00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 25-year-old woman is stabbed in the chest during a fight outside a...

    Incorrect

    • A 25-year-old woman is stabbed in the chest during a fight outside a bar. A FAST scan is conducted, revealing the presence of free fluid in the chest cavity.

      Which of the following organs is most likely to be damaged in this scenario?

      Your Answer: Aorta

      Correct Answer: Liver

      Explanation:

      Stab wounds to the abdomen result in tissue damage through laceration and cutting. When patients experience penetrating abdominal trauma due to stab wounds, the organs that are most commonly affected include the liver (40% of cases), small bowel (30% of cases), diaphragm (20% of cases), and colon (15% of cases). These statistics are derived from the latest edition of the ATLS manual.

    • This question is part of the following fields:

      • Trauma
      42.3
      Seconds
  • Question 2 - You are summoned to a cardiac arrest in the resuscitation area of your...

    Incorrect

    • You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department. As part of your treatment, a dose of adrenaline is given.
      What is one alpha-adrenergic effect of adrenaline?

      Your Answer: Increased myocardial oxygen consumption

      Correct Answer: Increased cerebral perfusion pressures

      Explanation:

      The effects of adrenaline on alpha-adrenergic receptors result in the narrowing of blood vessels throughout the body, leading to increased pressure in the coronary and cerebral arteries. On the other hand, the effects of adrenaline on beta-adrenergic receptors enhance the strength of the heart’s contractions and increase the heart rate, which can potentially improve blood flow to the coronary and cerebral arteries. However, it is important to note that these positive effects may be counteracted by the simultaneous increase in oxygen consumption by the heart, the occurrence of abnormal heart rhythms, reduced oxygen levels due to abnormal blood flow patterns, impaired small blood vessel function, and worsened heart function following a cardiac arrest.

    • This question is part of the following fields:

      • Trauma
      27.7
      Seconds
  • Question 3 - A 42-year-old woman was involved in a car accident where her vehicle collided...

    Correct

    • A 42-year-old woman was involved in a car accident where her vehicle collided with a wall at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel. She is experiencing severe bruising on her anterior chest wall and is complaining of chest pain. A chest X-ray reveals a significantly widened mediastinum, tracheal deviation to the right, and fractures of the first and second ribs. Her vital signs are as follows: heart rate of 94, blood pressure of 128/73, and oxygen saturation of 99% on high flow oxygen.

      What is the SINGLE most likely diagnosis?

      Your Answer: Traumatic aortic rupture

      Explanation:

      Traumatic aortic rupture is a relatively common cause of sudden death following major trauma, especially high-speed road traffic accidents (RTAs). It is estimated that 15-20% of deaths from RTAs are due to this injury. If the aortic rupture is promptly recognized and treated, patients who survive the initial injury can fully recover.

      Surviving patients often have an incomplete laceration near the ligamentum arteriosum of the aorta. The continuity is maintained by either an intact adventitial layer or a contained mediastinal hematoma, which prevents immediate exsanguination and death.

      Detecting traumatic aortic rupture can be challenging as many patients do not exhibit specific symptoms, and other injuries may also be present, making the diagnosis unclear.

      Chest X-ray findings can aid in the diagnosis and include fractures of the 1st and 2nd ribs, a grossly widened mediastinum, a hazy left lung field, obliteration of the aortic knob, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus (or NG tube) to the right.

      Helical contrast-enhanced CT scanning is highly sensitive and specific for detecting aortic rupture, but it should only be performed on hemodynamically stable patients.

      Treatment options include primary repair or resection of the torn segment with replacement using an interposition graft. Endovascular repair is also now considered an acceptable alternative approach.

    • This question is part of the following fields:

      • Trauma
      50
      Seconds
  • Question 4 - A 37 year old male is brought into the emergency department with severe...

    Correct

    • A 37 year old male is brought into the emergency department with severe chest injuries following a car accident. FAST scanning shows the presence of around 100 ml of fluid in the pericardium. The patient's blood pressure is 118/78 mmHg and pulse rate is 92. What is the recommended course of action for managing this patient?

