00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Which of the following physiological changes does not take place after a tracheostomy?...

    Incorrect

    • Which of the following physiological changes does not take place after a tracheostomy?

      Your Answer: Anatomical dead space is reduced by 50%.

      Correct Answer: Work of breathing is increased.

      Explanation:

      HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      26.1
      Seconds
  • Question 2 - A 29-year-old pregnant woman is admitted to the hospital and delivers a baby...

    Correct

    • A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.

      What is the cell type responsible for producing the substance that the baby is lacking?

      Your Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      62.9
      Seconds
  • Question 3 - Which one of the following is not found in the anterior mediastinum? ...

    Incorrect

    • Which one of the following is not found in the anterior mediastinum?

      Your Answer: Aortic root

      Correct Answer: Thoracic duct

      Explanation:

      The posterior and superior mediastinum contain the thoracic duct.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      20.3
      Seconds
  • Question 4 - A 63-year-old man visits his GP complaining of worsening shortness of breath. He...

    Incorrect

    • A 63-year-old man visits his GP complaining of worsening shortness of breath. He was diagnosed with COPD six years ago and has been frequently admitted to the emergency department due to lower respiratory tract infections, especially in the past year. He has a smoking history of 50 pack-years and currently smokes 20 cigarettes per day.

      During the examination, the patient appears to be struggling to breathe even at rest and is in the tripod position. His heart rate is 78/min, blood pressure is 140/88 mmHg, oxygen saturation is 88% on air, respiratory rate is 26 breaths per minute, and temperature is 36.4ºC. His chest expansion is symmetrical, and breath sounds are equal throughout the lung fields.

      Recent spirometry results show that his FEV1 was 47% a week ago, 53% a month ago, and 67% six months ago. What intervention would be most effective in slowing the decline of his FEV1?

      Your Answer: Inhaled short-acting beta agonist e.g. salbutamol

      Correct Answer: Smoking cessation

      Explanation:

      Slowing the decrease in FEV1 in COPD can be most effectively achieved by quitting smoking.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      49
      Seconds
  • Question 5 - A 29-year-old man visits his primary care physician with complaints of a malodorous...

    Incorrect

    • A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.

      The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.

      What is the most likely condition based on this patient's clinical presentation?

      Your Answer: Otitis externa

      Correct Answer: Cholesteatoma

      Explanation:

      Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.

      Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      65
      Seconds
  • Question 6 - A 49-year-old woman of African descent visits her primary care physician with concerns...

    Correct

    • A 49-year-old woman of African descent visits her primary care physician with concerns about a lump in her neck that has been present for a week. She reports no significant increase in size and denies any pain or difficulty swallowing. The patient has no notable medical history, except for a visit to the eye doctor last year for a red-eye that required treatment with topical steroid drops. During the examination, the doctor observes some red, tender nodules on the patient's shin, which the patient says come and go and do not cause much discomfort. A chest x-ray reveals bilateral hilar lymphadenopathy with no other significant findings. What is typically linked to this patient's condition?

      Your Answer: Elevated angiotensin-converting enzyme levels

      Explanation:

      Sarcoidosis is likely in this patient based on their symptoms and examination findings, including a neck lump, tender nodules on the shin, and a history of red-eye. Bilateral lymphadenopathy on chest X-ray further supports the diagnosis, as does the presence of elevated angiotensin-converting enzyme levels, which are commonly seen in sarcoidosis. Hypercalcemia, fatigue, and uveitis are also associated with sarcoidosis, while exposure to silica is not supported by this patient’s presentation.

      Investigating Sarcoidosis

      Sarcoidosis is a disease that does not have a single diagnostic test, and therefore, diagnosis is mainly based on clinical observations. Although ACE levels may be used to monitor disease activity, they are not reliable in diagnosing sarcoidosis due to their low sensitivity and specificity. Routine blood tests may show hypercalcemia and a raised ESR.

