explanation:Substrates for Gluconeogenesis
Gluconeogenesis is the process of creating glucose from non-carbohydrate sources. The main substrates used for gluconeogenesis include lactate, alanine, pyruvate, other amino acids, and glycerol. Lactate is produced in non-hepatic tissues, such as muscle during exercise, and can travel to the liver to be converted back into glucose. This process is known as the Cori cycle. Alanine can also be used as a substrate for gluconeogenesis, as it travels to the liver. Pyruvate, produced during anaerobic circumstances, can be converted into alanine by the enzyme alanine aminotransferase (ALT).
Almost all amino acids present in proteins, except for leucine and lysine, can be converted into intermediates of the Krebs cycle, allowing them to be used for gluconeogenesis. This is a crucial source of new glucose during prolonged fasting. Additionally, the glycerol backbone from dietary triglycerides can be used for gluconeogenesis. However, propionate has a minimal role in humans, despite being a major substrate for gluconeogenesis in animals. the substrates used for gluconeogenesis is important for how the body creates glucose from non-carbohydrate sources.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 4
Incorrect
-
A 25-year-old male has recently begun working in the textile industry and reports handling various materials and chemicals on a daily basis. He has come to you complaining of a burning and itchy rash that appeared on his hands two days ago. Upon examination, his hands appear red and inflamed, and are warm and tender to the touch.
Which type of immune cell is primarily responsible for this patient's condition?Your Answer: Neutrophils
Correct Answer: T lymphocytes
Explanation:The patient has contact dermatitis, a delayed hypersensitivity reaction caused by contact with allergens in the workplace. Contact allergens penetrate the skin and are engulfed by Langerhans cells, leading to activation of the innate immune system and T lymphocyte proliferation. This type of hypersensitivity is not antibody mediated and involves different cells than other types of hypersensitivity reactions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 5
Incorrect
-
In which cell types can mesenchymal pluripotent stem cells undergo differentiation?
Your Answer: Mesenchymal progenitor cells
Correct Answer: Osteoblasts, adipocytes and chondrocytes
Explanation:Mesenchymal Stem Cells: A Versatile Type of Connective Tissue
The mesenchyme is a type of connective tissue that originates from the embryonic mesoderm and is composed of undifferentiated cells. During fetal development, these mesenchymal stem cells differentiate into various types of adult cells, including osteoblasts, adipocytes, and chondrocytes. Mesenchymal stem cells have a remarkable ability to self-renew, making them a valuable resource for regenerative medicine.
Osteoblasts are cells that generate bone tissue, while adipocytes are responsible for storing fat in the body. Chondrocytes, on the other hand, produce cartilage, which is essential for maintaining healthy joints. These three cell types are the primary products of mesenchymal stem cells.
It’s important to note that the other answer options are incorrect because they don’t arise from mesenchymal stem cells. Mesenchymal stem cells are a versatile type of connective tissue that holds great promise for treating a wide range of medical conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 6
Correct
-
Which blood vessel in the systemic circulation causes the highest amount of resistance to blood flow?
Your Answer: Arterioles
Explanation:Arterioles and Total Peripheral Vascular Resistance
Arterioles play a crucial role in determining the total peripheral vascular resistance due to their small calibre, larger surface area, and higher tensile strength compared to capillaries. These vessels are responsible for regulating blood flow to the capillaries and organs by constricting or dilating. The constriction of arterioles increases resistance to blood flow, while dilation decreases resistance.
The high tensile strength of arterioles allows them to withstand the pressure of blood flow and maintain their shape, which is important for regulating blood pressure. Additionally, their larger surface area allows for more precise control of blood flow to specific areas of the body. Overall, arterioles are essential in regulating blood flow and maintaining proper blood pressure throughout the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 7
Incorrect
-
A 35-year-old woman has remarried and desires to have children with her new Caucasian husband. However, she already has a 5-year-old child with cystic fibrosis from her previous marriage. She is concerned about the likelihood of having another affected child with her new partner. Can you provide an estimated risk?