      Your Answer: Transfer to theatre for thoracotomy

      Explanation:

      For individuals with traumatic cardiac tamponade, thoracotomy is the recommended treatment. In the case of a trauma patient with a significant buildup of fluid around the heart and the potential for tamponade, it is advised to transfer stable patients to the operating room for thoracotomy instead of performing pericardiocentesis. Pericardiocentesis, when done correctly, is likely to be unsuccessful due to the presence of clotted blood in the pericardium. Additionally, performing pericardiocentesis would cause a delay in the thoracotomy procedure. If access to the operating room is not possible, pericardiocentesis may be considered as a temporary solution.

      Further Reading:

      Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.

      Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.

      Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.

      It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.

    • This question is part of the following fields:

      • Trauma
      38.7
      Seconds
  • Question 5 - A 45-year-old woman is brought into resus by blue light ambulance following a...

    Correct

    • A 45-year-old woman is brought into resus by blue light ambulance following a car crash. She was hit by a truck while driving a car and has a suspected pelvic injury. She is currently on a backboard with cervical spine protection and a pelvic binder in place. The massive transfusion protocol is activated.
      Which of the following is the definition of a massive transfusion?

      Your Answer: The transfusion of more than 4 units of blood in 1 hour

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      42
      Seconds
  • Question 6 - A 35-year-old man is brought in by ambulance following a car crash. A...

    Correct

    • A 35-year-old man is brought in by ambulance following a car crash. A FAST scan is conducted to assess for the presence of a haemoperitoneum.
      Where is free fluid most likely to be observed if a haemoperitoneum is present?

      Your Answer: Liver

      Explanation:

      A Focussed Assessment with Sonography for Trauma (FAST) scan is a point-of-care ultrasound examination conducted when a trauma patient arrives. Its primary purpose is to identify the presence of intra-abdominal free fluid, which is typically assumed to be haemoperitoneum in the context of trauma. This information is crucial for making decisions regarding further management of the patient.

      The sensitivity of FAST scanning for detecting intraperitoneal fluid is approximately 90%, while its specificity is around 95%. However, its sensitivity for detecting solid organ injuries is much lower. As a result, FAST scanning has largely replaced diagnostic peritoneal lavage as the preferred initial method for assessing haemoperitoneum.

      During a standard FAST scan, four regions are examined. The subxiphoid transverse view is used to assess for pericardial effusion and left lobe liver injuries. The longitudinal view of the right upper quadrant helps identify right liver injuries, right kidney injury, and fluid in the hepatorenal recess (Morison’s pouch). The longitudinal view of the left upper quadrant is used to assess for splenic injury and left kidney injury. Lastly, the transverse and longitudinal views of the suprapubic region are used to examine the bladder and fluid in the pouch of Douglas.

      In addition to the standard FAST scan, an extended FAST or eFAST may be performed to assess the left and right thoracic regions. This helps determine the presence of pneumothorax and haemothorax.

      The hepatorenal recess is the deepest part of the peritoneal cavity when the patient is lying flat. Consequently, it is the most likely area for fluid to accumulate.

    • This question is part of the following fields:

      • Trauma
      50.9
      Seconds
  • Question 7 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Incorrect

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving at the Emergency Department. Her pulse rate is 88 bpm, BP is 130/50 mmHg, respiratory rate 16 breaths/minute, and her urine output over the past hour has been 40 ml. She has some bruising evident on her arm and is slightly nervous. The patient weighs approximately 65 kg.
      How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?

      Your Answer: No haemorrhage has occurred

      Correct Answer: Class I

      Explanation:

      This patient’s physiological parameters are mostly within normal range, but there is an increased pulse pressure and slight anxiety, suggesting a class I haemorrhage. It is crucial to be able to identify the degree of blood loss based on vital signs and mental status changes. The Advanced Trauma Life Support (ATLS) classification for haemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy 70 kg individual. In a 70 kg male patient, the total circulating blood volume is approximately five litres, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 ml/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 ml/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 ml/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: Greater than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      52.9
      Seconds
  • Question 8 - A young patient who has been in a car accident experiences a traumatic...

    Incorrect

    • A young patient who has been in a car accident experiences a traumatic cardiac arrest. You decide to perform an anterolateral thoracotomy.
      During this procedure, which structures will need to be divided?