      A chest x-ray is a common investigation for sarcoidosis and may reveal different stages of the disease. Stage 0 is normal, stage 1 shows bilateral hilar lymphadenopathy (BHL), stage 2 shows BHL and interstitial infiltrates, stage 3 shows diffuse interstitial infiltrates only, and stage 4 shows diffuse fibrosis. Other investigations, such as spirometry, may show a restrictive defect, while a tissue biopsy may reveal non-caseating granulomas. However, the Kveim test, which involves injecting part of the spleen from a patient with known sarcoidosis under the skin, is no longer performed due to concerns about cross-infection.

      In addition, a gallium-67 scan is not routinely used to investigate sarcoidosis. CT scans may also be used to investigate sarcoidosis, and they may show diffuse areas of nodularity predominantly in a peribronchial distribution with patchy areas of consolidation, particularly in the upper lobes. Ground glass opacities may also be present, but there are no gross reticular changes to suggest fibrosis.

      Overall, investigating sarcoidosis involves a combination of clinical observations, blood tests, chest x-rays, and other investigations such as spirometry and tissue biopsy. CT scans may also be used to provide more detailed information about the disease.

    • This question is part of the following fields:

      • Respiratory System
      82.7
      Seconds
  • Question 7 - What is the term used to describe the area between the vocal cords?...

    Incorrect

    • What is the term used to describe the area between the vocal cords?

      Your Answer: Vestibule

      Correct Answer: Rima glottidis

      Explanation:

      The narrowest part of the laryngeal cavity is known as the rima glottidis.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      9.9
      Seconds
  • Question 8 - A 6-month-old infant is brought to the paediatrician due to increased work of...

    Incorrect

    • A 6-month-old infant is brought to the paediatrician due to increased work of breathing. The infant was born at term and via spontaneous vaginal delivery 6 months ago.

      During the examination, the paediatrician observes moderate subcostal and intercostal recession and notes that the infant appears tachypnoeic. The infant's temperature is 38.9ºC, and a chest x-ray is ordered, which reveals some consolidation in the right lower zone. Broad-spectrum antibiotics are initiated.

      Upon reviewing the infant's oxygen dissociation curve, the paediatrician notes a leftward shift relative to the standard adult curve. What is the cause of this appearance in the infant's oxygen dissociation curve?

      Your Answer: Hyperthermia

      Correct Answer: Foetal haemoglobin (HbF)

      Explanation:

      The factor that shifts the oxygen dissociation curve to the left is foetal haemoglobin (HbF). This is because HbF has a higher affinity for oxygen than adult haemoglobin, haemoglobin A, which allows maternal haemoglobin to preferentially offload oxygen to the foetus across the placenta.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      148
      Seconds
  • Question 9 - A 57-year-old woman arrives at the emergency department complaining of difficulty breathing. She...

    Incorrect

    • A 57-year-old woman arrives at the emergency department complaining of difficulty breathing. She has a medical history of idiopathic interstitial lung disease. Upon examination, her temperature is 37.1ºC, oxygen saturation is 76% on air, heart rate is 106 beats per minute, respiratory rate is 26 breaths per minute, and blood pressure is 116/60 mmHg.

      What pulmonary alteration would take place in response to her low oxygen saturation?

      Your Answer: Diffuse bronchoconstriction

      Correct Answer: Pulmonary artery vasoconstriction

      Explanation:

      Hypoxia causes vasoconstriction in the pulmonary arteries, which can lead to pulmonary artery hypertension in patients with chronic lung disease and chronic hypoxia. Diffuse bronchoconstriction is not a response to hypoxia, but may cause hypoxia in conditions such as acute asthma exacerbation. Hypersecretion of mucus from goblet cells is a characteristic finding in chronic inflammatory lung diseases, but is not a response to hypoxia. Pulmonary artery vasodilation occurs around well-ventilated alveoli to optimize oxygen uptake into the blood.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      172
      Seconds
  • Question 10 - A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain,...

    Incorrect

    • A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain, nausea, vomiting, and a decreased level of consciousness. Upon examination, the patient exhibits Kussmaul respiration and an acetone-like breath odor.