Your Answer: 1 in 1000 chance
Correct Answer: 1 in 100 chance
Explanation:Cystic Fibrosis Inheritance
Cystic fibrosis is a genetic disorder that is inherited in an autosomal recessive pattern. This means that both copies of the gene in each cell have mutations. Individuals with only one copy of the mutated gene are carriers and typically do not show signs or symptoms of the condition.
In the case of a female carrier for the CF gene, there is a 1 in 2 chance of producing a gamete carrying the CF gene. If her new partner is also a carrier, he has a 1 in 25 chance of having the CF gene and a 1 in 50 chance of producing a gamete with the CF gene. Therefore, the chance of producing a child with cystic fibrosis is 1 in 100.
It is important to understand the inheritance pattern of cystic fibrosis to make informed decisions about family planning and genetic testing. This knowledge can help individuals and families better understand the risks and potential outcomes of having children with this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Correct
-
What blood test result indicates hypoglycaemia?
Your Answer: A young child with a plasma glucose concentration of 2.2 mmol/L
Explanation:Hypoglycaemia
Hypoglycaemia occurs when the blood glucose level falls below the typical fasting level. This condition is common and may not always require treatment, especially if it is mild and asymptomatic. However, the diagnosis of true hypoglycaemia requires the satisfaction of Whipple’s triad, which includes the presence of hypoglycaemia, symptoms/signs consistent with hypoglycaemia, and resolution of symptoms/signs when blood glucose level normalises.
Symptoms of hypoglycaemia are caused by sympathetic activity and disrupted central nervous system function due to inadequate glucose. Infants may experience hypotonia, jitteriness, seizures, poor feeding, apnoea, and lethargy. On the other hand, adults and older children may experience tremor, sweating, nausea, lightheadedness, hunger, and disorientation. Severe hypoglycaemia can cause confusion, aggressive behaviour, and reduced consciousness.
In summary, hypoglycaemia is important to recognise its symptoms and provide appropriate treatment. While mild hypoglycaemia may not always require intervention, true hypoglycaemia should be diagnosed based on Whipple’s triad. Symptoms of hypoglycaemia vary depending on age, and severe hypoglycaemia can cause serious complications.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 9
Correct
-
You are asked to see a 4-year-old girl with severe chronic malnutrition.
You are concerned about kwashiorkor.
What clinical feature is typical in cases of kwashiorkor?Your Answer: Abdominal swelling
Explanation:Protein-Energy Malnutrition
Protein-energy malnutrition (PEM) or protein energy undernutrition (PEU) occurs when the body’s intake of energy and protein is insufficient to meet its requirements. This can happen due to inadequate intake or an increase in requirements without a corresponding increase in intake. The result is a range of health problems, including undernutrition, which is sadly common in many parts of the world.
Undernutrition can take different forms, including kwashiorkor and marasmus. Kwashiorkor is characterized by inadequate protein intake, leading to oedema, abdominal swelling, and fat accumulation in the liver. Marasmus, on the other hand, involves inadequate consumption of both energy and protein, resulting in emaciation without oedema or abdominal swelling. The term ‘protein-energy undernutrition’ encompasses both of these scenarios.
It’s worth noting that malnutrition can refer to both overnutrition (obesity) and undernutrition, both of which have negative effects on the body’s health. However, in common usage, malnutrition typically refers to undernutrition. Additionally, malnutrition can also result from isolated deficiencies in vitamins or minerals. Overall, protein-energy malnutrition is crucial for promoting and preserving good health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 10
Correct
-
What is the hormone responsible for promoting glycogen synthesis?
Your Answer: Insulin
Explanation:The Role of Hormones in Glycogen Production and Blood Sugar Regulation
Glycogen is a complex glucose polymer that serves as a storage form of glucose in the body. When insulin levels are high, such as after a meal rich in carbohydrates, glycogen production is stimulated, leading to a decrease in blood sugar levels. However, when insulin levels are low and glucagon and cortisol levels are high, glycogen degradation is stimulated, releasing glucose into the bloodstream to maintain blood sugar levels until the next meal.