      Your Answer:

      Correct Answer: Latissimus dorsi

      Explanation:

      An anterolateral thoracotomy is a surgical procedure performed on the front part of the chest wall. It is commonly used in Emergency Department thoracotomy, with a preference for a left-sided approach in patients experiencing traumatic arrest or left-sided chest injuries. However, in cases where patients have not arrested but present with severe low blood pressure and right-sided chest injuries, a right-sided approach is recommended.

      The procedure is conducted as follows: an incision is made along the 4th or 5th intercostal space, starting from the sternum at the front and extending to the posterior axillary line. The incision should be deep enough to partially cut through the latissimus dorsi muscle. Subsequently, the skin, subcutaneous fat, and superficial portions of the pectoralis and serratus muscles are divided. The parietal pleura is then divided, allowing access to the pleural cavity. The intercostal muscles are completely cut, and a rib spreader is inserted and opened to provide visualization of the thoracic cavity.

      The anterolateral approach enables access to crucial anatomical structures during resuscitation, including the pulmonary hilum, heart, and aorta. In cases where a right-sided heart injury is suspected, an additional incision can be made on the right side, extending across the entire chest. This procedure is known as a bilateral anterolateral thoracotomy or a clamshell thoracotomy.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 9 - You are summoned to a cardiac arrest in the resuscitation area of your...

    Incorrect

    • You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department. As part of your treatment, a dose of adrenaline is given.
      Which of the following is NOT a beta-adrenergic effect of adrenaline?

      Your Answer:

      Correct Answer: Systemic vasoconstriction

      Explanation:

      The effects of adrenaline on alpha-adrenergic receptors result in the narrowing of blood vessels throughout the body, leading to increased pressure in the coronary and cerebral arteries. On the other hand, the effects of adrenaline on beta-adrenergic receptors enhance the strength of the heart’s contractions and increase the heart rate, which can potentially improve blood flow to the coronary and cerebral arteries. However, it is important to note that these positive effects may be counteracted by the simultaneous increase in oxygen consumption by the heart, the occurrence of abnormal heart rhythms, reduced oxygen levels due to abnormal blood flow patterns, impaired small blood vessel function, and worsened heart function following a cardiac arrest.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 10 - A 15 year old is brought into the emergency department with burns to...

    Incorrect

    • A 15 year old is brought into the emergency department with burns to the feet which she sustained whilst removing an item from a lit bonfire. The patient's father is worried she has full thickness burns. Which of the following signs is indicative of a full thickness burn?

      Your Answer:

      Correct Answer: Painless

      Explanation:

      Full thickness burns are devoid of pain as they result in the complete destruction of the superficial nerve endings. These burns usually display characteristics such as a lack of sensation, a coloration of the burnt skin in shades of white, brown, or black, a texture that is waxy or leathery, and a dry appearance without any blistering.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 11 - A female trauma victim that has experienced substantial blood loss is estimated to...

    Incorrect

    • A female trauma victim that has experienced substantial blood loss is estimated to have experienced a grade IV hemorrhage. The patient's weight is approximately 60 kg.
      Which of the following physiological indicators aligns with a diagnosis of grade IV hemorrhage?

      Your Answer:

      Correct Answer: Blood loss of greater than 2 L in a 70 kg male

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 12 - A 25-year-old woman is brought into the emergency department after sustaining a single...

    Incorrect

    • A 25-year-old woman is brought into the emergency department after sustaining a single stab wound to the abdomen while attempting to intervene in a fight. The patient's observations are as follows:

      Parameter Reading
      Blood pressure: 122/84 mmHg
      Pulse rate: 88 bpm
      Respiration rate: 12 rpm
      SpO2: 98% on air

      Which two organs are frequently affected in cases of penetrating abdominal trauma?

      Your Answer:

      Correct Answer: Liver and small bowel

      Explanation:

      In cases of penetrating abdominal trauma, two organs that are frequently affected are the liver and the small bowel. This means that when a person sustains a stab wound or any other type of injury that penetrates the abdomen, these two organs are at a higher risk of being damaged.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 13 - You are caring for a polytrauma patient with a penetrating chest injury. The...

    Incorrect

    • You are caring for a polytrauma patient with a penetrating chest injury. The FAST scan shows cardiac tamponade. If left untreated, expanding cardiac tamponade can lead to which of the following arrhythmias?