      What type of metabolic disturbance is most consistent with the symptoms and presentation of this patient?

      Your Answer: Metabolic acidosis, oxygen dissociation curve shifts to the left

      Correct Answer: Metabolic acidosis, oxygen dissociation curve shifts to the right

      Explanation:

      The correct answer is that metabolic acidosis shifts the oxygen dissociation curve to the right. This is seen in the condition described in the question, diabetic ketoacidosis, which is associated with metabolic acidosis. Acidosis causes more oxygen to be unloaded from haemoglobin, leading to a rightward shift in the curve. The other answer options are incorrect, as they either describe a different type of acidosis or an incorrect direction of the curve shift.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      69.6
      Seconds
  • Question 11 - What is the anatomical level of the transpyloric plane? ...

    Incorrect

    • What is the anatomical level of the transpyloric plane?

      Your Answer: T12

      Correct Answer: L1

      Explanation:

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      7.8
      Seconds
  • Question 12 - A 50-year-old woman with a recent diagnosis of COPD is admitted to the...

    Correct

    • A 50-year-old woman with a recent diagnosis of COPD is admitted to the hospital for treatment of an exacerbation caused by infection. She reports smoking 10 cigarettes per day and has a family history of lung cancer. Her chest x-ray shows signs of emphysema, and she mentions that her parents and siblings also have the disease. She asks for advice on the best course of action to improve her prognosis.

      Your Answer: Stop smoking

      Explanation:

      The most crucial step to enhance the patient’s prognosis is to assist them in quitting smoking. While lung reduction surgery and long-term oxygen therapy may benefit certain patient groups, smoking cessation remains the top priority. Proper inhaler technique and adherence, as well as the use of home nebulizers, can provide symptomatic relief for the patient.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      21.7
      Seconds
  • Question 13 - A 29-year-old man comes to the clinic with a complaint of ear pain....

    Incorrect

    • A 29-year-old man comes to the clinic with a complaint of ear pain. He mentions that the pain started yesterday and has been preventing him from working. He also reports experiencing dizziness and muffled sounds on the affected side. During the examination, you notice that he has a fever and a bulging tympanic membrane with visible fluid. Based on these symptoms, you suspect that he has a middle ear infection. Now, you wonder which ossicle the tensor tympani muscle inserts into.

      Which ossicle does the tensor tympani muscle insert into?

      Your Answer: Incus

      Correct Answer: Malleus

      Explanation:

      The tensor tympani muscle is located in a bony canal above the pharyngotympanic tube and originates from the cartilaginous portion of the tube, the bony canal, and the greater wing of the sphenoid bone. Its function is to reduce the magnitude of vibrations transmitted into the middle ear by pulling the handle of the malleus medially when contracted. This muscle is innervated by the nerve to tensor tympani, which arises from the mandibular nerve.

      The middle ear contains three ossicles, which are the malleus, incus, and stapes. The malleus is the most lateral and attaches to the tympanic membrane, while the incus lies between and articulates with the other two ossicles. The stapes is the most medial and is connected to the oval window of the cochlea. The stapedius muscle is associated with the stapes. The lunate and trapezium are not bones of the middle ear but are carpal bones.

      A patient with ear pain, difficulty hearing, dizziness, and fever may have otitis media, which is confirmed on otoscopy by a bulging tympanic membrane and visible fluid level.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      32.8
      Seconds
  • Question 14 - A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression....

    Incorrect

    • A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression. She has a history of hyperthyroidism that was controlled with carbimazole. However, she was deemed a suitable candidate for thyroidectomy after presenting to the emergency department with dyspnoea and stridor.

      As a surgical resident assisting the ENT surgeon, you need to ligate the superior thyroid artery before removing the thyroid glands to prevent excessive bleeding. However, the superior laryngeal artery, a branch of the superior thyroid artery, is closely related to a structure that, if injured, can lead to loss of sensation in the laryngeal mucosa.

      What is the correct identification of this structure?