Insulin is a hormone that helps to lower blood sugar levels, while glucagon and cortisol work to increase blood sugar levels. ACTH, a hormone released by the pituitary gland, stimulates the release of cortisol from the adrenal glands, which can also contribute to an increase in blood sugar levels.
Antidiuretic hormone, on the other hand, plays a role in the production of concentrated urine but does not have any direct effect on glycogen production or blood sugar regulation.
In summary, the regulation of blood sugar levels and glycogen production is a complex process that involves the interplay of various hormones, including insulin, glucagon, cortisol, and ACTH. the role of these hormones can help to better manage conditions such as diabetes and hypoglycemia.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 11
Correct
-
What is the most powerful muscle for extending the hip?
Your Answer: Gluteus maximus
Explanation:Muscles Acting on the Hip Joint
The hip joint is a synovial ball and socket joint that allows for a wide range of movements. There are several muscles that act over the hip, each with their own primary movement and innervation. The hip extensors include the gluteus maximus and the hamstrings, which are responsible for extending the hip joint. The hip flexors include the psoas major, iliacus, rectus femoris, and pectineus, which are responsible for flexing the hip joint. The hip abductors include the gluteus medius and minimus, as well as the tensor fascia latae, which are responsible for abducting the hip joint. Finally, the hip adductors include the adductor magnus, brevis, and longus, as well as the gracilis, which are responsible for adducting the hip joint.
The gluteus maximus is the strongest hip extensor, earning it the nickname of the power extensor of the hip. The hamstrings, while partially responsible for hip extension, are primarily responsible for knee flexion. However, their long course leaves them vulnerable to sports injuries. the muscles that act on the hip joint is important for both athletes and healthcare professionals in order to prevent and treat injuries.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 12
Correct
-
What function does high density lipoprotein (HDL) serve?
Your Answer: To move lipids from the arterial walls to the liver
Explanation:The Role of HDL in Reverse Cholesterol Transport
HDL, also known as good cholesterol, is initially secreted by the liver into the bloodstream as immature or nascent HDL. This nascent HDL contains apoplipoprotein A-I, C, and E but has very little triglyceride or cholesterol ester content. However, upon secretion, it undergoes modification to form the mature form of HDL.
The mature HDL particle plays a crucial role in reverse cholesterol transport. It receives triglycerides and cholesterol esters from VLDL and IDL particles and picks up excess cholesterol from body cells. As it does so, it loses apoC and E to form the mature HDL particle, which contains only apoA-I.
The primary function of HDL is to remove excess triglycerides from arterial walls and body cells via VLDL and IDL and to return the excess lipid to the liver for repackaging or excretion in bile. This process is known as reverse cholesterol transport and is essential in maintaining healthy cholesterol levels in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 13
Incorrect
-
As a final year medical student, you are assisting a general surgeon in a busy outpatient clinic. A 53-year-old male patient presents with a swelling in his left groin.
Upon examination, the swelling is located superior and medial to the pubic tubercle, it is non-tender, easily reducible, and has a positive cough impulse. The surgeon suspects an inguinal hernia and informs you that there is an anatomical structure immediately above the midpoint of the inguinal ligament.
What is this anatomical structure?Your Answer: Femoral nerve
Correct Answer: Deep inguinal ring
Explanation:Anatomical Landmarks and Structures in the Inguinal Region
The inguinal region is an important area of the body that contains several anatomical landmarks and structures. Two terms that are commonly used in this region are the mid-inguinal point and the mid-point of the inguinal ligament. The mid-inguinal point is located between the anterior superior iliac spine and the symphysis pubis and is often used to palpate the femoral artery. On the other hand, the mid-point of the inguinal ligament is located between the ASIS and the pubic tubercle and is used to identify the area of the deep inguinal ring.
It is important to note that the external iliac artery and inferior epigastric vessels are not commonly palpated in this region. However, the inferior epigastric vessels are used intraoperatively to determine the type of inguinal hernia. An indirect hernia is said to be lateral to the IEV, while a direct hernia appears medial to the IEVs.