      Your Answer:

      Correct Answer: Pulseless electrical activity

      Explanation:

      If a polytrauma patient with a penetrating chest injury has an expanding cardiac tamponade that is left untreated, it can potentially lead to pulseless electrical activity.

      Further Reading:

      Cardiac tamponade, also known as pericardial tamponade, occurs when fluid accumulates in the pericardial sac and compresses the heart, leading to compromised blood flow. Classic clinical signs of cardiac tamponade include distended neck veins, hypotension, muffled heart sounds, and pulseless electrical activity (PEA). Diagnosis is typically done through a FAST scan or an echocardiogram.

      Management of cardiac tamponade involves assessing for other injuries, administering IV fluids to reduce preload, performing pericardiocentesis (inserting a needle into the pericardial cavity to drain fluid), and potentially performing a thoracotomy. It is important to note that untreated expanding cardiac tamponade can progress to PEA cardiac arrest.

      Pericardiocentesis can be done using the subxiphoid approach or by inserting a needle between the 5th and 6th intercostal spaces at the left sternal border. Echo guidance is the gold standard for pericardiocentesis, but it may not be available in a resuscitation situation. Complications of pericardiocentesis include ST elevation or ventricular ectopics, myocardial perforation, bleeding, pneumothorax, arrhythmia, acute pulmonary edema, and acute ventricular dilatation.

      It is important to note that pericardiocentesis is typically used as a temporary measure until a thoracotomy can be performed. Recent articles published on the RCEM learning platform suggest that pericardiocentesis has a low success rate and may delay thoracotomy, so it is advised against unless there are no other options available.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 14 - A 21 year old patient is brought into the emergency department with burns...

    Incorrect

    • A 21 year old patient is brought into the emergency department with burns to the left arm. The patient informs you that one of their friends had accidentally set their sleeve on fire with a lighter, causing the material to quickly burn and stick to their skin. The patient's entire left arm is burned, with the front part experiencing superficial partial thickness burns and the back part having areas of deep partial thickness and full thickness burns. What is the estimated total body surface area of burn in this patient?

      Your Answer:

      Correct Answer: 9%

      Explanation:

      To estimate the total body surface area of burn, we need to consider the rule of nines. This rule divides the body into different regions, each representing a certain percentage of the total body surface area. According to the rule of nines, the left arm accounts for 9% of the total body surface area. Therefore, the estimated total body surface area of burn in this patient is 9%.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 15 - A 45-year-old woman is brought into the emergency room by an ambulance with...

    Incorrect

    • A 45-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while crossing the street and is suspected to have a pelvic injury. Her condition is unstable, and the hospital has activated the massive transfusion protocol. You decide to also administer tranexamic acid and give an initial dose of 1 g intravenously over a period of 10 minutes.
      What should be the subsequent dose of tranexamic acid and how long should it be administered for?

      Your Answer:

      Correct Answer: 1 g IV over 8 hours

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 16 - A 28-year-old woman is brought into the emergency room by an ambulance with...

    Incorrect

    • A 28-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while riding a bicycle and is suspected to have a pelvic injury. Her blood pressure is unstable, and the hospital has activated the massive transfusion protocol. You decide to also give her tranexamic acid.
      What is the appropriate initial dose of tranexamic acid to administer and over what duration of time?

      Your Answer:

      Correct Answer: 1 g IV over 10 minutes

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 17 - You are managing a 35 year old patient with severe burns. You determine...

    Incorrect

    • You are managing a 35 year old patient with severe burns. You determine that the patient needs urgent fluid replacement. The patient weighs 75 kg and has burns covering 15% of their total body surface area. How much fluid should be administered to the patient over a 24-hour period?

      Your Answer:

      Correct Answer: 6400 ml

      Explanation:

      To calculate the total fluid requirement over 24 hours, you need to multiply the TBSA (Total Body Surface Area) by the weight in kilograms. In this particular case, the calculation would be 4 multiplied by 20 multiplied by 80, resulting in a total of 6400 milliliters.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 18 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Incorrect

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 125 bpm, BP is 92/46 mmHg, respiratory rate 35 breaths/minute, and her urine output over the past hour has been 10 ml. She is anxious and slightly confused. The patient weighs approximately 70 kg.
      How would you classify her hemorrhage according to the ATLS hemorrhagic shock classification?