      Your Answer: Inferior laryngeal artery

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve and the superior laryngeal artery are closely associated with each other. The superior laryngeal artery travels alongside the internal laryngeal branch of the superior laryngeal nerve, beneath the thyrohyoid muscle. It originates from the superior thyroid artery near its separation from the external carotid artery.

      If the internal laryngeal nerve is damaged, it can result in a loss of sensation to the laryngeal mucosa. The nerve is situated beneath the mucous membrane of the piriform recess, making it vulnerable to injury from sharp objects like fish and chicken bones that may become stuck in the recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      140.1
      Seconds
  • Question 15 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Incorrect

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer: Lymphocytes

      Correct Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      38.5
      Seconds
  • Question 16 - A 59-year-old man comes to see his GP complaining of vertigo that has...

    Correct

    • A 59-year-old man comes to see his GP complaining of vertigo that has been going on for three days. He also reports experiencing left-sided ear pain and a change in his sense of taste, as well as constant ringing in his left ear. He took paracetamol on his own, but the vertigo persisted, so he decided to seek medical attention.

      During the examination, the doctor observes that the man has a drooping left face with involvement of the forehead. Upon otoscopic examination, vesicles are seen in the external auditory canal of the left ear. A neurological examination is performed, which is normal except for the left facial paralysis.

      What is the appropriate treatment for this man's condition?

      Your Answer: Oral acyclovir and corticosteroids

      Explanation:

      Ramsay Hunt syndrome is treated with a combination of oral acyclovir and corticosteroids. This condition is caused by the varicella zoster virus, as evidenced by the presence of vesicles on the left ear and involvement of the seventh and eighth cranial nerves. Symptoms include facial paralysis and hearing impairments. Treatment typically involves a seven to ten day course of oral acyclovir and a five day course of corticosteroids, such as prednisolone.

      It is important to note that oseltamivir (tamiflu) is an antiviral used for influenzae, while chloroquine is typically used for malaria. Amoxicillin is an antibiotic and is not effective in treating viral infections. While corticosteroids can provide relief from inflammation, they are not the primary treatment for Ramsay Hunt syndrome when used alone.

      Understanding Ramsay Hunt Syndrome

      Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.

      To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      92.3
      Seconds
  • Question 17 - A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible...

    Incorrect

    • A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.

      What specific lung volume would accurately describe the clinician's observation?

      Your Answer: Forced vital capacity (FVC)

      Correct Answer: Tidal volume (TV)

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      29.2
      Seconds
  • Question 18 - A premature baby is born and the anaesthetists are struggling to ventilate the...

    Incorrect

    • A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?

      Your Answer: Proportional to the fourth power of the radius of the alveolus

      Correct Answer: Inversely proportional to the radius of the alveolus

      Explanation:

      The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology

      In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.

      In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.

    • This question is part of the following fields:

      • Respiratory System
      83.1
      Seconds
  • Question 19 - A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory...

    Incorrect

    • A middle-aged woman with myasthenia gravis experiences a myasthenic crisis leading to respiratory failure. Which nerve root is most commonly affected in this scenario?

      Your Answer: C7

      Correct Answer: C4

      Explanation:

      The phrenic nerve receives input from C3, C4, and C5, which is essential for keeping the diaphragm functioning properly. In cases of medical emergencies, mechanical ventilation is often the first-line management. C2 primarily innervates muscles in the neck, while C7 and T1 are part of the brachial plexus and contribute to the formation of nerves in the upper limb.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      39.8
      Seconds
  • Question 20 - Which one of the following statements relating to the root of the spine...

    Incorrect

    • Which one of the following statements relating to the root of the spine is false?

      Your Answer: The roots and trunks of the Brachial plexus lie posterior to the subclavian artery on the first rib

      Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior

      Explanation:

      The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.

      Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax

      The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.

      Thoracic outlet obstruction can cause neurovascular compromise.

    • This question is part of the following fields:

      • Respiratory System
      75.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (4/20) 20%
Passmed