The femoral nerve is another important structure in the inguinal region. It is the largest branch of the lumbar plexus and supplies cutaneous innervations to the skin of the thigh and somatic innervations to the quadriceps femoris. Finally, the superficial inguinal ring can be found 1 cm superior and medial to the pubic tubercle and is often palpated to check for the presence of a hernia.
In summary, the inguinal region contains several important anatomical landmarks and structures that are commonly used in clinical practice. these structures and their functions is essential for accurate diagnosis and treatment of conditions in this area.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 14
Correct
-
A 50-year-old male patient presents at the clinic with a confirmed diagnosis of type 2 diabetes. He has also been diagnosed with liver cirrhosis and has a history of pseudogout. Based on his medical history, you suspect that he may be suffering from haemochromatosis. Can you identify the most frequently occurring genetic abnormality associated with this condition?
Your Answer: C282Y mutation
Explanation:Genetic Mutations and Their Effects
HFE is a gene responsible for binding to transferrin, and when a mutation occurs in this gene, it can lead to haemochromatosis. The most common mutation in this gene is the C282Y allele, which is a point mutation resulting in the replacement of a cysteine residue with a tyrosine amino acid. On the other hand, the delta-F508 mutation is a deletion mutation that causes the loss of phenylalanine at position 508 in the CFTR protein, leading to the development of cystic fibrosis. Trinucleotide repeats are another type of mutation that can cause inherited neurological disorders, such as Huntington’s disease and spinocerebellar ataxia. Duchenne’s muscular dystrophy is caused by a mutation in the XP-21 gene, while phenylketonuria is caused by a mutation in phenylalanine hydroxylase (PAH).
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 15
Correct
-
A 39-year-old man of South Asian descent is experiencing a productive cough with occasional pink-coloured sputum for the past two weeks. He has also been having a fever, night sweats, and unintentional weight loss during this period. Upon examination, a chest x-ray confirms the diagnosis, revealing cavitary patterns in the superior lobe of the right lung, with more radiopaque walls of the air-filled cavities. What serum electrolyte is most likely to be elevated in this patient?
Your Answer: Ca2+
Explanation:The Link Between Granulomatous Diseases and Hypercalcaemia
In diseases such as tuberculosis and sarcoidosis, where granuloma formation is the main pathological mechanism, activated macrophages increase serum levels of calcium. This is due to the production of calcitriol or the active form of vitamin D, which increases calcium absorption in the small intestine and reabsorption in the renal parenchyma.
Normally, hypercalcaemia inhibits the release of parathyroid hormone (PTH), which reduces osteoclastic activity and decreases the amount of calcitriol being released. However, in granulomatous diseases, sustained activation of macrophages produces increased amounts of calcitriol without regard to the negative feedback mechanism. As a result, the walls of air-filled cavities become calcified due to the sustained hypercalcaemia, making them more radiopaque.
In summary, granulomatous diseases can lead to hypercalcaemia due to sustained activation of macrophages and increased production of calcitriol. This can result in calcification of air-filled cavities and increased radiopacity.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 16
Incorrect
-
What metabolic effect occurs due to an increase in insulin secretion?
Your Answer:
Correct Answer: Reduced gluconeogenesis
Explanation:Insulin Anabolic Effects on Glucose Uptake
Insulin is released in response to high levels of glucose in the bloodstream. Its anabolic effects are aimed at preventing further glucose production and promoting glucose uptake into cells for utilization. Insulin reduces the processes of gluconeogenesis and glycogenolysis, which prevents the release of more glucose. Additionally, insulin inhibits the release of fatty acids from adipose tissue because glucose is the preferred energy source. Insulin also increases protein synthesis in anticipation of increased glucose uptake by cells. Furthermore, glycogen synthesis is increased to store glucose for later use. Overall, insulin anabolic effects on glucose uptake help to regulate blood glucose levels and ensure that cells have enough energy to function properly.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 17
Incorrect
-
A 30-year-old sailor has been diagnosed with scurvy.