      Your Answer:

      Correct Answer: Class III

      Explanation:

      This patient is experiencing an increased heart rate and respiratory rate, as well as a decrease in urine output. Additionally, they are feeling anxious and confused. These symptoms indicate that the patient has suffered a class III haemorrhage at this point in time.

      Recognizing the extent of blood loss based on vital signs and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification connects the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, leth

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 19 - A 42-year-old woman was in a car crash where her vehicle collided with...

    Incorrect

    • A 42-year-old woman was in a car crash where her vehicle collided with a wall at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel. She has bruising on her front chest wall and is experiencing chest pain. The chest X-ray taken in the emergency room shows signs of a traumatic aortic injury.

      Which of the following chest X-ray findings is most indicative of this injury?

      Your Answer:

      Correct Answer: Presence of a pleural cap

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 20 - You are requested to evaluate a 42-year-old individual with a knee injury sustained...

    Incorrect

    • You are requested to evaluate a 42-year-old individual with a knee injury sustained from leaping off a tall wall and landing on a leg that was completely extended. It is suspected that the patient may have experienced a quadriceps tendon rupture. Which of the subsequent observations would indicate this diagnosis?

      Your Answer:

      Correct Answer: Loss of of active knee extension

      Explanation:

      When a complete quadriceps rupture occurs, it leads to the inability to actively extend the knee. Please refer to the following notes for more detailed information.

      Further Reading:

      A quadriceps tendon tear or rupture is a traumatic lower limb and joint injury that occurs when there is heavy loading on the leg, causing forced contraction of the quadriceps while the foot is planted and the knee is partially bent. These tears most commonly happen at the osteotendinous junction between the tendon and the superior pole of the patella. Quadriceps tendon ruptures are more common than patellar tendon ruptures.

      When a quadriceps tendon tear occurs, the patient usually experiences a tearing sensation and immediate pain. They will then typically complain of pain around the knee and over the tendon. Clinically, there will often be a knee effusion and weakness or inability to actively extend the knee.

      In cases of complete quadriceps tears, the patella will be displaced distally, resulting in a low lying patella or patella infera, also known as patella baja. Radiological measurements, such as the Insall-Salvati ratio, can be used to measure patella height. The Insall-Salvati ratio is calculated by dividing the patellar tendon length by the patellar length. A normal ratio is between 0.8 to 1.2, while a low lying patella (patella baja) is less than 0.8 and a high lying patella (patella alta) is greater than 1.2.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 21 - A 45-year-old woman is brought into resus by blue light ambulance following a...

    Incorrect

    • A 45-year-old woman is brought into resus by blue light ambulance following a car accident. She was hit by a truck while crossing the road and has a suspected pelvic injury. She is currently on a backboard with cervical spine protection and a pelvic binder in place. The massive transfusion protocol is activated.
      According to the ATLS guidelines, what other medication should be administered?

      Your Answer:

      Correct Answer: Tranexamic acid

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 22 - A man in his early forties who works at a steel mill is...

    Incorrect

    • A man in his early forties who works at a steel mill is hit in the front of his abdomen by a steel girder. A FAST scan is conducted, revealing the existence of free fluid within the abdominal cavity.

      Which organ is most likely to have sustained an injury in this scenario?

      Your Answer:

      Correct Answer: Spleen

      Explanation:

      Blunt abdominal trauma often leads to injuries in certain organs. According to the latest edition of the ATLS manual, the spleen is the most frequently injured organ, with a prevalence of 40-55%. Following closely behind is the liver, which sustains injuries in about 35-45% of cases. The small bowel, although less commonly affected, still experiences injuries in approximately 5-10% of patients. It is worth noting that patients who undergo laparotomy for blunt trauma have a 15% incidence of retroperitoneal hematoma. These statistics highlight the significant impact of blunt abdominal trauma on organ health.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 23 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Incorrect

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 110 bpm, BP is 120/80 mmHg, respiratory rate 20 breaths/minute, and her urine output over the past hour has been 30 ml. She is currently mildly anxious. The patient weighs approximately 65 kg.
      How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?