What is the underlying cause of scurvy?Your Answer:
Correct Answer: Vitamin C deficiency
Explanation:The Importance of Vitamins and Their Deficiencies
Vitamins play a crucial role in maintaining the body’s overall health and well-being. Scurvy, a condition caused by a deficiency in vitamin C, is commonly observed in sailors who lack access to fresh fruits and vegetables during long sea voyages. The symptoms of scurvy include a widespread rash, bleeding mucous membranes, impaired wound healing, rough skin, fatigue, and depression. Vitamin C has several essential functions in the body, including acting as an antioxidant, reducing iron and copper, synthesizing collagen, producing energy from fats, synthesizing neurotransmitters, enhancing immune function, and acting as an antihistamine.
Deficiencies in other vitamins can also lead to various health problems. A lack of vitamin B3 can cause diarrhea, confusion, and skin changes known as pellagra. Vitamin B12 deficiency can lead to macrocytic anemia and paresthesia. Vitamin A toxicity can cause bone pain, dizziness, and blurred vision, while vitamin D toxicity can lead to vomiting, bone pain, and increased urinary frequency. It is essential to maintain a balanced diet and ensure adequate intake of all essential vitamins to prevent deficiencies and maintain optimal health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 18
Incorrect
-
A 72-year-old man who had mitral valve surgery three months ago comes in with worsening dyspnea. An echocardiogram reveals vegetations on the anterior leaflet of the mitral valve. What is the probable causative agent?
Your Answer:
Correct Answer: Staphylococcus aureus
Explanation:Endocarditis and Common Causative Organisms
Endocarditis is a condition where the inner lining of the heart, particularly the valves, becomes infected. Staphylococcus aureus is the most frequent cause of endocarditis within six months of cardiac surgery. A woman who presents with cardiac failure due to acute endocarditis can be diagnosed through echocardiography, which shows vegetation, and other clinical parameters. However, blood cultures are also necessary to identify the organism responsible for the infection. Given the recent history of valvular surgery, Staphylococcus aureus contamination during the operation is the most likely cause. Coagulase negative Staphylococcus should also be considered. Streptococcus pyogenes is the second most common cause of infective endocarditis, but it tends to cause subacute disease with symptoms such as fever, weight loss, general malaise, and anemia. Although all other organisms can cause infective endocarditis, they are less common causes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 19
Incorrect
-
You are invited to witness a lumbar puncture on a 32-year-old male.
At what level of the vertebrae does the spinal cord typically terminate?Your Answer:
Correct Answer: L2
Explanation:The Importance of Knowing the Termination of the Spinal Cord
In most adults, the spinal cord ends at the level of L1/L2, while the cauda equina continues downwards within the vertebral column. However, there is some variation in adults, and in children, the spinal cord may extend as far as L3. It is crucial to be aware of this variation because trauma to the spinal cord during lumbar puncture can result in significant paralysis.
Moreover, identifying the interspace L3/4 using Tuffier’s line, which is drawn between both iliac crests, is highly inaccurate. This inaccuracy can lead to an inadvertent high lumbar puncture, which can cause complications. Therefore, it is essential to have a clear of the termination of the spinal cord to avoid any potential harm during medical procedures.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 20
Incorrect
-
A 75-year-old amateur cricketer complains of a painful and stiff right shoulder following a match. Upon examination, there is tenderness around the shoulder joint. The patient experiences significant difficulty in abducting the joint initially, but can lift it fully with the assistance of his left hand. Which rotator cuff muscle is the most likely culprit?
Your Answer:
Correct Answer: Supraspinatus
Explanation:The Role of Rotator Cuff Muscles in Shoulder Abduction
The rotator cuff muscles, including subscapularis, infraspinatus, teres minor, and supraspinatus, play a crucial role in shoulder joint movements. However, teres major is not one of the rotator cuff muscles. Specifically, supraspinatus assists in the initial abduction of the shoulder, originating from the supraspinous fossa and inserting in the greater tubercle of the humerus, passing under the acromion.
As the shoulder is abducted beyond 30 degrees, the deltoid muscle takes over most of the movement. Therefore, if there is a tear in the supraspinatus muscle, initial movement may be difficult, but abduction can be achieved more easily once the limb is abducted to 30 degrees. These types of tears are more common in the elderly and in sports that require rapid overhead throwing movements, such as cricket or baseball.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 21
Incorrect
-
A woman in her 30s presents with an elevated alkaline phosphatase (ALP) level during pregnancy. All other liver function tests are within normal range and she reports feeling well. What is the probable cause of this finding?
Your Answer:
Correct Answer: Placental production of ALP
Explanation:Alkaline Phosphatase and Its Causes
Alkaline phosphatase is an enzyme that can be found in various tissues in the body, making it a common part of liver function tests. An elevated level of ALP can be caused by different factors, including isoenzymes from the liver or bone, as well as the placenta in pregnant women. In children, elevated ALP levels are usually physiological and signify bone growth. However, transient hyperphosphatasia of infancy can cause a more dramatic increase in ALP, which is benign and resolves after a few months.
Liver disease can also cause an increase in ALP, particularly with hepatobiliary obstruction, such as pancreatic carcinoma or a gallstone in the common bile duct. When bile drainage is obstructed, ALP synthesis increases significantly. On the other hand, liver diseases that predominantly cause hepatocellular damage will cause a lesser degree of ALP elevation.
ALP also aids in the calcification process in bone and is found in osteoblasts. Therefore, any disease affecting bone turnover and calcification, including Paget’s disease, vitamin D deficiency, primary and secondary hyperparathyroidism, bone malignancies, and fracture healing, can cause abnormal ALP levels. Paget’s disease, which involves increased bone turnover, is a relatively common finding in older patients and can cause various symptoms such as tender bone/skull overgrowth, sensorineural deafness, pathological fractures, and rarely, high output cardiac failure.
In summary, the causes of elevated ALP levels can help in diagnosing and managing various conditions affecting the liver and bone.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 22
Incorrect
-
A 27-year-old patient with anorexia nervosa has been admitted from home for nutritional support. Following her initial oral feed, her phosphate level has decreased from 0.5 mmol/L to 0.1 mmol/L (reference range 0.7-1.4). What could be the reason for her hypophosphataemia?
Your Answer:
Correct Answer: Phosphate enters the body's cells
Explanation:Refeeding Syndrome
Refeeding syndrome is a potentially fatal condition that can occur after a prolonged period of fasting or poor nutritional intake followed by a meal high in carbohydrates. It is characterized by a rapid decrease in the serum levels of phosphate, potassium, and magnesium, all of which are already depleted in the body. This happens because glucose availability within the blood causes insulin secretion while glucagon secretion is reduced. Insulin stimulates glycogen, adipose and protein synthesis and enhances the action of the Na-K-ATPase pump in cell membranes, which draws glucose into the cells. Many minerals and cofactors are also drawn into the cells to support these metabolic processes.
The condition is particularly dangerous for patients with starvation, anorexia nervosa, gastrointestinal conditions that impede adequate nutrition, and poor nutrition due to severe illness such as cancer cachexia. In healthy patients, phosphate ions enter the body’s cells under the influence of insulin after a meal, and the phosphate concentration in blood remains within the reference range. However, in patients with refeeding syndrome, a meal can stimulate marked phosphate entry into cells, causing profound hypophosphataemia. This can lead to cardiac arrhythmias and other life-threatening complications. Therefore, it is important to monitor patients at risk of refeeding syndrome closely and provide appropriate nutritional support to prevent this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 23
Incorrect
-
What is the medical term used to describe the existence of numerous small tuberculous granulomas spread throughout the lungs?
Your Answer:
Correct Answer: Miliary tuberculosis
Explanation:The different manifestations of tuberculosis are crucial in diagnosing and treating the disease effectively. Tuberculosis can manifest in various ways depending on the site and stage of infection. When a person first contracts tuberculosis, it can cause mid-lower zone pneumonic consolidation, which is known as the Ghon focus. Bacteria and inflammatory cells then travel to perihilar lymph nodes, forming a Ghon complex.