      Your Answer:

      Correct Answer: Class II

      Explanation:

      This patient is showing a slightly elevated heart rate and respiratory rate, as well as a slightly reduced urine output. These signs indicate that the patient has experienced a class II haemorrhage at this point. It is important to be able to recognize the degree of blood loss based on vital sign and mental status abnormalities. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification provides a way to link the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 24 - The FY1 doctor seeks your guidance concerning an elderly patient they are managing...

    Incorrect

    • The FY1 doctor seeks your guidance concerning an elderly patient they are managing who has experienced a head injury. They are uncertain whether to request a CT head scan for their patient. What clinical criteria would necessitate an immediate CT head scan in an elderly individual?

      Your Answer:

      Correct Answer: Haemotympanum

      Explanation:

      Patients with head injuries who show any signs of basal skull fracture, such as haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, or Battle’s sign, should undergo urgent CT imaging. Additionally, the following indications also warrant a CT scan: a Glasgow Coma Scale (GCS) score of less than 13 on initial assessment in the emergency department (ED), a GCS score of less than 15 at 2 hours after the injury on assessment in the ED, suspected open or depressed skull fracture, post-traumatic seizure, new focal neurological deficit, greater than 1 episode of vomiting, or the patient being on anticoagulation. If any of these signs are present, a CT scan should be performed within 1 hour, except for patients on anticoagulation who should have a CT scan within 8 hours if they do not have any other signs. However, if patients on anticoagulation do have any of the other signs, the CT scan should be performed within 1 hour.

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 25 - A 42-year-old woman is brought in by ambulance following a high-speed car accident....

    Incorrect

    • A 42-year-old woman is brought in by ambulance following a high-speed car accident. There was a prolonged extraction at the scene, and a full trauma call is made. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore needles have been inserted in her antecubital fossa, and a complete set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
      What approximate percentage of her circulatory volume has she lost?

      Your Answer:

      Correct Answer: 30-40%

      Explanation:

      This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.

      Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.

      In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.

      In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.

      The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.

      Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 26 - A 35-year-old man is brought into the emergency room by an ambulance with...

    Incorrect

    • A 35-year-old man is brought into the emergency room by an ambulance with sirens blaring. He has been in a building fire and has sustained severe burns. Upon assessing his airway, you have concerns about potential airway blockage. You decide to proceed with intubation and begin preparing the required equipment.
      What is one reason for performing early intubation in a burn patient?

      Your Answer:

      Correct Answer: Hoarseness of voice

      Explanation:

      Early assessment of the airway is a critical aspect of managing a burned patient. Airway obstruction can occur rapidly due to direct injury or swelling from the burn. If there is a history of trauma, the airway should be evaluated while maintaining cervical spine control.

      There are several risk factors for airway obstruction in burned patients, including inhalation injury, soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, and neck, burns inside the mouth, large burn area and increasing burn depth, associated trauma, and a carboxyhemoglobin level above 10%.

      In cases where significant swelling is anticipated, it may be necessary to urgently secure the airway with an uncut endotracheal tube before the swelling becomes severe. Delaying recognition of impending airway obstruction can make intubation difficult, and a surgical airway may be required.

      The American Burn Life Support (ABLS) guidelines recommend early intubation in certain situations. These include signs of airway obstruction, extensive burns, deep facial burns, burns inside the mouth, significant swelling or risk of swelling, difficulty swallowing, respiratory compromise, decreased level of consciousness, and anticipated transfer of a patient with a large burn and airway issues without qualified personnel to intubate during transport.

      Circumferential burns of the neck can cause tissue swelling around the airway, making early intubation necessary in these cases as well.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 27 - A 45-year-old woman is brought into the emergency department after a car accident....

    Incorrect

    • A 45-year-old woman is brought into the emergency department after a car accident. She has significant bruising on the right side of her chest. You suspect she may have a hemothorax. What clinical signs would you anticipate observing in a patient with a hemothorax?

      Your Answer:

      Correct Answer: Decreased fremitus on affected side

      Explanation:

      Haemothorax often leads to reduced or absent air entry, a dull percussion sound, and decreased fremitus on the affected side. Commonly observed symptoms in patients with haemothorax include decreased or absent air entry, a dull percussion note when the affected side is tapped, reduced fremitus on the affected side, and in cases of massive haemothorax, tracheal deviation away from the affected side. Other signs that may be present include a rapid heart rate (tachycardia), rapid breathing (tachypnoea), low blood pressure (hypotension), and signs of shock.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 28 - You are overseeing the care of a trauma patient in the resuscitation bay....

    Incorrect

    • You are overseeing the care of a trauma patient in the resuscitation bay. A chest tube has been inserted through thoracostomy to drain the hemothorax. The initial amount of blood drained is documented, and there are plans to monitor the additional blood volume drained every hour. What would be an indication for thoracotomy in this patient?

      Your Answer:

      Correct Answer: 250 ml blood drained from pleural cavity (in addition to previous volumes) between hours 2 and 3 post insertion

      Explanation:

      The main indications for thoracotomy in patients with haemothorax are prompt drainage of at least 1500 ml of blood, ongoing blood loss of more than 200 ml per hour for 2-4 hours, and the need for continued blood transfusion. Option 3 in the given choices meets these criteria as the blood loss remains above 200 ml per hour for more than 2 hours after the drain is inserted. Option 1 does not meet the criteria as the blood volume is below 1500 ml. Option 2 does not meet the criteria as the blood loss has not been ongoing for at least 2 hours. Option 4 does not meet the criteria as there is no information indicating the need for ongoing blood transfusion.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 29 - A 32-year-old construction worker is brought into the emergency department with burns to...

    Incorrect

    • A 32-year-old construction worker is brought into the emergency department with burns to the right forearm. The patient explains that he was smoking a cigarette while driving back from work when the cigarette accidentally fell onto his arm, igniting his sleeve which might have been soaked in gasoline from work. You observe circumferential burns encompassing the entire right forearm. What would be your primary concern regarding potential complications?

      Your Answer:

      Correct Answer: Compartment syndrome

      Explanation:

      Compartment syndrome can occur when there are circumferential burns on the arms or legs. This typically happens with full thickness burns, where the burnt skin becomes stiff and compresses the compartment, making it difficult for blood to flow out. To treat this condition, escharotomy and possibly fasciotomy may be necessary.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 30 - A 7-year-old girl is brought into the resus room after a car accident....

    Incorrect

    • A 7-year-old girl is brought into the resus room after a car accident. She is struggling to breathe, and you cannot hear any breath sounds on the right side. Her trachea is shifted to the left, and her neck veins are swollen. Based on your clinical assessment, you diagnose her with a tension pneumothorax and decide to perform a needle thoracocentesis.
      Where should you perform the needle thoracocentesis?

      Your Answer:

      Correct Answer: 2nd intercostal space midclavicular line

      Explanation:

      A tension pneumothorax occurs when there is an air leak from the lung or chest wall that acts like a one-way valve. This causes air to build up in the pleural space without any way to escape. As a result, pressure in the pleural space increases and pushes the mediastinum into the opposite hemithorax. If left untreated, this can lead to cardiovascular instability, shock, and cardiac arrest.

      The clinical features of tension pneumothorax include respiratory distress and cardiovascular instability. Tracheal deviation away from the side of the injury, unilateral absence of breath sounds on the affected side, and a hyper-resonant percussion note are also characteristic. Other signs include distended neck veins and cyanosis, which is a late sign. It’s important to note that both tension pneumothorax and massive haemothorax can cause decreased breath sounds on auscultation. However, percussion can help differentiate between the two conditions. Hyper-resonance suggests tension pneumothorax, while dullness suggests a massive haemothorax.

      Tension pneumothorax is a clinical diagnosis and should not be delayed for radiological confirmation. Requesting a chest X-ray in this situation can delay treatment and put the patient at risk. Immediate decompression through needle thoracocentesis is the recommended treatment. Traditionally, a large-bore needle or cannula is inserted into the 2nd intercostal space in the midclavicular line of the affected hemithorax. However, studies on cadavers have shown better success in reaching the thoracic cavity when the 4th or 5th intercostal space in the midaxillary line is used in adult patients. ATLS now recommends this location for needle decompression in adults. The site for needle thoracocentesis in children remains the same, using the 2nd intercostal space in the midclavicular line. It’s important to remember that needle thoracocentesis is a temporary measure, and the insertion of a chest drain is the definitive treatment.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Trauma (4/7) 57%
Passmed