In most cases, the immune system will clear the active infection, leaving some dormant granulomas and asymptomatic mycobacteria in the lungs. This stage is called latent tuberculosis. However, some patients may develop a more severe form of the disease, known as primary tuberculous bronchopneumonia, where consolidation spreads from the Ghon focus to a more widespread bronchopneumonia. Other organs may also be affected.
In most cases, latent tuberculosis remains dormant for the rest of a person’s life. However, certain factors such as immunosuppression can cause the infection to become active again, leading to primary tuberculosis. This can affect any organ, but often causes an upper lobe bronchopneumonia. Miliary tuberculosis is another manifestation of the disease, caused by the systemic dissemination of tuberculosis via haematogenous spread.
This form of tuberculosis has a particular preference for forming multiple, small lesions throughout both lung fields and other organs.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 24
Incorrect
-
Which foods are rich in vitamin D?
Your Answer:
Correct Answer: Salmon
Explanation:Sources of Vitamin D
Vitamin D is a crucial nutrient that is primarily produced by the body when exposed to sunlight. However, in the absence of sunlight, it is important to obtain vitamin D from dietary sources. These sources include oily fish such as salmon, mackerel, and catfish, as well as meat, eggs, and some mushrooms. It is important to note that vitamin D-containing foods are mostly animal or fish-based, which may put strict vegetarians at a greater risk of deficiency.
Vitamin D exists in two forms, D2 and D3, with dietary sources containing vitamin D3 in greater abundance than D2. It is essential to ensure that the body receives an adequate amount of vitamin D, as it plays a crucial role in maintaining bone health, regulating the immune system, and reducing the risk of certain diseases. By incorporating vitamin D-rich foods into the diet, individuals can ensure that they are meeting their daily requirements for this important nutrient.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 25
Incorrect
-
A 78-year-old man recovering in hospital from a knee replacement experiences increasing difficulty breathing. He also has a fever and has started coughing. The medical team suspects he may have a lower respiratory tract infection.
Which of the following anatomical features is not susceptible to a lower respiratory tract infection?Your Answer:
Correct Answer: Pharynx
Explanation:The Respiratory Tract and its Infections
The respiratory tract can be divided into two parts: the upper and lower respiratory tract. The upper respiratory tract consists of the nose, nasal passages, paranasal sinuses, pharynx, and larynx. On the other hand, the lower respiratory tract includes the bronchi, bronchioles, and alveoli, which are all located distal to the trachea.
Acute upper respiratory tract infections are usually caused by viruses and can affect the nose, sinuses, pharynx, and larynx. These infections include rhinosinusitis, pharyngitis, and laryngitis. Symptoms of these infections may include coughing, sneezing, sore throat, and nasal congestion.
Lower respiratory tract infections, on the other hand, are more severe and can affect the bronchi, bronchioles, and alveoli. These infections include pneumonia, bronchitis, and lung abscesses. Symptoms of lower respiratory tract infections may include coughing, chest pain, shortness of breath, and fever.
It is important to understand the different parts of the respiratory tract and the infections that can affect them. Proper diagnosis and treatment can help prevent complications and promote recovery.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 26
Incorrect
-
Which of the following is a function that the liver does not perform?
Your Answer:
Correct Answer: Synthesis of immunoglobulins
Explanation:Functions of the Liver in Regulating Blood Composition
The liver plays a crucial role in regulating the composition of blood to maintain appropriate levels of solutes, toxins, and drugs. It achieves this through various metabolic reactions, including removing excess solutes, synthesizing deficient solutes, and storing solutes for later use. One of the liver’s essential functions is to maintain blood glucose levels by storing excess glucose as glycogen after a meal and releasing it back into the bloodstream as glucose during fasting. Additionally, the liver can produce glucose through gluconeogenesis using other substances such as fat, protein, or other sugars.
The liver also processes nitrogenous waste from protein catabolism by converting ammonium from amino acids to urea, which is less toxic and can be excreted by the kidneys. Another critical function of the liver is producing bilirubin from haem in red blood cells, which is then processed to make bile exclusively in the liver. The liver also produces various plasma proteins, including albumin, hormones, cytokines, and C-reactive protein, but not immunoglobulins, which are made by plasma cells. Overall, the liver’s functions are vital in maintaining the body’s homeostasis and ensuring proper blood composition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 27
Incorrect
-
After TLR activation on macrophages, which cytokine is secreted that enhances leukocyte adhesion and increases endothelial permeability?
Your Answer:
Correct Answer: TNF-alpha
Explanation:Toll-like Receptors and Cytokine Secretion by Macrophages
Toll-like receptors are a type of pattern-recognition receptor that enables granulocytes to detect general pathogenic molecules. When activated on macrophages, Toll-like receptors trigger the secretion of various cytokines. These cytokines include IL-1, which causes fever by acting on the hypothalamus, IL-6, which stimulates the liver to release acute phase proteins, IL-8, which attracts neutrophils, and TNF-alpha, which promotes Th1-type responses from CD4+ T cells, attracts macrophages, and increases endothelial permeability.
TGF-beta is another cytokine that is slightly different from the others. It is released by T regulatory cells and has the ability to reduce lymphocyte activity while promoting fibrosis. Overall, the activation of Toll-like receptors and subsequent cytokine secretion by macrophages play a crucial role in the immune response against pathogens.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 28
Incorrect
-
A 72-year-old man is having a carotid endarterectomy due to recurrent TIAs and the external carotid artery is visible. What is the initial branch of the external carotid artery?
Your Answer:
Correct Answer: The superior thyroid artery
Explanation:The Superior Thyroid Artery and its Branches
The superior thyroid artery is the initial branch of the external carotid artery. It descends downwards along the side of the pharynx before turning anteriorly to provide blood supply to the upper part of the thyroid gland. The external carotid artery has several branches, which are arranged in a descending order from inferior to superior. These branches include the superior thyroid, lingual, facial, occipital, posterior auricular, superficial temporal, and maxillary arteries.
The superior thyroid artery is responsible for supplying blood to the upper pole of the thyroid gland. It is one of the first branches of the external carotid artery and runs downwards along the side of the pharynx before turning anteriorly. The external carotid artery has several branches, which are arranged in a descending order from inferior to superior. These branches include the superior thyroid, lingual, facial, occipital, posterior auricular, superficial temporal, and maxillary arteries.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Incorrect
-
A 32-year old woman with asthma presents to the Emergency department with difficulty breathing. Upon examination, you observe that she is utilizing accessory muscles for respiration. Can you identify which muscle is considered an accessory muscle of respiration?
Your Answer:
Correct Answer: Serratus anterior
Explanation:Accessory Muscles of Respiration
The accessory muscles of respiration are utilized during deep inspiration and consist of several muscles. These muscles include the sternocleidomastoid, scalenus anterior, medius, and posterior, serratus anterior, and pectoralis major and minor. However, there is no consensus on the exact number of muscles that can be classified as ‘accessory’. Some lists include any muscle that can impact chest expansion. It is important to note that the trapezius muscle cannot be considered an accessory muscle of respiration as it is not connected to the ribs. Overall, the accessory muscles of respiration play a crucial role in deep breathing and chest expansion.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 30
Incorrect
-
What structures are found alongside the median nerve in the carpal tunnel?
Your Answer:
Correct Answer: Flexor digitorum profundis
Explanation:The Carpal Tunnel: A Passage for Nerves and Tendons
The carpal tunnel is a narrow passage located in the wrist that is made up of the flexor retinaculum, a band of connective tissue. This tunnel serves as a pathway for the median nerve and the tendons of the long flexor muscles of the fingers. These structures pass through the tunnel to reach the hand and fingers. However, all other structures, such as blood vessels and other nerves, are located outside of the carpal tunnel.
In summary, the carpal tunnel is a crucial passage for the median nerve and tendons of the long flexor muscles of the digits. It is formed by the flexor retinaculum and is located in the wrist. the anatomy of the carpal tunnel is important in diagnosing and treating conditions that affect the hand and wrist.
-
This question is part of the following fields:
- Clinical Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)